metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m485-m486

Tetra­kis(μ-4-methyl­benzoato-κ2O:O′)bis­­[(N,N-di­ethyl­nicotinamide-κN1)zinc(II)]

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Karabük University, 78050 Karabük, Turkey, cDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 24 March 2010; accepted 26 March 2010; online 31 March 2010)

In the centrosymmetric binuclear title complex, [Zn2(C8H7O2)4(C10H14N2O)2], the Zn atoms [Zn⋯Zn′ = 2.9494 (3) Å] are bridged by four 4-methyl­benzoate (PMB) anions. The four nearest O atoms around each ZnII ion form a distorted square-planar arrangement, the octahedral coordin­ation being completed by the pyridine N atom of the N,N-diethyl­nicotinamide (DENA) ligand. Each ZnII ion is displaced by 0.3530 (1) Å from the plane of the four O atoms. The dihedral angles between carboxyl­ate groups and their adjacent benzene rings are 5.88 (10) and 11.89 (9)°, while the benzene rings are oriented at a dihedral angle of 75.19 (4)°. The pyridine ring is oriented at dihedral angles of 38.28 (4) and 49.17 (4)° with respect to the benzene rings. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. ππ contacts between parallel benzene rings [centroid–centroid distance = 3.8388 (8) Å] and between parallel pyridine rings [centroid–centroid distance = 3.4855 (7) Å] may further stabilize the crystal structure.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]) and for the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1995[Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.]); Hökelek et al. (2009a[Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955-m956.],b[Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328-m1329.],c[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1582-m1583.]); Necefoğlu et al. (2010[Necefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010). Acta Cryst. E66, m334-m335.]); Speier & Fulop (1989[Speier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331-2333.]); Usubaliev et al. (1980[Usubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091-1096.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C8H7O2)4(C10H14N2O)2]

  • Mr = 1027.82

  • Triclinic, [P \overline 1]

  • a = 9.8603 (2) Å

  • b = 10.5272 (2) Å

  • c = 12.3514 (3) Å

  • α = 97.346 (3)°

  • β = 93.525 (3)°

  • γ = 106.342 (5)°

  • V = 1213.78 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 100 K

  • 0.45 × 0.35 × 0.34 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.649, Tmax = 0.698

  • 22051 measured reflections

  • 6067 independent reflections

  • 5604 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.065

  • S = 1.06

  • 6067 reflections

  • 311 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1i 2.0420 (9)
Zn1—O2 2.0264 (9)
Zn1—O3i 2.1196 (9)
Zn1—O4 2.0235 (9)
Zn1—N1 2.0340 (10)
Symmetry code: (i) -x+1, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O4ii 0.93 2.55 3.4601 (18) 166
C16—H16C⋯O4iii 0.96 2.59 3.542 (2) 174
C19—H19⋯O2iv 0.93 2.57 3.4013 (15) 149
Symmetry codes: (ii) x+1, y, z; (iii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a binuclear compound, consisting of two DENA and four 4-methylbenzoate (PMB) ligands. The crystal structures of similar complexes of Cu2+ and Zn2+ ions, [Cu(C6H5COO)2(C5H5N)]2 (Usubaliev et al., 1980); [Cu(C6H5CO2)2(Py)]2 (Speier & Fulop, 1989), [Cu2(C6H5COO)4(C10H14N2O)2] (Hökelek et al., 1995), [Cu2(C8H7O2)4(C6H6N2O)2] (Necefoğlu et al., 2010), [Zn2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2009a), [Zn2(C8H8NO2)4(C10H14N2O)2].2H2O (Hökelek et al., 2009b) and [Zn2(C9H10NO2)4(C10H14N2O)2] (Hökelek et al., 2009c) have also been reported. In these structures, the benzoate ion acts as a bidentate ligand.

The title dimeric complex, [Zn2(PMB)4(DENA)2], has a centre of symmetry and two ZnII ions are surrounded by four PMB groups and two DENA ligands (Fig. 1). The DENA ligands are coordinated to ZnII ions through pyridine N atoms only. The PMB groups act as bridging ligands. The Zn···Zn' distance is 2.9494 (3) Å. The average Zn—O distance is 2.0529 (9) Å (Table 1), and four O atoms of the bridging PMB ligands around each ZnII ion form a distorted square plane. The ZnII ion lies 0.3530 (1) Å above the least-squares plane. The average O—Zn—O bond angle is 88.30 (4)°. A distorted square-pyramidal arrangement around each ZnII ion is completed by the pyridine N atom of DENA ligand at 2.034 (1) Å (Table 1) from the Zn atom. The N1—Zn1···Zn1' angle is 156.05 (4)° and the dihedral angle between plane through atoms Zn1, O1, O2, C1, Zn1', O1', O2', C1' and the plane through Zn1, O3, O4, C9, Zn1', O3', O4' and C9' atoms is 88.08 (9)°. The dihedral angles between the planar carboxylate groups [(O1/O2/C1) and (O3/O4/C9)] and the adjacent benzene rings A (C2—C7) and B (C10—C15) are 5.88 (10) and 11.89 (9) °, respectively, while that between rings A and B is A/B = 75.19 (4)°. Ring C (N1/C17—C21) is oriented with respect to rings A and B at dihedral angles A/C = 38.28 (4) and B/C = 49.17 (4) °.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The ππ contacts between the benzene rings and between the pyridine rings, Cg2—Cg2i and Cg3—Cg3ii, [symmetry codes: (i) 1 - x, -y, 1 - z; (ii) 1 - x, 1 - y, 2 - z, where Cg2 and Cg3 are centroids of the rings B (C10—C15) and C (N1/C17—C21)] may further stabilize the structure, with centroid-centroid distances of 3.8388 (8) and 3.4855 (7) Å, respectively.

Related literature top

For niacin, see: Krishnamachari (1974) and for the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1995); Hökelek et al. (2009a,b,c); Necefoğlu et al. (2010); Speier & Fulop (1989); Usubaliev et al. (1980).

Experimental top

The title compound was prepared by the reaction of ZnSO4.H2O (0.90 g, 5 mmol) in H2O (40 ml) and DENA (1.78 g, 10 mmol) in H2O (10 ml) with sodium 4-methylbenzoate (1.58 g, 10 mmol) in H2O (250 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colourless single crystals.

Refinement top

H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Primed atoms are generated by the symmetry operator:(') 1 - x, -y, -z.
Tetrakis(µ-4-methylbenzoato-κ2O:O')bis[(N,N- diethylnicotinamide-κN1)zinc(II)] top
Crystal data top
[Zn2(C8H7O2)4(C10H14N2O)2]Z = 1
Mr = 1027.82F(000) = 536
Triclinic, P1Dx = 1.406 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8603 (2) ÅCell parameters from 9897 reflections
b = 10.5272 (2) Åθ = 2.4–28.4°
c = 12.3514 (3) ŵ = 1.05 mm1
α = 97.346 (3)°T = 100 K
β = 93.525 (3)°Block, colourless
γ = 106.342 (5)°0.45 × 0.35 × 0.34 mm
V = 1213.78 (6) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6067 independent reflections
Radiation source: fine-focus sealed tube5604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 28.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.649, Tmax = 0.698k = 1414
22051 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0311P)2 + 0.5069P]
where P = (Fo2 + 2Fc2)/3
6067 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Zn2(C8H7O2)4(C10H14N2O)2]γ = 106.342 (5)°
Mr = 1027.82V = 1213.78 (6) Å3
Triclinic, P1Z = 1
a = 9.8603 (2) ÅMo Kα radiation
b = 10.5272 (2) ŵ = 1.05 mm1
c = 12.3514 (3) ÅT = 100 K
α = 97.346 (3)°0.45 × 0.35 × 0.34 mm
β = 93.525 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6067 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5604 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.698Rint = 0.024
22051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.06Δρmax = 0.50 e Å3
6067 reflectionsΔρmin = 0.25 e Å3
311 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.450815 (15)0.115632 (13)0.040631 (11)0.01383 (5)
O10.73414 (10)0.02215 (9)0.02905 (8)0.01896 (19)
O20.65938 (9)0.19668 (9)0.09519 (8)0.01795 (18)
O30.49245 (10)0.10996 (10)0.12229 (8)0.0210 (2)
O40.41059 (10)0.05856 (9)0.18860 (8)0.01957 (19)
O50.30214 (10)0.44313 (10)0.27313 (8)0.0239 (2)
N10.37721 (11)0.27588 (10)0.02830 (9)0.0147 (2)
N20.08512 (11)0.30568 (11)0.25343 (9)0.0175 (2)
C10.75162 (13)0.13428 (12)0.08691 (10)0.0154 (2)
C20.89284 (13)0.19728 (12)0.15322 (10)0.0158 (2)
C30.92011 (14)0.31934 (13)0.22226 (11)0.0184 (2)
H30.85320.36650.22280.022*
C41.04631 (14)0.37058 (13)0.29001 (12)0.0212 (3)
H41.06280.45180.33590.025*
C51.14912 (14)0.30273 (14)0.29080 (11)0.0205 (3)
C61.12308 (14)0.18255 (14)0.21929 (12)0.0210 (3)
H61.19130.13690.21710.025*
C70.99677 (14)0.13047 (13)0.15144 (11)0.0193 (3)
H70.98120.05030.10430.023*
C81.28449 (15)0.35768 (16)0.36690 (13)0.0282 (3)
H8A1.33530.29200.36500.042*
H8B1.26200.37870.44030.042*
H8C1.34240.43730.34390.042*
C90.44426 (13)0.04751 (13)0.19693 (10)0.0165 (2)
C100.42490 (13)0.10307 (12)0.30249 (10)0.0162 (2)
C110.34787 (14)0.05492 (13)0.38074 (11)0.0189 (2)
H110.31200.01560.36920.023*
C120.32480 (14)0.11202 (15)0.47572 (11)0.0224 (3)
H120.27270.07960.52700.027*
C130.37825 (15)0.21695 (14)0.49557 (11)0.0235 (3)
C140.45906 (15)0.26154 (14)0.41892 (11)0.0219 (3)
H140.49840.32940.43200.026*
C150.48161 (14)0.20583 (13)0.32319 (11)0.0189 (2)
H150.53500.23730.27250.023*
C160.34955 (19)0.28015 (19)0.59785 (13)0.0360 (4)
H16A0.37010.36460.58920.054*
H16B0.25150.29410.61000.054*
H16C0.40880.22200.65960.054*
C170.40194 (13)0.38549 (13)0.10388 (10)0.0160 (2)
H170.44910.38760.17190.019*
C180.35931 (13)0.49579 (13)0.08359 (11)0.0181 (2)
H180.37380.56890.13840.022*
C190.29485 (13)0.49579 (12)0.01931 (11)0.0173 (2)
H190.26960.57040.03570.021*
C200.26868 (12)0.38185 (12)0.09764 (10)0.0152 (2)
C210.30915 (13)0.27380 (12)0.06968 (10)0.0151 (2)
H210.28830.19640.12090.018*
C220.21826 (13)0.37980 (12)0.21572 (11)0.0162 (2)
C230.01970 (14)0.23617 (13)0.18488 (11)0.0199 (3)
H23A0.02970.21370.12310.024*
H23B0.07930.15320.22750.024*
C240.11255 (15)0.32037 (15)0.14258 (13)0.0270 (3)
H24A0.18280.26940.10200.041*
H24B0.15880.34580.20340.041*
H24C0.05490.39930.09550.041*
C250.03872 (15)0.29558 (14)0.37030 (11)0.0218 (3)
H25A0.09060.37600.39740.026*
H25B0.06150.28910.37900.026*
C260.06320 (19)0.17447 (16)0.43724 (13)0.0321 (3)
H26A0.02980.16940.51280.048*
H26B0.01240.09480.41020.048*
H26C0.16290.18240.43110.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01471 (8)0.01387 (7)0.01481 (8)0.00699 (5)0.00123 (5)0.00289 (5)
O10.0180 (4)0.0163 (4)0.0221 (5)0.0056 (3)0.0003 (4)0.0008 (4)
O20.0162 (4)0.0170 (4)0.0215 (5)0.0064 (3)0.0004 (4)0.0035 (3)
O30.0231 (5)0.0281 (5)0.0161 (4)0.0131 (4)0.0043 (4)0.0052 (4)
O40.0229 (5)0.0208 (4)0.0177 (4)0.0093 (4)0.0027 (4)0.0058 (4)
O50.0200 (5)0.0275 (5)0.0235 (5)0.0030 (4)0.0020 (4)0.0110 (4)
N10.0133 (5)0.0147 (5)0.0172 (5)0.0053 (4)0.0026 (4)0.0034 (4)
N20.0164 (5)0.0186 (5)0.0176 (5)0.0053 (4)0.0009 (4)0.0031 (4)
C10.0160 (6)0.0156 (5)0.0155 (6)0.0045 (4)0.0029 (5)0.0061 (4)
C20.0150 (5)0.0159 (6)0.0173 (6)0.0045 (4)0.0025 (5)0.0047 (5)
C30.0180 (6)0.0174 (6)0.0215 (6)0.0070 (5)0.0038 (5)0.0046 (5)
C40.0215 (6)0.0177 (6)0.0223 (6)0.0038 (5)0.0015 (5)0.0002 (5)
C50.0167 (6)0.0226 (6)0.0211 (6)0.0029 (5)0.0010 (5)0.0057 (5)
C60.0166 (6)0.0239 (6)0.0249 (7)0.0087 (5)0.0026 (5)0.0051 (5)
C70.0180 (6)0.0179 (6)0.0225 (6)0.0068 (5)0.0022 (5)0.0017 (5)
C80.0199 (7)0.0332 (8)0.0278 (7)0.0037 (6)0.0026 (6)0.0028 (6)
C90.0137 (5)0.0203 (6)0.0154 (6)0.0046 (5)0.0005 (4)0.0030 (5)
C100.0156 (5)0.0178 (6)0.0137 (6)0.0026 (4)0.0000 (4)0.0026 (4)
C110.0160 (6)0.0216 (6)0.0179 (6)0.0044 (5)0.0007 (5)0.0018 (5)
C120.0171 (6)0.0306 (7)0.0161 (6)0.0020 (5)0.0030 (5)0.0021 (5)
C130.0208 (6)0.0271 (7)0.0172 (6)0.0027 (5)0.0018 (5)0.0071 (5)
C140.0242 (7)0.0197 (6)0.0198 (6)0.0031 (5)0.0038 (5)0.0052 (5)
C150.0201 (6)0.0187 (6)0.0167 (6)0.0048 (5)0.0000 (5)0.0016 (5)
C160.0350 (8)0.0474 (10)0.0245 (8)0.0041 (7)0.0042 (7)0.0185 (7)
C170.0144 (5)0.0188 (6)0.0152 (6)0.0056 (4)0.0020 (4)0.0020 (5)
C180.0178 (6)0.0152 (6)0.0211 (6)0.0058 (5)0.0041 (5)0.0012 (5)
C190.0165 (6)0.0145 (5)0.0233 (6)0.0073 (4)0.0048 (5)0.0041 (5)
C200.0116 (5)0.0162 (5)0.0185 (6)0.0045 (4)0.0023 (4)0.0043 (5)
C210.0142 (5)0.0137 (5)0.0173 (6)0.0045 (4)0.0011 (4)0.0014 (4)
C220.0171 (6)0.0135 (5)0.0201 (6)0.0078 (4)0.0009 (5)0.0031 (5)
C230.0152 (6)0.0200 (6)0.0231 (6)0.0025 (5)0.0012 (5)0.0051 (5)
C240.0217 (7)0.0266 (7)0.0328 (8)0.0061 (5)0.0088 (6)0.0040 (6)
C250.0214 (6)0.0239 (6)0.0184 (6)0.0056 (5)0.0026 (5)0.0019 (5)
C260.0409 (9)0.0295 (8)0.0242 (7)0.0105 (7)0.0035 (7)0.0026 (6)
Geometric parameters (Å, º) top
Zn1—Zn1i2.9494 (3)C10—C151.3934 (18)
Zn1—O1i2.0420 (9)C11—H110.9300
Zn1—O22.0264 (9)C12—C111.3876 (19)
Zn1—O3i2.1196 (9)C12—C131.393 (2)
Zn1—O42.0235 (9)C12—H120.9300
Zn1—N12.0340 (10)C13—C141.393 (2)
O1—Zn1i2.0420 (9)C13—C161.507 (2)
O1—C11.2604 (15)C14—C151.3884 (19)
O2—C11.2648 (15)C14—H140.9300
O3—Zn1i2.1196 (9)C15—H150.9300
O3—C91.2580 (16)C16—H16A0.9600
O4—C91.2654 (16)C16—H16B0.9600
O5—C221.2305 (16)C16—H16C0.9600
N1—C171.3419 (16)C17—C181.3871 (18)
N1—C211.3418 (16)C17—H170.9300
N2—C221.3433 (16)C18—H180.9300
N2—C231.4700 (17)C19—C181.3857 (19)
N2—C251.4685 (17)C19—H190.9300
C1—C21.5002 (17)C20—C191.3927 (17)
C2—C71.3963 (18)C20—C211.3824 (17)
C3—C21.3957 (18)C20—C221.5071 (18)
C3—C41.3851 (19)C21—H210.9300
C3—H30.9300C23—C241.5146 (19)
C4—H40.9300C23—H23A0.9700
C5—C41.3950 (19)C23—H23B0.9700
C5—C61.3965 (19)C24—H24A0.9600
C5—C81.5073 (19)C24—H24B0.9600
C6—H60.9300C24—H24C0.9600
C7—C61.3870 (19)C25—C261.515 (2)
C7—H70.9300C25—H25A0.9700
C8—H8A0.9600C25—H25B0.9700
C8—H8B0.9600C26—H26A0.9600
C8—H8C0.9600C26—H26B0.9600
C9—C101.4971 (18)C26—H26C0.9600
C10—C111.3963 (18)
O1i—Zn1—O3i84.43 (4)C13—C12—H12119.4
O2—Zn1—O1i159.97 (4)C12—C13—C14118.42 (13)
O2—Zn1—O3i88.67 (4)C12—C13—C16120.61 (14)
O2—Zn1—N1104.57 (4)C14—C13—C16120.97 (14)
O4—Zn1—O1i89.88 (4)C13—C14—H14119.6
O4—Zn1—O290.22 (4)C15—C14—C13120.78 (13)
O4—Zn1—O3i159.93 (4)C15—C14—H14119.6
O4—Zn1—N1107.92 (4)C10—C15—H15119.7
N1—Zn1—O1i94.43 (4)C14—C15—C10120.52 (13)
N1—Zn1—O3i91.72 (4)C14—C15—H15119.7
C1—O1—Zn1i128.83 (8)C13—C16—H16A109.5
C1—O2—Zn1124.35 (8)C13—C16—H16B109.5
C9—O3—Zn1i145.07 (9)C13—C16—H16C109.5
C9—O4—Zn1110.41 (8)H16A—C16—H16B109.5
C17—N1—Zn1126.21 (9)H16A—C16—H16C109.5
C21—N1—Zn1114.90 (8)H16B—C16—H16C109.5
C21—N1—C17118.59 (11)N1—C17—C18122.00 (12)
C22—N2—C23124.41 (11)N1—C17—H17119.0
C22—N2—C25118.33 (11)C18—C17—H17119.0
C25—N2—C23117.24 (11)C17—C18—H18120.4
O1—C1—O2125.48 (12)C19—C18—C17119.26 (12)
O1—C1—C2117.03 (11)C19—C18—H18120.4
O2—C1—C2117.47 (11)C18—C19—C20118.68 (12)
C3—C2—C1120.98 (11)C18—C19—H19120.7
C3—C2—C7118.75 (12)C20—C19—H19120.7
C7—C2—C1120.17 (11)C19—C20—C22122.14 (11)
C2—C3—H3119.9C21—C20—C19118.57 (12)
C4—C3—C2120.29 (12)C21—C20—C22118.65 (11)
C4—C3—H3119.9N1—C21—C20122.78 (11)
C3—C4—C5121.29 (12)N1—C21—H21118.6
C3—C4—H4119.4C20—C21—H21118.6
C5—C4—H4119.4O5—C22—N2123.51 (12)
C4—C5—C6118.19 (12)O5—C22—C20118.39 (11)
C4—C5—C8120.84 (13)N2—C22—C20118.08 (11)
C6—C5—C8120.97 (13)N2—C23—C24112.25 (11)
C5—C6—H6119.6N2—C23—H23A109.2
C7—C6—C5120.82 (12)N2—C23—H23B109.2
C7—C6—H6119.6C24—C23—H23A109.2
C2—C7—H7119.7C24—C23—H23B109.2
C6—C7—C2120.62 (12)H23A—C23—H23B107.9
C6—C7—H7119.7C23—C24—H24A109.5
C5—C8—H8A109.5C23—C24—H24B109.5
C5—C8—H8B109.5C23—C24—H24C109.5
C5—C8—H8C109.5H24A—C24—H24B109.5
H8A—C8—H8B109.5H24A—C24—H24C109.5
H8A—C8—H8C109.5H24B—C24—H24C109.5
H8B—C8—H8C109.5N2—C25—C26111.44 (12)
O3—C9—O4124.45 (12)N2—C25—H25A109.3
O3—C9—C10117.63 (11)N2—C25—H25B109.3
O4—C9—C10117.92 (11)C26—C25—H25A109.3
C11—C10—C9120.82 (12)C26—C25—H25B109.3
C15—C10—C9120.25 (12)H25A—C25—H25B108.0
C15—C10—C11118.92 (12)C25—C26—H26A109.5
C10—C11—H11119.9C25—C26—H26B109.5
C12—C11—C10120.13 (13)C25—C26—H26C109.5
C12—C11—H11119.9H26A—C26—H26B109.5
C11—C12—C13121.17 (13)H26A—C26—H26C109.5
C11—C12—H12119.4H26B—C26—H26C109.5
O1i—Zn1—O2—C10.43 (18)O1—C1—C2—C71.65 (18)
O3i—Zn1—O2—C169.26 (10)O2—C1—C2—C30.75 (18)
O4—Zn1—O2—C190.70 (10)O2—C1—C2—C7177.09 (12)
N1—Zn1—O2—C1160.69 (10)C1—C2—C7—C6174.62 (12)
O1i—Zn1—O4—C980.22 (9)C3—C2—C7—C61.8 (2)
O2—Zn1—O4—C979.75 (9)C4—C3—C2—C1174.42 (12)
O3i—Zn1—O4—C96.98 (16)C4—C3—C2—C72.0 (2)
N1—Zn1—O4—C9174.84 (8)C2—C3—C4—C50.3 (2)
O1i—Zn1—N1—C17139.95 (10)C6—C5—C4—C31.5 (2)
O1i—Zn1—N1—C2146.58 (9)C8—C5—C4—C3178.45 (13)
O2—Zn1—N1—C1746.43 (11)C4—C5—C6—C71.6 (2)
O2—Zn1—N1—C21127.04 (9)C8—C5—C6—C7178.28 (13)
O3i—Zn1—N1—C17135.50 (10)C2—C7—C6—C50.0 (2)
O3i—Zn1—N1—C2137.97 (9)O3—C9—C10—C11167.82 (12)
O4—Zn1—N1—C1748.64 (11)O3—C9—C10—C1510.99 (18)
O4—Zn1—N1—C21137.89 (8)O4—C9—C10—C1111.89 (18)
Zn1i—O1—C1—O215.50 (19)O4—C9—C10—C15169.31 (12)
Zn1i—O1—C1—C2163.13 (8)C9—C10—C11—C12176.76 (11)
Zn1—O2—C1—O112.25 (18)C15—C10—C11—C122.06 (19)
Zn1—O2—C1—C2166.37 (8)C9—C10—C15—C14177.34 (12)
Zn1i—O3—C9—O41.2 (2)C11—C10—C15—C141.49 (19)
Zn1i—O3—C9—C10178.47 (10)C13—C12—C11—C100.5 (2)
Zn1—O4—C9—O31.70 (16)C11—C12—C13—C141.6 (2)
Zn1—O4—C9—C10178.62 (8)C11—C12—C13—C16178.59 (13)
Zn1—N1—C17—C18173.27 (9)C12—C13—C14—C152.2 (2)
C21—N1—C17—C180.02 (18)C16—C13—C14—C15178.01 (13)
Zn1—N1—C21—C20171.23 (9)C13—C14—C15—C100.7 (2)
C17—N1—C21—C202.77 (18)N1—C17—C18—C192.94 (19)
C23—N2—C22—O5175.96 (12)C20—C19—C18—C173.09 (19)
C23—N2—C22—C205.98 (18)C21—C20—C19—C180.49 (18)
C25—N2—C22—O52.33 (19)C22—C20—C19—C18171.23 (11)
C25—N2—C22—C20175.72 (11)C19—C20—C22—O570.73 (16)
C22—N2—C23—C2492.91 (15)C19—C20—C22—N2111.12 (14)
C25—N2—C23—C2485.40 (14)C21—C20—C22—O5100.01 (14)
C22—N2—C25—C2692.54 (15)C21—C20—C22—N278.14 (15)
C23—N2—C25—C2689.04 (15)C19—C20—C21—N12.52 (18)
O1—C1—C2—C3178.00 (12)C22—C20—C21—N1168.55 (11)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4ii0.932.553.4601 (18)166
C16—H16C···O4iii0.962.593.542 (2)174
C19—H19···O2iv0.932.573.4013 (15)149
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn2(C8H7O2)4(C10H14N2O)2]
Mr1027.82
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.8603 (2), 10.5272 (2), 12.3514 (3)
α, β, γ (°)97.346 (3), 93.525 (3), 106.342 (5)
V3)1213.78 (6)
Z1
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.45 × 0.35 × 0.34
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.649, 0.698
No. of measured, independent and
observed [I > 2σ(I)] reflections
22051, 6067, 5604
Rint0.024
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.065, 1.06
No. of reflections6067
No. of parameters311
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Zn1—O1i2.0420 (9)Zn1—O42.0235 (9)
Zn1—O22.0264 (9)Zn1—N12.0340 (10)
Zn1—O3i2.1196 (9)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4ii0.932.553.4601 (18)166.00
C16—H16C···O4iii0.962.593.542 (2)174.00
C19—H19···O2iv0.932.573.4013 (15)149.00
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 108 T657).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1582–m1583.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955–m956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328–m1329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010). Acta Cryst. E66, m334–m335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpeier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331–2333.  CSD CrossRef Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091–1096.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m485-m486
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds