organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-N-(4-hydr­­oxy-3-meth­oxy­benz­yl)-2,2-di­methyl­propanamide

aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn

(Received 7 March 2010; accepted 12 March 2010; online 20 March 2010)

In the mol­ecular structure of the title compound, C13H18ClNO3, the amide group is nearly perpendicular to the benzene ring, making a dihedral angle of 85.66 (9)°. The C=O bond distance of 1.242 (3) Å and the C—N bond distance of 1.333 (3) Å suggest electron delocalization in the amide fragment. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonding helps to stabilize the crystal structure.

Related literature

The title compound is a derivative of capsaicin. For the biological activity of capsaicin, see: Kaga et al. (1989[Kaga, H., Miura, M. & Orito, K. A. (1989). J. Org. Chem. 54, 3477-3478.]). For a related structure, see: Xia et al. (2009[Xia, L.-Y., Wang, W.-L., Wang, S.-H., Huang, Y.-L. & Shan, S. (2009). Acta Cryst. E65, o1899.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18ClNO3

  • Mr = 271.73

  • Monoclinic, P 21 /c

  • a = 9.3074 (10) Å

  • b = 11.5585 (13) Å

  • c = 13.0652 (14) Å

  • β = 90.378 (4)°

  • V = 1405.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 294 K

  • 0.40 × 0.38 × 0.32 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • 15383 measured reflections

  • 2732 independent reflections

  • 2254 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.167

  • S = 1.05

  • 2732 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.93 1.76 2.685 (2) 175
N1—H1N⋯O2ii 0.92 2.25 3.093 (3) 152
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Capsaicin, a pungent principle of capsicums, has been shown a variety of biological activities including mutagenicity (Kaga et al. 1989). During the investigation on syntheses of capsaicin derivatives, the title compound has recently been prepared in the labotory and its crystal structure is reported here.

The molecular structure of the title compound is shown in Fig. 1. The amide fragment is nearly perpendicular to the benzene ring [dihedral angle 85.66 (9))°]. The longer C9O3 bond distance of 1.242 (3) Å and the shorter C9—N1 bond distance of 1.333 (3) Å suggest the electron delocalization in the amide fragment, which is comparable to that found in the related compound N-(4-Hydroxy-3-methoxybenzyl)benzamide (Xia et al. 2009).

Intermolecular O—H···O and N—H···O hydrogen bonding is present in the crystal structure (Table 1), which helps to stabilize the crystal structure.

Related literature top

The title compound is a derivative of capsaicin. For the biological activity of capsaicin, see: Kaga et al. (1989). For a related structure, see: Xia et al. (2009).

Experimental top

4-Hydroxy-3-methoxy benzylamine HCl salt (4.7 g, 25 mmol) and dimethylformamide (25 ml) were added to a 100 ml 3-necked flask equipped with an additional funnel, a thermometer and a magnetic stirrer. Water solution (10 ml) of NaOH (2.0 g) was added at room temperature. The mixture was stirred at 308 K for 30 min and then cooled to 273 K. An ether solution (10 ml) of 2,2-dimethyl-3-chloropropionyl chloride (3.9 g, 25 mmol) was added dropwise at about 273 K over 15 min. After stirred for 2 h at room temperature the mixture was poured into 1M HCl solution (120 ml) , and then extracted with ethyl acetate. The ethyl acetate extract was washed with saturated NaHCO3 and brine. The extract was then dried over anhydrous Na2SO4 and filtered. Solvents were removed under vacuum at about 308 K to give a solid crude. Recrystallization was performed twice with an absolute ethyl acetate to obtain colourless single crystals of the title compound.

Refinement top

Hydroxy and imino H atoms were located in a difference Fourier map and were refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(N,O). Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angle was refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 (aromatic) and 0.97 Å (methylene), and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms).
3-Chloro-N-(4-hydroxy-3-methoxybenzyl)-2,2-dimethylpropanamide top
Crystal data top
C13H18ClNO3F(000) = 576
Mr = 271.73Dx = 1.284 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3466 reflections
a = 9.3074 (10) Åθ = 2.2–24.0°
b = 11.5585 (13) ŵ = 0.27 mm1
c = 13.0652 (14) ÅT = 294 K
β = 90.378 (4)°Prism, colorless
V = 1405.5 (3) Å30.40 × 0.38 × 0.32 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2254 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
Detector resolution: 10.0 pixels mm-1h = 1011
ω scansk = 1314
15383 measured reflectionsl = 1616
2732 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0726P)2 + 1.051P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2732 reflectionsΔρmax = 0.48 e Å3
167 parametersΔρmin = 0.67 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (3)
Crystal data top
C13H18ClNO3V = 1405.5 (3) Å3
Mr = 271.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3074 (10) ŵ = 0.27 mm1
b = 11.5585 (13) ÅT = 294 K
c = 13.0652 (14) Å0.40 × 0.38 × 0.32 mm
β = 90.378 (4)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2254 reflections with I > 2σ(I)
15383 measured reflectionsRint = 0.042
2732 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.05Δρmax = 0.48 e Å3
2732 reflectionsΔρmin = 0.67 e Å3
167 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.85692 (18)0.09530 (8)0.35770 (8)0.1195 (6)
N10.7804 (2)0.39529 (17)0.22613 (15)0.0410 (5)
H1N0.74160.43560.28010.061*
O10.18986 (18)0.14975 (16)0.13257 (15)0.0539 (5)
H1A0.11200.19610.14820.081*
O20.43484 (18)0.03920 (15)0.14718 (15)0.0542 (5)
O30.95555 (18)0.27805 (16)0.17024 (13)0.0509 (5)
C10.3123 (2)0.2148 (2)0.12573 (18)0.0409 (5)
C20.4447 (2)0.1577 (2)0.13548 (18)0.0404 (5)
C30.5709 (2)0.2199 (2)0.13426 (18)0.0431 (6)
H30.65810.18150.14220.052*
C40.5700 (2)0.3402 (2)0.12130 (17)0.0400 (5)
C50.4394 (3)0.3947 (2)0.10673 (19)0.0445 (6)
H50.43710.47410.09530.053*
C60.3112 (2)0.3327 (2)0.10891 (19)0.0451 (6)
H60.22430.37100.09900.054*
C70.5646 (3)0.0248 (2)0.1367 (2)0.0572 (7)
H7A0.60700.00790.07150.086*
H7B0.54410.10610.14090.086*
H7C0.63030.00360.19040.086*
C80.7093 (3)0.4073 (2)0.12661 (18)0.0445 (6)
H8A0.77320.37990.07350.053*
H8B0.68980.48850.11380.053*
C90.8956 (2)0.32899 (19)0.24198 (17)0.0371 (5)
C100.9530 (2)0.3193 (2)0.35204 (17)0.0410 (5)
C111.0014 (4)0.1958 (3)0.3707 (2)0.0669 (9)
H11A1.04190.18980.43910.080*
H11B1.07610.17610.32230.080*
C120.8444 (3)0.3548 (3)0.4336 (2)0.0599 (7)
H12A0.75750.31110.42450.090*
H12B0.82360.43580.42700.090*
H12C0.88380.33980.50030.090*
C131.0859 (4)0.3961 (3)0.3605 (2)0.0779 (11)
H13A1.12920.38650.42680.117*
H13B1.05860.47550.35130.117*
H13C1.15350.37460.30860.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.2206 (15)0.0570 (6)0.0811 (7)0.0548 (7)0.0203 (7)0.0059 (4)
N10.0349 (10)0.0439 (11)0.0441 (11)0.0031 (8)0.0016 (8)0.0048 (8)
O10.0314 (9)0.0475 (10)0.0829 (13)0.0019 (7)0.0038 (8)0.0097 (9)
O20.0373 (9)0.0415 (10)0.0838 (13)0.0063 (7)0.0059 (8)0.0056 (9)
O30.0412 (10)0.0648 (12)0.0466 (10)0.0112 (8)0.0010 (7)0.0106 (8)
C10.0306 (12)0.0464 (13)0.0457 (12)0.0014 (9)0.0012 (9)0.0064 (10)
C20.0361 (12)0.0403 (12)0.0447 (12)0.0060 (9)0.0018 (9)0.0004 (10)
C30.0334 (12)0.0479 (14)0.0480 (13)0.0078 (10)0.0009 (10)0.0037 (10)
C40.0360 (12)0.0466 (13)0.0374 (11)0.0020 (10)0.0009 (9)0.0024 (9)
C50.0426 (14)0.0401 (13)0.0508 (14)0.0043 (10)0.0033 (11)0.0014 (10)
C60.0323 (12)0.0461 (14)0.0568 (14)0.0087 (10)0.0050 (10)0.0034 (11)
C70.0478 (15)0.0458 (15)0.0780 (19)0.0146 (12)0.0061 (13)0.0059 (13)
C80.0395 (13)0.0484 (14)0.0455 (13)0.0005 (10)0.0000 (10)0.0066 (10)
C90.0287 (11)0.0374 (11)0.0451 (12)0.0047 (9)0.0023 (9)0.0013 (9)
C100.0382 (13)0.0419 (13)0.0429 (12)0.0041 (10)0.0008 (9)0.0005 (10)
C110.086 (2)0.0616 (18)0.0531 (16)0.0212 (16)0.0002 (15)0.0045 (13)
C120.0694 (19)0.0669 (18)0.0436 (14)0.0124 (15)0.0050 (12)0.0004 (12)
C130.072 (2)0.102 (3)0.0593 (18)0.0448 (19)0.0166 (15)0.0090 (17)
Geometric parameters (Å, º) top
Cl1—C111.784 (4)C6—H60.9300
N1—C91.333 (3)C7—H7A0.9600
N1—C81.462 (3)C7—H7B0.9600
N1—H1N0.9206C7—H7C0.9600
O1—C11.369 (3)C8—H8A0.9700
O1—H1A0.9252C8—H8B0.9700
O2—C21.382 (3)C9—C101.535 (3)
O2—C71.424 (3)C10—C111.516 (4)
O3—C91.242 (3)C10—C131.526 (4)
C1—C61.380 (4)C10—C121.530 (3)
C1—C21.403 (3)C11—H11A0.9700
C2—C31.378 (3)C11—H11B0.9700
C3—C41.400 (3)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—C51.381 (3)C12—H12C0.9600
C4—C81.512 (3)C13—H13A0.9600
C5—C61.392 (3)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C9—N1—C8123.50 (19)C4—C8—H8A109.2
C9—N1—H1N119.4N1—C8—H8B109.2
C8—N1—H1N117.1C4—C8—H8B109.2
C1—O1—H1A110.5H8A—C8—H8B107.9
C2—O2—C7116.58 (19)O3—C9—N1121.3 (2)
O1—C1—C6123.2 (2)O3—C9—C10121.1 (2)
O1—C1—C2117.8 (2)N1—C9—C10117.55 (19)
C6—C1—C2119.0 (2)C11—C10—C13107.3 (3)
C3—C2—O2125.2 (2)C11—C10—C12109.7 (2)
C3—C2—C1120.2 (2)C13—C10—C12109.5 (2)
O2—C2—C1114.7 (2)C11—C10—C9108.7 (2)
C2—C3—C4121.0 (2)C13—C10—C9107.60 (19)
C2—C3—H3119.5C12—C10—C9113.9 (2)
C4—C3—H3119.5C10—C11—Cl1112.0 (2)
C5—C4—C3118.3 (2)C10—C11—H11A109.2
C5—C4—C8121.7 (2)Cl1—C11—H11A109.2
C3—C4—C8119.9 (2)C10—C11—H11B109.2
C4—C5—C6121.1 (2)Cl1—C11—H11B109.2
C4—C5—H5119.5H11A—C11—H11B107.9
C6—C5—H5119.5C10—C12—H12A109.5
C1—C6—C5120.4 (2)C10—C12—H12B109.5
C1—C6—H6119.8H12A—C12—H12B109.5
C5—C6—H6119.8C10—C12—H12C109.5
O2—C7—H7A109.5H12A—C12—H12C109.5
O2—C7—H7B109.5H12B—C12—H12C109.5
H7A—C7—H7B109.5C10—C13—H13A109.5
O2—C7—H7C109.5C10—C13—H13B109.5
H7A—C7—H7C109.5H13A—C13—H13B109.5
H7B—C7—H7C109.5C10—C13—H13C109.5
N1—C8—C4112.03 (19)H13A—C13—H13C109.5
N1—C8—H8A109.2H13B—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.931.762.685 (2)175
N1—H1N···O2ii0.922.253.093 (3)152
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H18ClNO3
Mr271.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)9.3074 (10), 11.5585 (13), 13.0652 (14)
β (°) 90.378 (4)
V3)1405.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.40 × 0.38 × 0.32
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15383, 2732, 2254
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.167, 1.05
No. of reflections2732
No. of parameters167
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.67

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.931.762.685 (2)175
N1—H1N···O2ii0.922.253.093 (3)152
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The work was supported by the Natural Science Foundation of Zhejiang Province of China (No. M203027).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKaga, H., Miura, M. & Orito, K. A. (1989). J. Org. Chem. 54, 3477–3478.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, L.-Y., Wang, W.-L., Wang, S.-H., Huang, Y.-L. & Shan, S. (2009). Acta Cryst. E65, o1899.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds