metal-organic compounds
Diaquabis(4-methylbenzoato-κO)bis(nicotinamide-κN1)nickel(II)
aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Karabük University, 78050 Karabük, Turkey, cDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
The title NiII complex, [Ni(C8H7O2)2(C6H6N2O)2(H2O)2], is centrosymmetric with the Ni atom located on an inversion center. The molecule contains two 4-methylbenzoate (PMB) and two nicotinamide (NA) ligands and two coordinated water molecules, all ligands being monodentate. The four O atoms in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxylate group and the adjacent benzene ring is 26.15 (10)°, while the pyridine and benzene rings are oriented at a dihedral angle of 87.81 (4)°. In the intermolecular O—H⋯O and N—H⋯O hydrogen bonds link the molecules into a three-dimensional network. The π–π contact between the benzene rings [centroid–centroid distance = 3.896 (1) Å] may further stabilize the A weak C—H⋯π interaction involving the pyridine ring also occurs.
Related literature
For niacin, see: Krishnamachari (1974) and for the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b,c); Hökelek & Necefoğlu (1998).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810007385/xu2730sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810007385/xu2730Isup2.hkl
The title compound was prepared by the reaction of NiSO4.6(H2O) (1.32 g, 5 mmol) in H2O (30 ml) and NA (1.22 g, 10 mmol) in H2O (15 ml) with sodium 4-methylbenzoate (1.36 g, 10 mmol) in H2O (300 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving blue single crystals.
Atoms H21, H22 (for NH2) and H41, H42 (for H2O) were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å, for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. Primed atoms are generated by the symmetry operator:(') -x, -y, 1 - z. |
[Ni(C8H7O2)2(C6H6N2O)2(H2O)2] | Z = 1 |
Mr = 609.26 | F(000) = 318 |
Triclinic, P1 | Dx = 1.472 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7324 (2) Å | Cell parameters from 6458 reflections |
b = 9.7335 (3) Å | θ = 2.8–28.3° |
c = 9.8198 (3) Å | µ = 0.76 mm−1 |
α = 78.440 (2)° | T = 99 K |
β = 86.475 (3)° | Prism, blue |
γ = 71.662 (2)° | 0.33 × 0.28 × 0.25 mm |
V = 687.31 (4) Å3 |
Bruker Kappa APEXII CCD area-detector diffractometer | 3390 independent reflections |
Radiation source: fine-focus sealed tube | 3034 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ϕ and ω scans | θmax = 28.4°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −10→10 |
Tmin = 0.889, Tmax = 0.934 | k = −12→12 |
12002 measured reflections | l = −12→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.068 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0238P)2 + 0.4565P] where P = (Fo2 + 2Fc2)/3 |
3390 reflections | (Δ/σ)max < 0.001 |
204 parameters | Δρmax = 0.48 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
[Ni(C8H7O2)2(C6H6N2O)2(H2O)2] | γ = 71.662 (2)° |
Mr = 609.26 | V = 687.31 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.7324 (2) Å | Mo Kα radiation |
b = 9.7335 (3) Å | µ = 0.76 mm−1 |
c = 9.8198 (3) Å | T = 99 K |
α = 78.440 (2)° | 0.33 × 0.28 × 0.25 mm |
β = 86.475 (3)° |
Bruker Kappa APEXII CCD area-detector diffractometer | 3390 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 3034 reflections with I > 2σ(I) |
Tmin = 0.889, Tmax = 0.934 | Rint = 0.024 |
12002 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.068 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.48 e Å−3 |
3390 reflections | Δρmin = −0.50 e Å−3 |
204 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.0000 | 0.0000 | 0.5000 | 0.00996 (8) | |
O1 | 0.12751 (13) | 0.01072 (11) | 0.67419 (11) | 0.0129 (2) | |
O2 | −0.11125 (14) | 0.15789 (11) | 0.77116 (11) | 0.0149 (2) | |
O3 | 0.44171 (14) | 0.33247 (11) | 0.48634 (12) | 0.0177 (2) | |
O4 | 0.25984 (15) | −0.07089 (12) | 0.41538 (12) | 0.0136 (2) | |
H41 | 0.342 (3) | −0.137 (2) | 0.458 (2) | 0.034 (6)* | |
H42 | 0.228 (3) | −0.103 (2) | 0.345 (2) | 0.036 (6)* | |
N1 | −0.00159 (16) | 0.21391 (13) | 0.41144 (13) | 0.0116 (2) | |
N2 | 0.33786 (19) | 0.55995 (15) | 0.35530 (15) | 0.0176 (3) | |
H21 | 0.252 (3) | 0.628 (2) | 0.307 (2) | 0.022 (5)* | |
H22 | 0.425 (3) | 0.586 (2) | 0.390 (2) | 0.024 (5)* | |
C1 | 0.05766 (19) | 0.09453 (16) | 0.75988 (15) | 0.0120 (3) | |
C2 | 0.18258 (19) | 0.12691 (15) | 0.85126 (15) | 0.0121 (3) | |
C3 | 0.3601 (2) | 0.12032 (16) | 0.81040 (16) | 0.0139 (3) | |
H3 | 0.4070 | 0.0851 | 0.7302 | 0.017* | |
C4 | 0.4678 (2) | 0.16598 (16) | 0.88863 (16) | 0.0153 (3) | |
H4 | 0.5855 | 0.1624 | 0.8593 | 0.018* | |
C5 | 0.4019 (2) | 0.21690 (17) | 1.00998 (17) | 0.0162 (3) | |
C6 | 0.2262 (2) | 0.21841 (18) | 1.05279 (17) | 0.0192 (3) | |
H6 | 0.1816 | 0.2488 | 1.1356 | 0.023* | |
C7 | 0.1171 (2) | 0.17547 (17) | 0.97424 (16) | 0.0164 (3) | |
H7 | −0.0006 | 0.1790 | 1.0037 | 0.020* | |
C8 | 0.5187 (2) | 0.26752 (19) | 1.09414 (19) | 0.0239 (4) | |
H8A | 0.4556 | 0.3664 | 1.1063 | 0.036* | |
H8B | 0.6314 | 0.2651 | 1.0463 | 0.036* | |
H8C | 0.5435 | 0.2033 | 1.1834 | 0.036* | |
C9 | −0.13817 (19) | 0.31071 (16) | 0.33131 (16) | 0.0140 (3) | |
H9 | −0.2385 | 0.2823 | 0.3163 | 0.017* | |
C10 | −0.1356 (2) | 0.45107 (17) | 0.27015 (17) | 0.0169 (3) | |
H10 | −0.2326 | 0.5157 | 0.2153 | 0.020* | |
C11 | 0.0139 (2) | 0.49377 (16) | 0.29208 (16) | 0.0156 (3) | |
H11 | 0.0188 | 0.5875 | 0.2521 | 0.019* | |
C12 | 0.15612 (19) | 0.39452 (16) | 0.37462 (15) | 0.0121 (3) | |
C13 | 0.14248 (19) | 0.25568 (16) | 0.43189 (15) | 0.0115 (3) | |
H13 | 0.2378 | 0.1888 | 0.4869 | 0.014* | |
C14 | 0.32352 (19) | 0.42736 (16) | 0.40920 (16) | 0.0131 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.00972 (13) | 0.00810 (13) | 0.01255 (14) | −0.00273 (10) | −0.00152 (9) | −0.00267 (10) |
O1 | 0.0132 (5) | 0.0108 (5) | 0.0144 (5) | −0.0023 (4) | −0.0020 (4) | −0.0036 (4) |
O2 | 0.0120 (5) | 0.0152 (5) | 0.0175 (6) | −0.0027 (4) | −0.0015 (4) | −0.0050 (4) |
O3 | 0.0162 (5) | 0.0107 (5) | 0.0257 (6) | −0.0035 (4) | −0.0068 (4) | −0.0016 (5) |
O4 | 0.0114 (5) | 0.0124 (5) | 0.0163 (6) | −0.0018 (4) | −0.0020 (4) | −0.0038 (5) |
N1 | 0.0122 (6) | 0.0100 (6) | 0.0128 (6) | −0.0029 (5) | −0.0008 (5) | −0.0035 (5) |
N2 | 0.0172 (7) | 0.0113 (6) | 0.0254 (8) | −0.0066 (5) | −0.0074 (6) | −0.0003 (6) |
C1 | 0.0134 (7) | 0.0098 (7) | 0.0124 (7) | −0.0044 (5) | −0.0023 (5) | 0.0010 (5) |
C2 | 0.0132 (7) | 0.0087 (6) | 0.0133 (7) | −0.0021 (5) | −0.0032 (5) | −0.0007 (5) |
C3 | 0.0157 (7) | 0.0130 (7) | 0.0124 (7) | −0.0033 (6) | −0.0010 (5) | −0.0028 (6) |
C4 | 0.0135 (7) | 0.0139 (7) | 0.0179 (8) | −0.0040 (6) | −0.0021 (6) | −0.0014 (6) |
C5 | 0.0180 (7) | 0.0116 (7) | 0.0182 (8) | −0.0024 (6) | −0.0062 (6) | −0.0027 (6) |
C6 | 0.0193 (8) | 0.0224 (8) | 0.0162 (8) | −0.0028 (6) | −0.0002 (6) | −0.0101 (7) |
C7 | 0.0132 (7) | 0.0185 (8) | 0.0167 (8) | −0.0030 (6) | −0.0003 (6) | −0.0046 (6) |
C8 | 0.0219 (8) | 0.0243 (9) | 0.0285 (10) | −0.0062 (7) | −0.0070 (7) | −0.0111 (7) |
C9 | 0.0116 (7) | 0.0140 (7) | 0.0173 (8) | −0.0039 (6) | −0.0022 (6) | −0.0045 (6) |
C10 | 0.0146 (7) | 0.0126 (7) | 0.0207 (8) | −0.0008 (6) | −0.0058 (6) | −0.0003 (6) |
C11 | 0.0173 (7) | 0.0092 (7) | 0.0199 (8) | −0.0040 (6) | −0.0024 (6) | −0.0013 (6) |
C12 | 0.0129 (7) | 0.0102 (7) | 0.0138 (7) | −0.0028 (5) | −0.0005 (5) | −0.0050 (6) |
C13 | 0.0122 (6) | 0.0103 (7) | 0.0120 (7) | −0.0025 (5) | −0.0019 (5) | −0.0030 (5) |
C14 | 0.0141 (7) | 0.0118 (7) | 0.0142 (7) | −0.0032 (6) | 0.0000 (5) | −0.0053 (6) |
Ni1—O1 | 2.0621 (10) | C4—C5 | 1.389 (2) |
Ni1—O1i | 2.0621 (10) | C4—H4 | 0.9300 |
Ni1—O4i | 2.0870 (10) | C5—C6 | 1.394 (2) |
Ni1—O4 | 2.0870 (10) | C5—C8 | 1.509 (2) |
Ni1—N1 | 2.0859 (12) | C6—H6 | 0.9300 |
Ni1—N1i | 2.0859 (12) | C7—C2 | 1.393 (2) |
O1—C1 | 1.2678 (17) | C7—C6 | 1.383 (2) |
O2—C1 | 1.2654 (17) | C7—H7 | 0.9300 |
O3—C14 | 1.2392 (18) | C8—H8A | 0.9600 |
O4—H41 | 0.81 (2) | C8—H8B | 0.9600 |
O4—H42 | 0.88 (2) | C8—H8C | 0.9600 |
N1—C9 | 1.3421 (19) | C9—C10 | 1.383 (2) |
N1—C13 | 1.3386 (18) | C9—H9 | 0.9300 |
N2—C14 | 1.3294 (19) | C10—H10 | 0.9300 |
N2—H21 | 0.86 (2) | C11—C10 | 1.388 (2) |
N2—H22 | 0.89 (2) | C11—H11 | 0.9300 |
C1—C2 | 1.500 (2) | C12—C11 | 1.388 (2) |
C2—C3 | 1.392 (2) | C12—C13 | 1.390 (2) |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C4—C3 | 1.389 (2) | C14—C12 | 1.500 (2) |
O1i—Ni1—O1 | 180.0 | C5—C4—C3 | 120.87 (14) |
O1—Ni1—O4 | 86.71 (4) | C5—C4—H4 | 119.6 |
O1i—Ni1—O4 | 93.29 (4) | C4—C5—C6 | 118.33 (14) |
O1—Ni1—O4i | 93.29 (4) | C4—C5—C8 | 120.73 (14) |
O1i—Ni1—O4i | 86.71 (4) | C6—C5—C8 | 120.93 (14) |
O1—Ni1—N1 | 89.94 (4) | C5—C6—H6 | 119.4 |
O1i—Ni1—N1 | 90.06 (4) | C7—C6—C5 | 121.11 (14) |
O1—Ni1—N1i | 90.06 (4) | C7—C6—H6 | 119.4 |
O1i—Ni1—N1i | 89.94 (4) | C2—C7—H7 | 119.8 |
O4i—Ni1—O4 | 180.0 | C6—C7—C2 | 120.34 (14) |
N1—Ni1—O4 | 86.75 (4) | C6—C7—H7 | 119.8 |
N1i—Ni1—O4 | 93.25 (4) | C5—C8—H8A | 109.5 |
N1—Ni1—O4i | 93.25 (4) | C5—C8—H8B | 109.5 |
N1i—Ni1—O4i | 86.75 (4) | C5—C8—H8C | 109.5 |
N1i—Ni1—N1 | 180.0 | H8A—C8—H8B | 109.5 |
C1—O1—Ni1 | 125.51 (9) | H8A—C8—H8C | 109.5 |
Ni1—O4—H41 | 122.0 (15) | H8B—C8—H8C | 109.5 |
Ni1—O4—H42 | 97.1 (14) | N1—C9—C10 | 122.60 (14) |
H42—O4—H41 | 108 (2) | N1—C9—H9 | 118.7 |
C9—N1—Ni1 | 123.09 (10) | C10—C9—H9 | 118.7 |
C13—N1—Ni1 | 118.67 (10) | C9—C10—C11 | 118.88 (14) |
C13—N1—C9 | 118.21 (12) | C9—C10—H10 | 120.6 |
C14—N2—H21 | 122.3 (13) | C11—C10—H10 | 120.6 |
C14—N2—H22 | 117.1 (12) | C10—C11—C12 | 119.04 (14) |
H21—N2—H22 | 118.3 (18) | C10—C11—H11 | 120.5 |
O1—C1—C2 | 118.42 (13) | C12—C11—H11 | 120.5 |
O2—C1—O1 | 124.67 (14) | C11—C12—C13 | 118.29 (13) |
O2—C1—C2 | 116.86 (13) | C11—C12—C14 | 124.54 (13) |
C3—C2—C1 | 121.08 (13) | C13—C12—C14 | 117.16 (13) |
C3—C2—C7 | 118.83 (14) | N1—C13—C12 | 122.98 (13) |
C7—C2—C1 | 119.91 (13) | N1—C13—H13 | 118.5 |
C2—C3—H3 | 119.8 | C12—C13—H13 | 118.5 |
C4—C3—C2 | 120.46 (14) | O3—C14—N2 | 122.43 (14) |
C4—C3—H3 | 119.8 | O3—C14—C12 | 119.86 (13) |
C3—C4—H4 | 119.6 | N2—C14—C12 | 117.70 (13) |
O4—Ni1—O1—C1 | 153.43 (11) | O2—C1—C2—C7 | 23.4 (2) |
O4i—Ni1—O1—C1 | −26.57 (11) | C1—C2—C3—C4 | 172.95 (13) |
N1—Ni1—O1—C1 | 66.68 (11) | C7—C2—C3—C4 | −2.1 (2) |
N1i—Ni1—O1—C1 | −113.32 (11) | C5—C4—C3—C2 | 1.0 (2) |
O1—Ni1—N1—C9 | −144.39 (11) | C3—C4—C5—C6 | 1.2 (2) |
O1i—Ni1—N1—C9 | 35.61 (11) | C3—C4—C5—C8 | −179.53 (14) |
O1—Ni1—N1—C13 | 37.62 (11) | C4—C5—C6—C7 | −2.3 (2) |
O1i—Ni1—N1—C13 | −142.38 (11) | C8—C5—C6—C7 | 178.42 (15) |
O4—Ni1—N1—C9 | 128.90 (12) | C6—C7—C2—C1 | −174.10 (14) |
O4i—Ni1—N1—C9 | −51.10 (12) | C6—C7—C2—C3 | 1.0 (2) |
O4—Ni1—N1—C13 | −49.10 (11) | C2—C7—C6—C5 | 1.2 (2) |
O4i—Ni1—N1—C13 | 130.90 (11) | N1—C9—C10—C11 | 0.1 (2) |
Ni1—O1—C1—O2 | 17.6 (2) | C12—C11—C10—C9 | 0.0 (2) |
Ni1—O1—C1—C2 | −159.77 (9) | C13—C12—C11—C10 | 0.1 (2) |
Ni1—N1—C9—C10 | −178.28 (11) | C14—C12—C11—C10 | −178.64 (14) |
C13—N1—C9—C10 | −0.3 (2) | C11—C12—C13—N1 | −0.3 (2) |
Ni1—N1—C13—C12 | 178.46 (11) | C14—C12—C13—N1 | 178.56 (13) |
C9—N1—C13—C12 | 0.4 (2) | O3—C14—C12—C11 | 178.48 (14) |
O1—C1—C2—C3 | 26.1 (2) | O3—C14—C12—C13 | −0.3 (2) |
O1—C1—C2—C7 | −158.94 (14) | N2—C14—C12—C11 | −1.1 (2) |
O2—C1—C2—C3 | −151.54 (14) | N2—C14—C12—C13 | −179.83 (13) |
Symmetry code: (i) −x, −y, −z+1. |
Cg2 is the centroid of the N1/C9–C13 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O2ii | 0.86 (2) | 2.037 (19) | 2.8333 (18) | 153.4 (19) |
N2—H22···O3iii | 0.90 (2) | 2.05 (2) | 2.9192 (19) | 161.5 (18) |
O4—H41···O3iv | 0.81 (2) | 2.10 (2) | 2.8864 (16) | 162.9 (19) |
O4—H42···O2i | 0.89 (2) | 1.75 (2) | 2.6240 (16) | 165 (2) |
C6—H6···Cg2v | 0.93 | 2.65 | 3.5737 (18) | 171 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C8H7O2)2(C6H6N2O)2(H2O)2] |
Mr | 609.26 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 99 |
a, b, c (Å) | 7.7324 (2), 9.7335 (3), 9.8198 (3) |
α, β, γ (°) | 78.440 (2), 86.475 (3), 71.662 (2) |
V (Å3) | 687.31 (4) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.76 |
Crystal size (mm) | 0.33 × 0.28 × 0.25 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.889, 0.934 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12002, 3390, 3034 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.068, 1.05 |
No. of reflections | 3390 |
No. of parameters | 204 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.48, −0.50 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Cg2 is the centroid of the N1/C9–C13 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O2i | 0.86 (2) | 2.037 (19) | 2.8333 (18) | 153.4 (19) |
N2—H22···O3ii | 0.90 (2) | 2.05 (2) | 2.9192 (19) | 161.5 (18) |
O4—H41···O3iii | 0.81 (2) | 2.10 (2) | 2.8864 (16) | 162.9 (19) |
O4—H42···O2iv | 0.89 (2) | 1.75 (2) | 2.6240 (16) | 165 (2) |
C6—H6···Cg2v | 0.93 | 2.65 | 3.5737 (18) | 171 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) −x, −y, −z+1; (v) x, y, z+1. |
Acknowledgements
The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 108 T657).
References
Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m513–m514. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m607–m608. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473. CSD CrossRef Web of Science IUCr Journals Google Scholar
Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111. CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.
The title complex, (I), is a crystallographically centrosymmetric mononuclear complex, consisting of two nicotinamide (NA) and two 4-methylbenzoate (PMB) ligands and two coordinated water molecules. The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2], (II) (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2], (III) (Hökelek & Necefoğlu, 1998), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2], (IV) (Hökelek et al., 2009a), [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], (V) (Hökelek et al., 2009b) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2], (VI) (Hökelek et al., 2009c) have also been reported. In (II), the two benzoate ions are coordinated to the Cu atom as bidentate ligands, while in the other structures all ligands being monodentate.
The title complex, [Ni(PMB)2(NA)2(H2O)2], has a centre of symmetry and NiII ion is surrounded by two PMB and two NA ligands and two water molecules (Fig. 1). All ligands are monodentate. The four O atoms (O1, O4, and the symmetry-related atoms, O1', O4') in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands (N1, N1') in the axial positions (Fig. 1).
The near equality of the C1—O1 [1.2678 (17) Å] and C1—O2 [1.2654 (17) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The average Ni—O bond length is 2.0746 (10) Å (Table 1) and the Ni atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.5087 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 26.15 (10)°, while that between rings A and B (N1/C8—C12) is 87.81 (4)°.
In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The π–π contact between the benzene rings, Cg1—Cg1i, [symmetry code (i): 1 - x, -y, 2 - z, where Cg1 is the centroid of ring A (C2—C7)] may further stabilize the structure, with centroid-centroid distance of 3.896 (1) Å. There also exists a weak C—H···π interaction involving the pyridine ring (Table 2).