organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(2-Chloro-7,8-di­methyl­quinolin-3-yl)meth­yl]pyridin-2(1H)-one

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 24 March 2010; accepted 26 March 2010; online 31 March 2010)

In the title compound, C17H15ClN2O, the quinoline ring system is nearly planar, with a maximum deviation from the mean plane of 0.074 (2) Å, and makes a dihedral angle of 81.03 (7)° with the pyridone ring. The crystal packing is stabilized by ππ stacking inter­actions between the pyridone and benzene rings of the quinoline ring system [centroid–centroid distance = 3.6754 (10) Å]. Furthermore, weak inter­molecular C—H⋯O hydrogen bonding links mol­ecules into supra­molecular chains along [001].

Related literature

For 2-pyridone analogues, see: Arman et al. (2009[Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3187.]); Clegg & Nichol (2004[Clegg, W. & Nichol, G. S. (2004). Acta Cryst. E60, o1433-o1436.]); Nichol & Clegg (2005[Nichol, G. S. & Clegg, W. (2005). Acta Cryst. C61, o383-o385.]). For alkaloid analogues of natural or synthetic anti­cancer agents, see: Roopan & Khan (2009[Roopan, S. M. & Khan, F. N. (2009). ARKIVOC, pp. 161-169.]). For N-alkyl­ation in organic synthesis, see: Roopan et al. (2010[Roopan, S. M., Khan, F. N. & Mandal, B. K. (2010). Tetrahedron Lett. doi:org/10.1016/j.tetlet.2010.02.128.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15ClN2O

  • Mr = 298.76

  • Monoclinic, P 21 /c

  • a = 7.07034 (17) Å

  • b = 15.4729 (4) Å

  • c = 13.1704 (3) Å

  • β = 96.342 (2)°

  • V = 1432.01 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 295 K

  • 0.24 × 0.15 × 0.12 mm

Data collection
  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.953, Tmax = 0.968

  • 15150 measured reflections

  • 2810 independent reflections

  • 2008 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.06

  • 2810 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.93 2.52 3.318 (2) 143
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Compounds found in nature display a wide range of diversity in terms of their structures and physical and biological properties. Several alkaloid analogues of natural or synthetic anticancer agents (Roopan & Khan, 2009) are well known, and have attracted considerable interest because of their significant activity. Particularly, five and six membered heterocyclic compounds containing one or two hetero atoms fused to a quinoline ring are found in natural products. The search for new anticancer drugs from nature continues to be a fruitful activity, as evidenced by the successes of natural products as pharmaceutical agents. Nitrogen containing heterocyclic compounds, recognized pharmacophores has received great attention in drug discovery and lead optimization. The chemistry of N-alkylation has recently received much attention due to their usefulness as building blocks in organic synthesis (Roopan et al., 2010). On the basis of the interesting structures and biological activities exhibited by several heterocyclic systems possessing quinoline and pyridone nucleus, we have synthesized a quinoline coupled pyridone, i.e., 1-[(2-chloroquinolin-3yl)-methyl]-pyridine-2(1H)-one.

In the title molecule, Fig.1., the quinoline unit is nearly planar, with maximum deviations from the mean plane of -0.074 (2) Å for C2, -0.061 (2) Å for C6 and 0.059 (1) Å for N1 and 0.049 (2) Å for C4. The dihedral angle between the pyridine ring and the quinoline fused-ring system is 81.03 (7)°. Molecular conformation is stabilized by the intra molecular C—H···N and C—H···Cl interactions, forming a 5-membered ring. The crystal structure shows the presence of intermolecular π-π interactions between the pyridone (N2/C11–C15) and benzene (C4–C9) rings of the quinoline ring system, with the Cg2···Cg3(x, 1/2-y, 1/2+z) distance of 3.6754 (10) Å [Cg2 and Cg3 are the centroids of the N2/C11–C15 pyridone and C4–C9 benzene rings, respectively]. The molecular packing is further stabilized by weak intermolecular C—H···O interactions (Table1, Fig. 2), forming chains in the [001] direction.

Related literature top

For 2-pyridone analogues, see: Arman et al. (2009); Clegg & Nichol (2004); Nichol & Clegg (2005). For alkaloid analogues of natural or synthetic anticancer agents, see: Roopan & Khan (2009). For N-alkylation in organic synthesis, see: Roopan et al. (2010).

Experimental top

To a mixed well solution of 2-pyridone (95 mg, 1 mmol, in 2 ml of DMF), KOtBu (112 mg, 1 mmol in 10 ml of THF) and 2-chloro-3-(chloromethyl)-7,8-dimethylquinoline (240 mg, 1 mmol) were added and the resulting mixture was refluxed at 343 K for 1 h. After the completion of the reaction, cooled and removed the excess of solvent under reduced pressure. Crushed ice was mixed with the residue. White solid was formed, filtered and dried, purified by column chromatography using hexane and ethylacetate as the eluant. Crystals of suitable quality were grown by solvent evaporation from a solution of the compound in chloroform.

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H = 0.93-0.97 Å and Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding interactions of (I) viewing down the a-axis. H atoms not participating in hydrogen bonding have been omitted for clarity.
1-[(2-Chloro-7,8-dimethylquinolin-3-yl)methyl]pyridin-2(1H)-one top
Crystal data top
C17H15ClN2OF(000) = 624
Mr = 298.76Dx = 1.386 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1523 reflections
a = 7.07034 (17) Åθ = 2.6–26.0°
b = 15.4729 (4) ŵ = 0.27 mm1
c = 13.1704 (3) ÅT = 295 K
β = 96.342 (2)°Block, colourless
V = 1432.01 (6) Å30.24 × 0.15 × 0.12 mm
Z = 4
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
2810 independent reflections
Radiation source: Enhance (Mo) X-ray Source2008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
h = 88
Tmin = 0.953, Tmax = 0.968k = 1919
15150 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.060P)2]
where P = (Fo2 + 2Fc2)/3
2810 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C17H15ClN2OV = 1432.01 (6) Å3
Mr = 298.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.07034 (17) ŵ = 0.27 mm1
b = 15.4729 (4) ÅT = 295 K
c = 13.1704 (3) Å0.24 × 0.15 × 0.12 mm
β = 96.342 (2)°
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
2810 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
2008 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.968Rint = 0.035
15150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
2810 reflectionsΔρmin = 0.20 e Å3
192 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.38101 (6)0.30106 (3)0.46949 (4)0.0555 (2)
O10.8143 (2)0.15968 (9)0.50257 (10)0.0645 (5)
N11.14556 (19)0.39838 (9)0.35696 (10)0.0395 (5)
N20.8843 (2)0.24988 (9)0.63744 (10)0.0401 (5)
C11.1608 (2)0.35195 (10)0.43917 (13)0.0376 (5)
C21.0220 (2)0.33920 (11)0.50689 (12)0.0379 (5)
C30.8596 (2)0.38656 (11)0.48572 (12)0.0388 (6)
C40.6662 (2)0.48857 (11)0.37163 (14)0.0448 (6)
C50.6463 (3)0.53389 (12)0.28258 (14)0.0504 (7)
C60.7855 (3)0.53271 (11)0.21389 (14)0.0465 (6)
C70.9535 (2)0.48792 (11)0.23822 (13)0.0406 (6)
C80.9779 (2)0.44201 (10)0.33237 (12)0.0347 (5)
C90.8327 (2)0.44006 (10)0.39814 (12)0.0360 (5)
C101.0577 (3)0.27637 (13)0.59472 (14)0.0485 (6)
C110.8430 (3)0.28316 (12)0.72898 (14)0.0490 (7)
C120.6894 (3)0.25858 (13)0.77200 (14)0.0533 (7)
C130.5686 (3)0.19603 (12)0.72202 (15)0.0525 (7)
C140.6077 (3)0.16224 (12)0.63285 (14)0.0490 (6)
C150.7703 (3)0.18774 (11)0.58469 (13)0.0435 (6)
C160.7440 (3)0.57702 (15)0.11113 (15)0.0744 (9)
C171.1065 (3)0.48403 (13)0.16669 (14)0.0544 (7)
H30.765200.383600.529500.0470*
H40.570500.489600.414700.0540*
H50.537000.566800.266500.0600*
H10A1.120000.225400.571300.0580*
H10B1.143700.302900.648300.0580*
H110.924400.324000.762000.0590*
H120.662800.282300.833700.0640*
H130.461100.178000.750900.0630*
H140.526000.120800.601300.0590*
H16A0.843500.617600.102100.1120*
H16B0.624600.607000.108500.1120*
H16C0.737400.534600.057700.1120*
H17A1.066700.446000.110800.0820*
H17B1.222400.462800.203000.0820*
H17C1.127400.540800.140900.0820*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0391 (3)0.0611 (4)0.0671 (4)0.0103 (2)0.0101 (2)0.0147 (2)
O10.0904 (11)0.0639 (9)0.0404 (7)0.0009 (8)0.0126 (7)0.0064 (6)
N10.0385 (8)0.0395 (8)0.0416 (8)0.0019 (7)0.0091 (6)0.0031 (7)
N20.0456 (9)0.0409 (8)0.0341 (8)0.0025 (7)0.0055 (7)0.0053 (7)
C10.0338 (9)0.0344 (9)0.0446 (10)0.0002 (7)0.0046 (7)0.0005 (8)
C20.0381 (9)0.0360 (9)0.0396 (9)0.0050 (8)0.0047 (7)0.0015 (7)
C30.0368 (10)0.0403 (10)0.0403 (9)0.0030 (8)0.0090 (7)0.0005 (8)
C40.0429 (10)0.0416 (10)0.0512 (11)0.0045 (8)0.0106 (8)0.0010 (9)
C50.0489 (11)0.0394 (11)0.0617 (12)0.0082 (9)0.0012 (9)0.0035 (9)
C60.0527 (11)0.0379 (10)0.0475 (11)0.0025 (9)0.0001 (9)0.0069 (8)
C70.0452 (10)0.0355 (10)0.0409 (10)0.0057 (8)0.0045 (8)0.0004 (8)
C80.0357 (9)0.0305 (9)0.0383 (9)0.0026 (7)0.0053 (7)0.0007 (7)
C90.0357 (9)0.0310 (9)0.0413 (9)0.0027 (7)0.0043 (7)0.0024 (7)
C100.0410 (10)0.0559 (12)0.0483 (11)0.0010 (9)0.0041 (8)0.0133 (9)
C110.0636 (13)0.0443 (11)0.0388 (10)0.0033 (10)0.0042 (9)0.0013 (8)
C120.0699 (14)0.0542 (12)0.0382 (10)0.0064 (10)0.0166 (10)0.0012 (9)
C130.0506 (12)0.0581 (13)0.0502 (12)0.0049 (10)0.0116 (9)0.0191 (10)
C140.0526 (12)0.0477 (11)0.0445 (10)0.0078 (9)0.0049 (9)0.0098 (9)
C150.0538 (11)0.0414 (10)0.0342 (9)0.0028 (9)0.0000 (8)0.0044 (8)
C160.0791 (16)0.0780 (16)0.0635 (14)0.0081 (13)0.0036 (12)0.0300 (12)
C170.0606 (13)0.0582 (12)0.0463 (11)0.0009 (10)0.0139 (10)0.0102 (9)
Geometric parameters (Å, º) top
Cl1—C11.7511 (15)C11—C121.335 (3)
O1—C151.237 (2)C12—C131.405 (3)
N1—C11.294 (2)C13—C141.342 (3)
N1—C81.372 (2)C14—C151.429 (3)
N2—C101.463 (3)C3—H30.9300
N2—C111.372 (2)C4—H40.9300
N2—C151.390 (2)C5—H50.9300
C1—C21.411 (2)C10—H10A0.9700
C2—C31.365 (2)C10—H10B0.9700
C2—C101.511 (3)C11—H110.9300
C3—C91.415 (2)C12—H120.9300
C4—C51.360 (3)C13—H130.9300
C4—C91.407 (2)C14—H140.9300
C5—C61.409 (3)C16—H16A0.9600
C6—C71.382 (3)C16—H16B0.9600
C6—C161.517 (3)C16—H16C0.9600
C7—C81.423 (2)C17—H17A0.9600
C7—C171.512 (3)C17—H17B0.9600
C8—C91.415 (2)C17—H17C0.9600
Cl1···C3i3.6175 (15)C11···H33.0500
Cl1···C14i3.324 (2)C15···H17Av2.9400
Cl1···C15i3.468 (2)C16···H17A3.0500
Cl1···H3i3.0300C16···H17C2.7500
Cl1···H10A2.6700C17···H16A2.8500
Cl1···H10B3.0400C17···H16C2.9400
Cl1···H12ii3.1000H3···Cl1vi3.0300
Cl1···H13ii3.0100H3···N22.6000
O1···C23.140 (2)H3···C113.0500
O1···C12iii3.318 (2)H3···H42.5300
O1···H10A2.4700H4···H32.5300
O1···H17Civ2.7000H4···H4viii2.5800
O1···H12iii2.5200H5···H16B2.3200
O1···H17Av2.7100H10A···Cl12.6700
N1···H17B2.3800H10A···O12.4700
N2···H32.6000H10B···Cl13.0400
C2···O13.140 (2)H10B···H112.2900
C3···Cl1vi3.6175 (15)H10B···C5vii3.0200
C3···C113.595 (2)H11···H10B2.2900
C3···C153.427 (2)H11···C6vii3.0100
C4···C13iii3.495 (3)H11···C7vii3.0400
C6···C14iii3.394 (3)H11···H16Avii2.4600
C7···C14iii3.543 (3)H11···H17Cvii2.5000
C7···C15iii3.546 (2)H12···Cl1ix3.1000
C9···C13iii3.513 (2)H12···O1v2.5200
C9···C12iii3.586 (3)H13···Cl1ix3.0100
C11···C33.595 (2)H16A···C172.8500
C12···O1v3.318 (2)H16A···H17C2.3400
C12···C9v3.586 (3)H16A···H11vii2.4600
C13···C9v3.513 (2)H16B···H52.3200
C13···C4v3.495 (3)H16C···C172.9400
C14···C6v3.394 (3)H17A···C163.0500
C14···C7v3.543 (3)H17A···O1iii2.7100
C14···Cl1vi3.324 (2)H17A···C15iii2.9400
C15···C33.427 (2)H17B···N12.3800
C15···C7v3.546 (2)H17C···C162.7500
C15···Cl1vi3.468 (2)H17C···H16A2.3400
C5···H10Bvii3.0200H17C···O1x2.7000
C6···H11vii3.0100H17C···H11vii2.5000
C7···H11vii3.0400
C1—N1—C8117.44 (13)N2—C15—C14114.82 (15)
C10—N2—C11120.11 (15)C2—C3—H3119.00
C10—N2—C15117.76 (14)C9—C3—H3120.00
C11—N2—C15122.06 (15)C5—C4—H4120.00
Cl1—C1—N1115.48 (12)C9—C4—H4120.00
Cl1—C1—C2117.13 (12)C4—C5—H5119.00
N1—C1—C2127.38 (14)C6—C5—H5119.00
C1—C2—C3115.09 (15)N2—C10—H10A109.00
C1—C2—C10120.33 (14)N2—C10—H10B109.00
C3—C2—C10124.58 (15)C2—C10—H10A109.00
C2—C3—C9120.99 (14)C2—C10—H10B109.00
C5—C4—C9119.53 (16)H10A—C10—H10B108.00
C4—C5—C6122.27 (18)N2—C11—H11119.00
C5—C6—C7120.08 (17)C12—C11—H11119.00
C5—C6—C16119.16 (18)C11—C12—H12121.00
C7—C6—C16120.68 (17)C13—C12—H12121.00
C6—C7—C8118.09 (15)C12—C13—H13120.00
C6—C7—C17122.09 (16)C14—C13—H13120.00
C8—C7—C17119.79 (14)C13—C14—H14119.00
N1—C8—C7118.03 (13)C15—C14—H14119.00
N1—C8—C9120.77 (14)C6—C16—H16A110.00
C7—C8—C9121.19 (13)C6—C16—H16B109.00
C3—C9—C4123.20 (14)C6—C16—H16C110.00
C3—C9—C8118.04 (13)H16A—C16—H16B109.00
C4—C9—C8118.71 (14)H16A—C16—H16C109.00
N2—C10—C2113.49 (15)H16B—C16—H16C109.00
N2—C11—C12121.90 (18)C7—C17—H17A109.00
C11—C12—C13118.58 (18)C7—C17—H17B109.00
C12—C13—C14120.33 (19)C7—C17—H17C109.00
C13—C14—C15122.32 (18)H17A—C17—H17B110.00
O1—C15—N2119.46 (18)H17A—C17—H17C109.00
O1—C15—C14125.72 (17)H17B—C17—H17C109.00
C8—N1—C1—Cl1177.63 (11)C9—C4—C5—C61.4 (3)
C8—N1—C1—C21.3 (2)C5—C4—C9—C81.9 (2)
C1—N1—C8—C7175.25 (15)C5—C4—C9—C3175.64 (16)
C1—N1—C8—C93.7 (2)C4—C5—C6—C73.3 (3)
C10—N2—C11—C12177.86 (18)C4—C5—C6—C16173.50 (18)
C11—N2—C15—C140.5 (2)C16—C6—C7—C172.7 (3)
C10—N2—C15—O12.8 (2)C5—C6—C7—C81.6 (3)
C15—N2—C11—C120.9 (3)C5—C6—C7—C17179.44 (17)
C11—N2—C15—O1179.78 (17)C16—C6—C7—C8175.12 (16)
C10—N2—C15—C14177.47 (16)C6—C7—C8—C91.7 (2)
C11—N2—C10—C2104.43 (18)C17—C7—C8—N12.8 (2)
C15—N2—C10—C278.5 (2)C6—C7—C8—N1179.28 (15)
N1—C1—C2—C35.0 (3)C17—C7—C8—C9176.16 (15)
N1—C1—C2—C10174.62 (16)C7—C8—C9—C43.5 (2)
Cl1—C1—C2—C106.5 (2)C7—C8—C9—C3174.16 (15)
Cl1—C1—C2—C3173.96 (12)N1—C8—C9—C4177.54 (15)
C1—C2—C3—C93.5 (2)N1—C8—C9—C34.8 (2)
C1—C2—C10—N2161.79 (15)N2—C11—C12—C130.7 (3)
C3—C2—C10—N217.8 (2)C11—C12—C13—C140.2 (3)
C10—C2—C3—C9176.05 (16)C12—C13—C14—C150.3 (3)
C2—C3—C9—C4178.47 (16)C13—C14—C15—O1179.63 (19)
C2—C3—C9—C80.9 (2)C13—C14—C15—N20.1 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z1/2; (iii) x, y+1/2, z1/2; (iv) x+2, y1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x1, y, z; (vii) x+2, y+1, z+1; (viii) x+1, y+1, z+1; (ix) x1, y+1/2, z+1/2; (x) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N20.932.602.902 (2)100
C10—H10A···Cl10.972.672.987 (2)100
C12—H12···O1v0.932.523.318 (2)143
C17—H17B···N10.962.382.821 (2)108
Symmetry code: (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H15ClN2O
Mr298.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.07034 (17), 15.4729 (4), 13.1704 (3)
β (°) 96.342 (2)
V3)1432.01 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.24 × 0.15 × 0.12
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.953, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
15150, 2810, 2008
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.06
No. of reflections2810
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N20.932.602.902 (2)100
C10—H10A···Cl10.972.672.987 (2)100
C12—H12···O1i0.932.523.318 (2)143
C17—H17B···N10.962.382.821 (2)108
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

References

First citationArman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationClegg, W. & Nichol, G. S. (2004). Acta Cryst. E60, o1433–o1436.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNichol, G. S. & Clegg, W. (2005). Acta Cryst. C61, o383–o385.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRoopan, S. M. & Khan, F. N. (2009). ARKIVOC, pp. 161–169.  CrossRef Google Scholar
First citationRoopan, S. M., Khan, F. N. & Mandal, B. K. (2010). Tetrahedron Lett. doi:org/10.1016/j.tetlet.2010.02.128.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds