metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m392-m393

Aqua­bis­(isonicotinamide-κN1)bis­­(4-methyl­benzoato)-κO;κ2O,O′-cadmium(II) monohydrate

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Karabük University, 78050 Karabük, Turkey, cDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 1 March 2010; accepted 4 March 2010; online 13 March 2010)

In the crystal structure of the title compound, [Cd(C8H7O2)2(C6H6N2O)2(H2O)]·H2O, the CdII cation is coordinated by two 4-methyl­benzoate (PMB) anions, two isonicotinamide (INA) ligands and one water mol­ecule in a distorted octa­hedral CdN2O4 geometry. One of PMB ions acts as a bidentate ligand while the other and the two INA are monodentate ligands. An O—H⋯O hydrogen bond links the uncoordinated water mol­ecule to the carboxyl groups of the complex. The dihedral angles between the carboxyl groups and the adjacent benzene rings are 10.28 (11) and 21.24 (9)°, while the two benzene rings and the two pyridine rings are oriented at dihedral angles of 6.90 (4) and 88.64 (4)°, respectively. In the crystal structure, O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a supra­molecular structure. A ππ contact between the benzene rings [centroid–centroid distance = 3.911 (1) Å] may further stabilize the crystal structure. Weak C—H⋯π inter­actions involving the pyridine rings also occur in the crystal structure.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]) and for the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Greenaway et al. (1984[Greenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67-71.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.]); Hökelek et al. (2009a[Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1416-m1417.],b[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627-m628.],c[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1037-m1038.],d[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365-m1366.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H7O2)2(C6H6N2O)2(H2O)]·H2O

  • Mr = 662.97

  • Triclinic, [P \overline 1]

  • a = 9.5032 (2) Å

  • b = 12.3543 (3) Å

  • c = 13.6134 (3) Å

  • α = 78.278 (3)°

  • β = 69.776 (2)°

  • γ = 71.746 (3)°

  • V = 1416.18 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 102 K

  • 0.40 × 0.20 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.819, Tmax = 0.881

  • 25922 measured reflections

  • 7154 independent reflections

  • 6962 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.053

  • S = 1.14

  • 7154 reflections

  • 404 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.2478 (11)
Cd1—O3 2.4263 (11)
Cd1—O4 2.3794 (11)
Cd1—O7 2.2947 (11)
Cd1—N1 2.3295 (12)
Cd1—N3 2.3671 (13)

Table 2
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the N1/C17-C21 and N3/C23-C27 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O5i 0.85 (2) 2.05 (2) 2.8990 (19) 177 (2)
N2—H22⋯O6ii 0.87 (3) 2.10 (3) 2.948 (2) 163 (2)
N4—H41⋯O8iii 0.87 (2) 1.99 (2) 2.822 (2) 160 (2)
N4—H42⋯O6iv 0.86 (2) 2.05 (2) 2.8979 (18) 171 (2)
O7—H71⋯O2v 0.79 (3) 1.93 (3) 2.7186 (19) 175 (2)
O7—H72⋯O3ii 0.80 (3) 1.97 (3) 2.7690 (18) 174 (3)
O8—H81⋯O4 0.79 (3) 2.21 (3) 2.8767 (18) 143 (3)
O8—H82⋯O1 0.80 (3) 1.93 (3) 2.7269 (18) 169 (3)
C6—H6⋯Cg4vi 0.93 2.82 3.720 (2) 163
C14—H14⋯Cg3vii 0.93 2.78 3.6840 (19) 164
Symmetry codes: (i) -x+1, -y+1, -z-1; (ii) -x, -y, -z; (iii) -x, -y, -z+1; (iv) -x, -y-1, -z+1; (v) -x+1, -y, -z; (vi) x+1, y, z; (vii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), is a monomeric complex, where the CdII ion is surrounded by two 4-methylbenzoate (PMB) and two isonicotinamide (INA) ligands and one water molecule. One of the PMB ions acts as a bidentate ligand, while the other PMB and two INA are monodentate ligands. The crystal structures of similar complexes of CdII, CoII, MnII and ZnII ions, [Cd(C8H5O3)2(C6H6N2O)2(H2O)].H2O, (II) (Hökelek et al., 2009a), [Co(C9H10NO2)2(C6H6N2O)(H2O)2], (III) (Hökelek et al., 2009b), [Mn(C9H10NO2)2(C6H6N2O)(H2O)2], (IV) (Hökelek et al., 2009c), [Zn2(DENA)2(C7H5O3)4].2H2O, (V) (Hökelek & Necefoğlu, 1996) and [Zn(C8H8NO2)2(C6H6N2O)2].H2O, (VI) (Hökelek et al., 2009d) have also been reported. In (II), the two benzoate ions are coordinated to the Cd atom as bidentate ligands. In the other structures one of the benzoate ligands acts as a bidentate ligand, while the other is monodentate ligand.

In the title compound (Fig. 1), the average Cd—O bond length (Table 1) is 2.3371 (11) Å and the Cd atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C9/O4) by 0.2697 (1) Å and 0.0105 (1) Å, respectively. The dihedral angle between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C10—C15) are 10.28 (11)° and 21.24 (9)°, respectively, while those between rings A, B, C (N1/C17—C21) and D (N3/C23—C27) are A/B = 6.90 (4), A/C = 63.11 (5), A/D = 76.86 (4), B/C = 62.69 (5), B/D = 83.75 (4) and C/D = 88.64 (4) °. The intramolecular O—H···O hydrogen bonds (Table 2) link the water molecules to the carboxylate groups (O1/C1/O2) and (O3/C9/O4). In (I), the O3—Cd1—O4 angle is 54.71 (4)°. The corresponding O—M—O (where M is a metal) angles are 52.91 (4)° and 53.96 (4)° in (II), 60.70 (4)° in (III), 58.45 (9)° in (IV), 58.3 (3)° in (V), 60.03 (6)° in (VI) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) [(VII); Greenaway et al., 1984].

In the crystal structure, intramolecular O—H···O and intermolecular O—H···O and N—H···O hydrogen bonds (Table 2) link the molecules into a supramolecular structure, in which they may be effective in the stabilization of the structure. The ππ contact between the benzene rings, Cg1—Cg2i, [symmetry code (i): 1 + x, y, z, where Cg1 and Cg2 are the centroids of rings A (C2—C7) and B (C10—C15)] may further stabilize the structure, with centroid-centroid distance of 3.911 (1) Å. There also exists two weak C—H···π interactions involving the pyridine rings C and D (Table 2).

Related literature top

For niacin, see: Krishnamachari (1974) and for the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (2009a,b,c,d).

Experimental top

The title compound was prepared by the reaction of 3CdSO4.8H2O (1.29 g, 5 mmol) in H2O (40 ml) and INA (1.22 g, 10 mmol) in H2O (15 ml) with sodium 4-methylbenzoate (1.58 g, 10 mmol) in H2O (350 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colorless single crystals.

Refinement top

Atoms H21, H22, H41, H42 (for NH2) and H71, H72, H81, H82 (for H2O) were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate the hydrogen-bondings.
Aquabis(isonicotinamide-κN1)bis(4-methylbenzoato)- κO;κ2O,O'-cadmium(II) monohydrate top
Crystal data top
[Cd(C8H7O2)2(C6H6N2O)2(H2O)]·H2OZ = 2
Mr = 662.97F(000) = 676
Triclinic, P1Dx = 1.555 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5032 (2) ÅCell parameters from 8576 reflections
b = 12.3543 (3) Åθ = 2.4–28.3°
c = 13.6134 (3) ŵ = 0.83 mm1
α = 78.278 (3)°T = 102 K
β = 69.776 (2)°Block, colorless
γ = 71.746 (3)°0.40 × 0.20 × 0.15 mm
V = 1416.18 (6) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
7154 independent reflections
Radiation source: fine-focus sealed tube6962 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 28.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.819, Tmax = 0.881k = 1616
25922 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0175P)2 + 1.1925P]
where P = (Fo2 + 2Fc2)/3
7154 reflections(Δ/σ)max = 0.001
404 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cd(C8H7O2)2(C6H6N2O)2(H2O)]·H2Oγ = 71.746 (3)°
Mr = 662.97V = 1416.18 (6) Å3
Triclinic, P1Z = 2
a = 9.5032 (2) ÅMo Kα radiation
b = 12.3543 (3) ŵ = 0.83 mm1
c = 13.6134 (3) ÅT = 102 K
α = 78.278 (3)°0.40 × 0.20 × 0.15 mm
β = 69.776 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
7154 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6962 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.881Rint = 0.021
25922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.56 e Å3
7154 reflectionsΔρmin = 0.38 e Å3
404 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.141608 (11)0.121190 (8)0.094078 (7)0.00977 (3)
O10.21408 (12)0.17237 (9)0.21480 (8)0.0153 (2)
O20.43486 (13)0.06777 (9)0.11883 (8)0.0158 (2)
O30.09543 (12)0.15690 (9)0.04849 (8)0.0150 (2)
O40.08901 (13)0.26914 (10)0.15327 (9)0.0164 (2)
O50.56683 (13)0.41643 (10)0.38584 (9)0.0199 (2)
O60.03527 (14)0.40999 (9)0.37641 (9)0.0178 (2)
O70.25490 (14)0.02091 (10)0.01623 (9)0.0183 (2)
H710.345 (3)0.038 (2)0.0464 (19)0.030 (6)*
H720.214 (3)0.064 (2)0.0261 (18)0.028 (6)*
O80.06722 (16)0.23407 (12)0.36356 (10)0.0224 (2)
H810.115 (3)0.252 (2)0.323 (2)0.039 (7)*
H820.021 (3)0.216 (2)0.326 (2)0.039 (7)*
N10.24879 (15)0.23682 (11)0.05300 (10)0.0131 (2)
N20.32591 (17)0.46852 (14)0.40532 (11)0.0222 (3)
H210.355 (3)0.502 (2)0.4672 (19)0.029 (6)*
H220.235 (3)0.4542 (19)0.3832 (18)0.027 (6)*
N30.06838 (15)0.03017 (11)0.21984 (10)0.0139 (2)
N40.02873 (16)0.36600 (12)0.50561 (10)0.0162 (2)
H410.056 (2)0.3201 (18)0.5322 (17)0.022 (5)*
H420.020 (2)0.4306 (19)0.5415 (16)0.019 (5)*
C10.35814 (17)0.12189 (12)0.19750 (11)0.0122 (3)
C20.43118 (17)0.12606 (13)0.27780 (11)0.0138 (3)
C30.34802 (19)0.19738 (14)0.35725 (13)0.0190 (3)
H30.24930.24390.35870.023*
C40.4114 (2)0.19972 (16)0.43464 (13)0.0223 (3)
H40.35440.24780.48740.027*
C50.55876 (19)0.13100 (15)0.43413 (12)0.0196 (3)
C60.64170 (19)0.06017 (15)0.35394 (13)0.0208 (3)
H60.74060.01380.35230.025*
C70.57917 (18)0.05760 (14)0.27640 (12)0.0174 (3)
H70.63640.00990.22330.021*
C80.6266 (2)0.13244 (18)0.51874 (14)0.0276 (4)
H8A0.72630.07750.50790.041*
H8B0.55820.11320.58650.041*
H8C0.63840.20750.51570.041*
C90.16048 (17)0.24072 (12)0.10406 (11)0.0123 (3)
C100.32334 (17)0.30742 (12)0.10992 (12)0.0130 (3)
C110.41385 (18)0.37317 (13)0.19319 (12)0.0166 (3)
H110.37060.37850.24320.020*
C120.56823 (19)0.43074 (14)0.20192 (13)0.0195 (3)
H120.62800.47320.25840.023*
C130.63418 (18)0.42543 (13)0.12678 (13)0.0177 (3)
C140.54103 (18)0.36423 (13)0.04114 (13)0.0176 (3)
H140.58220.36330.01140.021*
C150.38809 (18)0.30477 (13)0.03297 (12)0.0152 (3)
H150.32830.26290.02400.018*
C160.80317 (19)0.48229 (16)0.13748 (15)0.0257 (4)
H16A0.84560.53240.19200.039*
H16B0.85900.42480.15510.039*
H16C0.81270.52590.07210.039*
C170.16137 (17)0.33676 (13)0.08530 (12)0.0152 (3)
H170.06120.36510.04190.018*
C180.21389 (18)0.39975 (13)0.18067 (12)0.0166 (3)
H180.15000.46860.20090.020*
C190.36446 (17)0.35759 (13)0.24544 (11)0.0134 (3)
C200.45742 (18)0.25694 (13)0.20997 (12)0.0153 (3)
H200.55990.22880.25010.018*
C210.39564 (18)0.19876 (13)0.11404 (12)0.0148 (3)
H21A0.45820.13080.09110.018*
C220.42827 (18)0.41740 (13)0.35244 (12)0.0154 (3)
C230.01222 (18)0.10290 (13)0.19260 (12)0.0153 (3)
H230.01210.08490.12960.018*
C240.01121 (18)0.20371 (13)0.25425 (12)0.0158 (3)
H240.04950.25230.23250.019*
C250.02332 (17)0.23100 (12)0.34907 (11)0.0125 (3)
C260.07689 (18)0.15443 (13)0.37961 (12)0.0160 (3)
H260.09760.16880.44370.019*
C270.09879 (18)0.05607 (13)0.31243 (12)0.0156 (3)
H270.13630.00570.33260.019*
C280.00343 (17)0.34324 (12)0.41280 (11)0.0131 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01036 (5)0.01012 (5)0.00874 (5)0.00363 (4)0.00264 (4)0.00016 (3)
O10.0118 (5)0.0192 (5)0.0162 (5)0.0038 (4)0.0054 (4)0.0029 (4)
O20.0165 (5)0.0163 (5)0.0152 (5)0.0032 (4)0.0054 (4)0.0038 (4)
O30.0122 (5)0.0160 (5)0.0169 (5)0.0018 (4)0.0048 (4)0.0040 (4)
O40.0142 (5)0.0201 (5)0.0177 (5)0.0041 (4)0.0076 (4)0.0034 (4)
O50.0164 (5)0.0272 (6)0.0148 (5)0.0095 (5)0.0039 (4)0.0046 (4)
O60.0239 (6)0.0157 (5)0.0185 (5)0.0105 (4)0.0098 (4)0.0023 (4)
O70.0141 (5)0.0195 (6)0.0213 (6)0.0072 (5)0.0013 (4)0.0100 (4)
O80.0184 (6)0.0347 (7)0.0148 (5)0.0063 (5)0.0039 (5)0.0075 (5)
N10.0138 (6)0.0132 (6)0.0125 (6)0.0055 (5)0.0033 (5)0.0003 (4)
N20.0179 (7)0.0322 (8)0.0158 (6)0.0125 (6)0.0065 (5)0.0105 (6)
N30.0152 (6)0.0144 (6)0.0121 (6)0.0049 (5)0.0038 (5)0.0006 (4)
N40.0225 (7)0.0131 (6)0.0147 (6)0.0078 (5)0.0072 (5)0.0024 (5)
C10.0128 (6)0.0106 (6)0.0138 (6)0.0055 (5)0.0045 (5)0.0017 (5)
C20.0135 (6)0.0162 (7)0.0128 (6)0.0060 (5)0.0045 (5)0.0001 (5)
C30.0157 (7)0.0226 (8)0.0205 (7)0.0035 (6)0.0068 (6)0.0063 (6)
C40.0224 (8)0.0292 (9)0.0190 (8)0.0074 (7)0.0063 (6)0.0091 (6)
C50.0207 (8)0.0278 (8)0.0155 (7)0.0132 (7)0.0078 (6)0.0014 (6)
C60.0142 (7)0.0299 (9)0.0190 (7)0.0055 (6)0.0079 (6)0.0006 (6)
C70.0146 (7)0.0223 (8)0.0145 (7)0.0037 (6)0.0044 (6)0.0022 (6)
C80.0299 (9)0.0432 (11)0.0195 (8)0.0202 (8)0.0128 (7)0.0018 (7)
C90.0119 (6)0.0136 (6)0.0109 (6)0.0049 (5)0.0029 (5)0.0016 (5)
C100.0114 (6)0.0124 (6)0.0157 (7)0.0038 (5)0.0049 (5)0.0002 (5)
C110.0158 (7)0.0173 (7)0.0183 (7)0.0032 (6)0.0067 (6)0.0042 (6)
C120.0162 (7)0.0189 (7)0.0209 (8)0.0012 (6)0.0037 (6)0.0057 (6)
C130.0130 (7)0.0150 (7)0.0246 (8)0.0029 (5)0.0067 (6)0.0004 (6)
C140.0169 (7)0.0159 (7)0.0241 (8)0.0038 (6)0.0119 (6)0.0019 (6)
C150.0151 (7)0.0136 (7)0.0177 (7)0.0028 (5)0.0064 (6)0.0027 (5)
C160.0142 (7)0.0257 (9)0.0352 (10)0.0002 (6)0.0095 (7)0.0039 (7)
C170.0117 (6)0.0170 (7)0.0145 (7)0.0040 (5)0.0029 (5)0.0015 (5)
C180.0143 (7)0.0164 (7)0.0162 (7)0.0037 (6)0.0051 (6)0.0044 (6)
C190.0151 (7)0.0151 (7)0.0114 (6)0.0072 (5)0.0047 (5)0.0018 (5)
C200.0143 (7)0.0154 (7)0.0136 (7)0.0040 (5)0.0017 (5)0.0008 (5)
C210.0154 (7)0.0129 (7)0.0144 (7)0.0029 (5)0.0042 (5)0.0002 (5)
C220.0174 (7)0.0161 (7)0.0123 (6)0.0073 (6)0.0035 (5)0.0019 (5)
C230.0190 (7)0.0170 (7)0.0115 (6)0.0071 (6)0.0059 (5)0.0009 (5)
C240.0216 (7)0.0152 (7)0.0132 (7)0.0082 (6)0.0058 (6)0.0012 (5)
C250.0124 (6)0.0117 (6)0.0123 (6)0.0037 (5)0.0033 (5)0.0012 (5)
C260.0202 (7)0.0171 (7)0.0142 (7)0.0088 (6)0.0088 (6)0.0028 (5)
C270.0203 (7)0.0154 (7)0.0145 (7)0.0091 (6)0.0073 (6)0.0014 (5)
C280.0111 (6)0.0128 (6)0.0136 (6)0.0036 (5)0.0025 (5)0.0009 (5)
Geometric parameters (Å, º) top
Cd1—O12.2478 (11)C8—C51.507 (2)
Cd1—O32.4263 (11)C8—H8A0.9600
Cd1—O42.3794 (11)C8—H8B0.9600
Cd1—O72.2947 (11)C8—H8C0.9600
Cd1—N12.3295 (12)C9—C101.491 (2)
Cd1—N32.3671 (13)C10—C111.395 (2)
O1—C11.2730 (18)C10—C151.396 (2)
O2—C11.2535 (18)C11—H110.9300
O3—C91.2730 (18)C12—C111.390 (2)
O4—C91.2622 (18)C12—C131.393 (2)
O5—C221.2325 (19)C12—H120.9300
O6—C281.2422 (18)C13—C161.506 (2)
O7—H710.79 (3)C14—C131.393 (2)
O7—H720.80 (2)C14—C151.385 (2)
O8—H810.79 (3)C14—H140.9300
O8—H820.81 (3)C15—H150.9300
N1—C171.3406 (19)C16—H16A0.9600
N1—C211.3435 (19)C16—H16B0.9600
N2—C221.333 (2)C16—H16C0.9600
N2—H210.85 (2)C17—H170.9300
N2—H220.87 (2)C18—C171.387 (2)
N3—C231.3425 (19)C18—C191.394 (2)
N3—C271.3433 (19)C18—H180.9300
N4—C281.325 (2)C20—C191.387 (2)
N4—H410.87 (2)C20—H200.9300
N4—H420.86 (2)C21—C201.385 (2)
C1—C21.500 (2)C21—H21A0.9300
C2—C31.390 (2)C22—C191.506 (2)
C2—C71.392 (2)C23—C241.387 (2)
C3—C41.391 (2)C23—H230.9300
C3—H30.9300C24—H240.9300
C4—C51.391 (2)C25—C241.391 (2)
C4—H40.9300C26—C251.391 (2)
C6—C51.393 (2)C26—C271.390 (2)
C6—C71.388 (2)C26—H260.9300
C6—H60.9300C27—H270.9300
C7—H70.9300C28—C251.5077 (19)
O1—Cd1—O3137.23 (4)O4—C9—O3121.19 (13)
O1—Cd1—O483.65 (4)O4—C9—C10119.45 (13)
O1—Cd1—O7133.14 (4)C11—C10—C15118.94 (14)
O1—Cd1—N199.39 (4)C11—C10—C9120.24 (13)
O1—Cd1—N387.65 (4)C15—C10—C9120.82 (13)
O4—Cd1—O354.71 (4)C10—C11—H11119.8
O7—Cd1—O388.51 (4)C12—C11—C10120.44 (14)
O7—Cd1—O4143.07 (4)C12—C11—H11119.8
O7—Cd1—N184.40 (4)C11—C12—C13120.59 (15)
O7—Cd1—N382.88 (4)C11—C12—H12119.7
N1—Cd1—O393.12 (4)C13—C12—H12119.7
N1—Cd1—O493.53 (4)C12—C13—C14118.64 (14)
N1—Cd1—N3167.06 (4)C12—C13—C16121.48 (15)
N3—Cd1—O388.91 (4)C14—C13—C16119.87 (15)
N3—Cd1—O498.06 (4)C13—C14—H14119.5
C1—O1—Cd1105.84 (9)C15—C14—C13121.06 (14)
C9—O3—Cd190.83 (8)C15—C14—H14119.5
C9—O4—Cd193.27 (9)C10—C15—H15119.9
Cd1—O7—H71123.1 (17)C14—C15—C10120.21 (14)
Cd1—O7—H72127.0 (17)C14—C15—H15119.9
H72—O7—H71110 (2)C13—C16—H16A109.5
H81—O8—H82103 (3)C13—C16—H16B109.5
C17—N1—Cd1121.04 (10)C13—C16—H16C109.5
C17—N1—C21118.25 (13)H16A—C16—H16B109.5
C21—N1—Cd1120.31 (10)H16A—C16—H16C109.5
C22—N2—H21120.3 (15)H16B—C16—H16C109.5
C22—N2—H22119.5 (15)N1—C17—C18122.87 (14)
H22—N2—H21119 (2)N1—C17—H17118.6
C23—N3—Cd1118.71 (10)C18—C17—H17118.6
C23—N3—C27117.68 (13)C17—C18—C19118.55 (14)
C27—N3—Cd1123.03 (10)C17—C18—H18120.7
C28—N4—H41124.1 (14)C19—C18—H18120.7
C28—N4—H42118.4 (14)C18—C19—C22122.10 (14)
H42—N4—H41117.4 (19)C20—C19—C18118.62 (13)
O1—C1—C2117.01 (13)C20—C19—C22119.28 (13)
O2—C1—O1121.75 (13)C19—C20—H20120.4
O2—C1—C2121.20 (13)C21—C20—C19119.15 (14)
C3—C2—C1119.49 (14)C21—C20—H20120.4
C3—C2—C7119.02 (14)N1—C21—C20122.46 (14)
C7—C2—C1121.47 (13)N1—C21—H21A118.8
C2—C3—C4120.48 (15)C20—C21—H21A118.8
C2—C3—H3119.8O5—C22—N2124.40 (14)
C4—C3—H3119.8O5—C22—C19120.11 (14)
C3—C4—H4119.6N2—C22—C19115.49 (13)
C5—C4—C3120.82 (15)N3—C23—C24122.90 (14)
C5—C4—H4119.6N3—C23—H23118.5
C4—C5—C6118.36 (14)C24—C23—H23118.5
C4—C5—C8120.82 (16)C23—C24—C25119.07 (14)
C6—C5—C8120.82 (16)C23—C24—H24120.5
C5—C6—H6119.5C25—C24—H24120.5
C7—C6—C5121.08 (15)C24—C25—C26118.47 (13)
C7—C6—H6119.5C24—C25—C28118.30 (13)
C2—C7—H7119.9C26—C25—C28123.23 (13)
C6—C7—C2120.24 (15)C25—C26—H26120.7
C6—C7—H7119.9C27—C26—C25118.64 (14)
C5—C8—H8A109.5C27—C26—H26120.7
C5—C8—H8B109.5N3—C27—C26123.20 (14)
C5—C8—H8C109.5N3—C27—H27118.4
H8A—C8—H8B109.5C26—C27—H27118.4
H8A—C8—H8C109.5O6—C28—N4123.03 (14)
H8B—C8—H8C109.5O6—C28—C25119.00 (13)
O3—C9—C10119.35 (13)N4—C28—C25117.97 (13)
O3—Cd1—O1—C1178.82 (8)O1—C1—C2—C39.6 (2)
O4—Cd1—O1—C1168.65 (9)O1—C1—C2—C7168.54 (14)
O7—Cd1—O1—C115.00 (11)O2—C1—C2—C3172.66 (14)
N1—Cd1—O1—C176.11 (9)O2—C1—C2—C79.2 (2)
N3—Cd1—O1—C192.97 (9)C1—C2—C3—C4177.80 (14)
O1—Cd1—O3—C915.18 (11)C7—C2—C3—C40.4 (2)
O4—Cd1—O3—C90.14 (8)C1—C2—C7—C6177.67 (14)
O7—Cd1—O3—C9176.56 (9)C3—C2—C7—C60.5 (2)
N1—Cd1—O3—C992.25 (9)C2—C3—C4—C50.0 (3)
N3—Cd1—O3—C9100.53 (9)C3—C4—C5—C60.3 (3)
O1—Cd1—O4—C9169.47 (9)C3—C4—C5—C8179.23 (16)
O3—Cd1—O4—C90.14 (8)C5—C6—C7—C20.2 (2)
O7—Cd1—O4—C96.09 (12)C7—C6—C5—C40.2 (2)
N1—Cd1—O4—C991.47 (9)C7—C6—C5—C8179.32 (15)
N3—Cd1—O4—C982.76 (9)O3—C9—C10—C11159.36 (14)
O1—Cd1—N1—C1798.58 (11)O3—C9—C10—C1520.3 (2)
O1—Cd1—N1—C2188.82 (11)O4—C9—C10—C1121.4 (2)
O3—Cd1—N1—C1740.37 (11)O4—C9—C10—C15158.92 (14)
O3—Cd1—N1—C21132.23 (11)C9—C10—C11—C12176.66 (14)
O4—Cd1—N1—C1714.44 (11)C15—C10—C11—C123.0 (2)
O4—Cd1—N1—C21172.96 (11)C9—C10—C15—C14177.96 (14)
O7—Cd1—N1—C17128.57 (12)C11—C10—C15—C141.7 (2)
O7—Cd1—N1—C2144.04 (11)C13—C12—C11—C101.2 (2)
N3—Cd1—N1—C17139.16 (18)C11—C12—C13—C141.9 (2)
N3—Cd1—N1—C2133.4 (3)C11—C12—C13—C16176.95 (15)
O1—Cd1—N3—C23178.51 (11)C15—C14—C13—C123.3 (2)
O1—Cd1—N3—C277.44 (12)C15—C14—C13—C16175.65 (15)
O3—Cd1—N3—C2344.13 (11)C13—C14—C15—C101.5 (2)
O3—Cd1—N3—C27144.80 (12)C19—C18—C17—N10.4 (2)
O4—Cd1—N3—C2398.24 (11)C17—C18—C19—C202.6 (2)
O4—Cd1—N3—C2790.69 (12)C17—C18—C19—C22177.02 (14)
O7—Cd1—N3—C2344.50 (11)C21—C20—C19—C183.1 (2)
O7—Cd1—N3—C27126.57 (12)C21—C20—C19—C22176.49 (13)
N1—Cd1—N3—C2355.1 (2)N1—C21—C20—C190.8 (2)
N1—Cd1—N3—C27115.9 (2)O5—C22—C19—C18145.44 (16)
Cd1—N1—C17—C18170.02 (12)O5—C22—C19—C2035.0 (2)
C21—N1—C17—C182.7 (2)N2—C22—C19—C1834.9 (2)
Cd1—N1—C21—C20170.65 (11)N2—C22—C19—C20144.70 (15)
C17—N1—C21—C202.2 (2)N3—C23—C24—C250.6 (2)
Cd1—N3—C23—C24169.79 (12)C26—C25—C24—C231.5 (2)
C27—N3—C23—C241.8 (2)C28—C25—C24—C23177.50 (14)
Cd1—N3—C27—C26170.25 (12)C27—C26—C25—C242.2 (2)
C23—N3—C27—C260.9 (2)C27—C26—C25—C28176.66 (14)
Cd1—O1—C1—O27.16 (16)C25—C26—C27—N31.1 (2)
Cd1—O1—C1—C2170.52 (10)O6—C28—C25—C243.6 (2)
Cd1—O3—C9—O40.24 (14)O6—C28—C25—C26175.30 (14)
Cd1—O3—C9—C10179.43 (11)N4—C28—C25—C24176.55 (14)
Cd1—O4—C9—O30.25 (14)N4—C28—C25—C264.5 (2)
Cd1—O4—C9—C10179.43 (11)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the N1/C17-C21 and N3/C23-C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H21···O5i0.85 (2)2.05 (2)2.8990 (19)177 (2)
N2—H22···O6ii0.87 (3)2.10 (3)2.948 (2)163 (2)
N4—H41···O8iii0.87 (2)1.99 (2)2.822 (2)160 (2)
N4—H42···O6iv0.86 (2)2.05 (2)2.8979 (18)171 (2)
O7—H71···O2v0.79 (3)1.93 (3)2.7186 (19)175 (2)
O7—H72···O3ii0.80 (3)1.97 (3)2.7690 (18)174 (3)
O8—H81···O40.79 (3)2.21 (3)2.8767 (18)143 (3)
O8—H82···O10.80 (3)1.93 (3)2.7269 (18)169 (3)
C6—H6···Cg4vi0.932.823.720 (2)163
C14—H14···Cg3vii0.932.783.6840 (19)164
Symmetry codes: (i) x+1, y+1, z1; (ii) x, y, z; (iii) x, y, z+1; (iv) x, y1, z+1; (v) x+1, y, z; (vi) x+1, y, z; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C8H7O2)2(C6H6N2O)2(H2O)]·H2O
Mr662.97
Crystal system, space groupTriclinic, P1
Temperature (K)102
a, b, c (Å)9.5032 (2), 12.3543 (3), 13.6134 (3)
α, β, γ (°)78.278 (3), 69.776 (2), 71.746 (3)
V3)1416.18 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.40 × 0.20 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.819, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
25922, 7154, 6962
Rint0.021
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.053, 1.14
No. of reflections7154
No. of parameters404
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.38

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cd1—O12.2478 (11)Cd1—O72.2947 (11)
Cd1—O32.4263 (11)Cd1—N12.3295 (12)
Cd1—O42.3794 (11)Cd1—N32.3671 (13)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the N1/C17-C21 and N3/C23-C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H21···O5i0.85 (2)2.05 (2)2.8990 (19)177 (2)
N2—H22···O6ii0.87 (3)2.10 (3)2.948 (2)163 (2)
N4—H41···O8iii0.87 (2)1.99 (2)2.822 (2)160 (2)
N4—H42···O6iv0.86 (2)2.05 (2)2.8979 (18)171 (2)
O7—H71···O2v0.79 (3)1.93 (3)2.7186 (19)175 (2)
O7—H72···O3ii0.80 (3)1.97 (3)2.7690 (18)174 (3)
O8—H81···O40.79 (3)2.21 (3)2.8767 (18)143 (3)
O8—H82···O10.80 (3)1.93 (3)2.7269 (18)169 (3)
C6—H6···Cg4vi0.932.823.7196 (20)163
C14—H14···Cg3vii0.932.783.6840 (19)164
Symmetry codes: (i) x+1, y+1, z1; (ii) x, y, z; (iii) x, y, z+1; (iv) x, y1, z+1; (v) x+1, y, z; (vi) x+1, y, z; (vii) x1, y, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGreenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627–m628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1037–m1038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365–m1366.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1416–m1417.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m392-m393
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds