metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diacridinium hexa­chloridoplatinate(IV) dihydrate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 10 February 2010; accepted 12 March 2010; online 20 March 2010)

The asymmetric unit of the title compound, (C13H10N)2[PtCl6]·2H2O, contains a protonated acridine cation, one half of a [PtCl6]2− dianionic complex and a solvent water mol­ecule. The octa­hedral [PtCl6]2− dianion is located on an inversion centre. ππ inter­actions between neighboring acridinium cations produce stacks along the a axis; the shortest distance between the centroids of the six-membered rings within the cations is 3.553 (9) Å. In the crystal, two independent inter­molecular O—H⋯Cl hydrogen bonds, both involving the same Cl atom of the anion as acceptor, give rise to chains also running along the a axis; in addition each water mol­ecule, as a hydrogen-bond acceptor, is linked to the acridinium N—H group.

Related literature

For related acridinium salts, see: Hafiz (2006[Hafiz, H. R. (2006). Phys. Stat. Sol. (A), 203, 878-885.]); Veldhuizen et al. (1997[Veldhuizen, Y. S. J., Smeets, W. J. J., Veldman, N., Spek, A. L., Faulmann, C., Auban-Senzier, P., Jérome, D., Paulus, P. M., Haasnoot, J. G. & Reedijk, J. (1997). Inorg. Chem. 36, 4930-4937.]). For the crystal structures of [PtCl6]2− complexes, see: Karaca et al. (2009[Karaca, S., Akkurt, M., Safari, N., Amani, V., Büyükgüngör, O. & Abedi, A. (2009). Acta Cryst. E65, m235.]); Yousefi et al. (2007[Yousefi, M., Ahmadi, R., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m3114-m3115.]); Zordan & Brammer (2004[Zordan, F. & Brammer, L. (2004). Acta Cryst. B60, 512-519.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H10N)2[PtCl6]·2H2O

  • Mr = 804.26

  • Triclinic, [P \overline 1]

  • a = 7.4781 (8) Å

  • b = 9.8973 (10) Å

  • c = 10.7226 (12) Å

  • α = 70.675 (2)°

  • β = 71.505 (2)°

  • γ = 77.862 (2)°

  • V = 705.29 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.57 mm−1

  • T = 200 K

  • 0.24 × 0.20 × 0.06 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.577, Tmax = 1.000

  • 4295 measured reflections

  • 2725 independent reflections

  • 2536 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.174

  • S = 1.21

  • 2725 reflections

  • 169 parameters

  • H-atom parameters constrained

  • Δρmax = 1.99 e Å−3

  • Δρmin = −2.96 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 1.94 2.782 (16) 161
O1—H1A⋯Cl1ii 0.84 2.74 3.485 (12) 149
O1—H1B⋯Cl1 0.84 2.62 3.342 (12) 145
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title compound, (C13H10N)2[PtCl6].2H2O, contains a protonated acridine cation, one half of a [PtCl6]2- dianionic complex and a solvent water molecule (Fig. 1). The anion occupies a special position in the inversion centre; the Pt—Cl bond lengths, 2.370 (3), 2.377 (3) and 2.379 (3) Å, are similar to those found in other PtCl6 salts, i.e. (C13H10N)2[PtCl6].2C2H6OS (Karaca et al., 2009), (C14H13N2)2[PtCl6] (Yousefi et al., 2007) and (HPyX-3)2[PtCl6].2H2O (X = Br or I) (Zordan & Brammer, 2004).

The essentially planar acridinium cations [maximum deviation from the least-squares plane is equal to 0.025 (17) Å], are stacked in columns along the a-axis (Fig. 2); the shortest distance between the centroids of the six-membered rings in neighboring cations in the stack is equal to 3.553 (9) Å. Two independent O-H···Cl bonds, both involving atom Cl1 of the anion as acceptor (Table 1), give rise to the chains also running along the a-axis; in addition each water molecule, as an H-bond acceptor is linked to the acridinium N-H group (Fig. 2).

Related literature top

For related acridinium salts, see: Hafiz (2006); Veldhuizen et al. (1997). For the crystal structures of [PtCl6]2- complexes, see: Karaca et al. (2009); Yousefi et al. (2007); Zordan & Brammer (2004).

Experimental top

To a solution of K2PtCl6 (0.1999 g, 0.411 mmol) in H2O (20 ml) was added acridine (0.1548 g, 0.864 mmol) and the mixture was refluxed for 7 h. The precipitate was then separated by filtration, washed with water and acetone, and dried at 50 °C, to give an orange powder (0.2198 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms [C—H = 0.95 Å, N—H = 0.88 Å and Uiso(H) = 1.2Ueq(C, N)]. The H atoms of the solvent water molecule were located from difference maps then allowed to ride on their parent O atom in the final cycles of refinement [O—H = 0.84 Å; Uiso(H)= 1.5Ueq(O)]. The highest peak (1.99 e Å-3) and the deepest hole (-2.96 e Å-3) in the difference Fourier map are located 0.60 and 0.84 Å from the Cl3 and Pt1 atoms, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level; H atoms are shown as small circles of arbitrary radius. Unlabelled atoms are related to the reference atoms by the (1-x, 1-y, -z) symmetry transformation.
[Figure 2] Fig. 2. Packing diagram for the crystal of the title compound viewed down the c-axis; H-bonds are drawn as dashed lines.
Diacridinium hexachloridoplatinate(IV) dihydrate top
Crystal data top
(C13H10N)2[PtCl6]·2H2OZ = 1
Mr = 804.26F(000) = 390
Triclinic, P1Dx = 1.894 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4781 (8) ÅCell parameters from 2945 reflections
b = 9.8973 (10) Åθ = 2.6–26.0°
c = 10.7226 (12) ŵ = 5.57 mm1
α = 70.675 (2)°T = 200 K
β = 71.505 (2)°Plate, orange
γ = 77.862 (2)°0.24 × 0.20 × 0.06 mm
V = 705.29 (13) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
2725 independent reflections
Radiation source: fine-focus sealed tube2536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 98
Tmin = 0.577, Tmax = 1.000k = 1212
4295 measured reflectionsl = 139
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0248P)2 + 22.3646P]
where P = (Fo2 + 2Fc2)/3
2725 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 1.99 e Å3
0 restraintsΔρmin = 2.96 e Å3
Crystal data top
(C13H10N)2[PtCl6]·2H2Oγ = 77.862 (2)°
Mr = 804.26V = 705.29 (13) Å3
Triclinic, P1Z = 1
a = 7.4781 (8) ÅMo Kα radiation
b = 9.8973 (10) ŵ = 5.57 mm1
c = 10.7226 (12) ÅT = 200 K
α = 70.675 (2)°0.24 × 0.20 × 0.06 mm
β = 71.505 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2725 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2536 reflections with I > 2σ(I)
Tmin = 0.577, Tmax = 1.000Rint = 0.029
4295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0248P)2 + 22.3646P]
where P = (Fo2 + 2Fc2)/3
2725 reflectionsΔρmax = 1.99 e Å3
169 parametersΔρmin = 2.96 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.50000.50000.00000.0289 (2)
Cl10.1916 (4)0.4938 (3)0.1558 (3)0.0282 (7)
Cl20.3696 (4)0.5171 (3)0.1801 (3)0.0289 (7)
Cl30.5401 (5)0.2446 (3)0.0506 (3)0.0315 (7)
N10.8227 (15)0.1042 (13)0.3453 (12)0.035 (3)
H10.86300.16560.26450.042*
C10.8023 (17)0.1451 (13)0.4598 (13)0.027 (3)
C20.842 (2)0.2841 (15)0.4478 (15)0.035 (3)
H20.88380.35000.36000.043*
C30.820 (2)0.3208 (17)0.5619 (18)0.047 (4)
H30.84650.41300.55530.056*
C40.758 (2)0.2231 (18)0.6908 (16)0.046 (4)
H40.74450.25150.76990.055*
C50.716 (2)0.0926 (16)0.7086 (16)0.040 (3)
H50.67270.03010.79820.048*
C60.7368 (19)0.0490 (15)0.5907 (16)0.037 (3)
C70.694 (2)0.0880 (15)0.6011 (14)0.036 (3)
H70.64950.15400.68830.043*
C80.7195 (18)0.1244 (15)0.4794 (14)0.032 (3)
C90.678 (2)0.2605 (15)0.4860 (15)0.038 (3)
H90.63760.32890.57240.045*
C100.698 (2)0.2930 (16)0.3666 (16)0.040 (3)
H100.66650.38240.36960.049*
C110.765 (2)0.1910 (17)0.2399 (17)0.047 (4)
H110.77880.21490.15820.057*
C120.810 (2)0.0609 (17)0.2278 (15)0.040 (3)
H120.85830.00390.14050.048*
C130.784 (2)0.0259 (14)0.3493 (16)0.037 (3)
O10.0214 (17)0.2503 (13)0.0838 (11)0.054 (3)
H1A0.06870.30010.05220.081*
H1B0.10710.28240.09700.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0362 (4)0.0291 (4)0.0234 (4)0.0105 (3)0.0078 (3)0.0060 (3)
Cl10.0281 (16)0.0351 (17)0.0217 (14)0.0124 (13)0.0031 (12)0.0124 (13)
Cl20.0365 (17)0.0379 (17)0.0221 (15)0.0061 (13)0.0158 (13)0.0125 (13)
Cl30.049 (2)0.0154 (14)0.0234 (15)0.0030 (13)0.0029 (13)0.0041 (12)
N10.024 (6)0.043 (7)0.039 (7)0.006 (5)0.008 (5)0.012 (5)
C10.023 (6)0.027 (6)0.028 (7)0.013 (5)0.003 (5)0.007 (5)
C20.036 (8)0.036 (8)0.038 (8)0.004 (6)0.018 (6)0.012 (6)
C30.042 (9)0.035 (8)0.072 (12)0.001 (7)0.024 (8)0.018 (8)
C40.049 (9)0.055 (10)0.046 (9)0.014 (8)0.017 (7)0.036 (8)
C50.038 (8)0.042 (8)0.040 (8)0.001 (6)0.008 (6)0.016 (7)
C60.028 (7)0.034 (7)0.052 (9)0.010 (6)0.017 (6)0.017 (7)
C70.036 (8)0.035 (7)0.032 (7)0.003 (6)0.012 (6)0.006 (6)
C80.024 (7)0.039 (8)0.039 (8)0.002 (5)0.015 (6)0.019 (6)
C90.040 (8)0.027 (7)0.042 (8)0.003 (6)0.016 (7)0.000 (6)
C100.043 (8)0.037 (8)0.051 (9)0.006 (6)0.019 (7)0.017 (7)
C110.056 (10)0.048 (9)0.051 (10)0.015 (8)0.027 (8)0.031 (8)
C120.032 (8)0.047 (9)0.039 (8)0.010 (6)0.007 (6)0.020 (7)
C130.034 (8)0.024 (7)0.053 (9)0.012 (6)0.018 (7)0.012 (6)
O10.052 (7)0.064 (8)0.039 (6)0.005 (6)0.008 (5)0.012 (6)
Geometric parameters (Å, º) top
Pt1—Cl2i2.370 (3)C5—C61.42 (2)
Pt1—Cl22.370 (3)C5—H50.9500
Pt1—Cl3i2.377 (3)C6—C71.42 (2)
Pt1—Cl32.377 (3)C7—C81.412 (19)
Pt1—Cl1i2.379 (3)C7—H70.9500
Pt1—Cl12.379 (3)C8—C131.42 (2)
N1—C131.362 (18)C8—C91.418 (19)
N1—C11.370 (17)C9—C101.38 (2)
N1—H10.8800C9—H90.9500
C1—C61.411 (19)C10—C111.41 (2)
C1—C21.424 (18)C10—H100.9500
C2—C31.34 (2)C11—C121.36 (2)
C2—H20.9500C11—H110.9500
C3—C41.40 (2)C12—C131.40 (2)
C3—H30.9500C12—H120.9500
C4—C51.33 (2)O1—H1A0.8400
C4—H40.9500O1—H1B0.8400
Cl2i—Pt1—Cl2180.0C3—C4—H4118.2
Cl2i—Pt1—Cl3i89.44 (11)C4—C5—C6118.4 (15)
Cl2—Pt1—Cl3i90.56 (11)C4—C5—H5120.8
Cl2i—Pt1—Cl390.56 (11)C6—C5—H5120.8
Cl2—Pt1—Cl389.44 (11)C1—C6—C7119.4 (13)
Cl3i—Pt1—Cl3180.00 (16)C1—C6—C5118.8 (13)
Cl2i—Pt1—Cl1i90.27 (11)C7—C6—C5121.8 (14)
Cl2—Pt1—Cl1i89.73 (11)C8—C7—C6118.7 (13)
Cl3i—Pt1—Cl1i90.55 (11)C8—C7—H7120.6
Cl3—Pt1—Cl1i89.45 (11)C6—C7—H7120.6
Cl2i—Pt1—Cl189.73 (11)C7—C8—C13120.8 (13)
Cl2—Pt1—Cl190.27 (11)C7—C8—C9120.3 (13)
Cl3i—Pt1—Cl189.45 (11)C13—C8—C9118.9 (12)
Cl3—Pt1—Cl190.55 (11)C10—C9—C8119.7 (13)
Cl1i—Pt1—Cl1180.00 (10)C10—C9—H9120.1
C13—N1—C1123.9 (12)C8—C9—H9120.1
C13—N1—H1118.0C9—C10—C11118.7 (13)
C1—N1—H1118.0C9—C10—H10120.6
N1—C1—C6119.2 (11)C11—C10—H10120.6
N1—C1—C2120.8 (12)C12—C11—C10123.9 (14)
C6—C1—C2119.9 (12)C12—C11—H11118.1
C3—C2—C1119.3 (14)C10—C11—H11118.1
C3—C2—H2120.4C11—C12—C13117.3 (15)
C1—C2—H2120.4C11—C12—H12121.4
C2—C3—C4119.9 (14)C13—C12—H12121.4
C2—C3—H3120.0N1—C13—C12120.7 (14)
C4—C3—H3120.0N1—C13—C8117.9 (13)
C5—C4—C3123.7 (14)C12—C13—C8121.4 (13)
C5—C4—H4118.2H1A—O1—H1B125.9
C13—N1—C1—C60.4 (19)C6—C7—C8—C131 (2)
C13—N1—C1—C2178.9 (12)C6—C7—C8—C9180.0 (12)
N1—C1—C2—C3179.7 (13)C7—C8—C9—C10177.9 (13)
C6—C1—C2—C31 (2)C13—C8—C9—C101 (2)
C1—C2—C3—C40 (2)C8—C9—C10—C112 (2)
C2—C3—C4—C51 (2)C9—C10—C11—C121 (2)
C3—C4—C5—C61 (2)C10—C11—C12—C132 (2)
N1—C1—C6—C70.3 (19)C1—N1—C13—C12179.3 (12)
C2—C1—C6—C7178.8 (12)C1—N1—C13—C80.1 (19)
N1—C1—C6—C5179.8 (12)C11—C12—C13—N1178.5 (13)
C2—C1—C6—C51.3 (19)C11—C12—C13—C82 (2)
C4—C5—C6—C10 (2)C7—C8—C13—N10.6 (19)
C4—C5—C6—C7179.7 (14)C9—C8—C13—N1179.9 (12)
C1—C6—C7—C80.2 (19)C7—C8—C13—C12179.8 (13)
C5—C6—C7—C8179.7 (13)C9—C8—C13—C121 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.881.942.782 (16)161
O1—H1A···Cl1iii0.842.743.485 (12)149
O1—H1B···Cl10.842.623.342 (12)145
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C13H10N)2[PtCl6]·2H2O
Mr804.26
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)7.4781 (8), 9.8973 (10), 10.7226 (12)
α, β, γ (°)70.675 (2), 71.505 (2), 77.862 (2)
V3)705.29 (13)
Z1
Radiation typeMo Kα
µ (mm1)5.57
Crystal size (mm)0.24 × 0.20 × 0.06
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.577, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4295, 2725, 2536
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.174, 1.21
No. of reflections2725
No. of parameters169
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0248P)2 + 22.3646P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.99, 2.96

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.942.782 (16)160.9
O1—H1A···Cl1ii0.842.743.485 (12)149.4
O1—H1B···Cl10.842.623.342 (12)145.1
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHafiz, H. R. (2006). Phys. Stat. Sol. (A), 203, 878–885.  Web of Science CrossRef CAS Google Scholar
First citationKaraca, S., Akkurt, M., Safari, N., Amani, V., Büyükgüngör, O. & Abedi, A. (2009). Acta Cryst. E65, m235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeldhuizen, Y. S. J., Smeets, W. J. J., Veldman, N., Spek, A. L., Faulmann, C., Auban-Senzier, P., Jérome, D., Paulus, P. M., Haasnoot, J. G. & Reedijk, J. (1997). Inorg. Chem. 36, 4930–4937.  CSD CrossRef CAS Web of Science Google Scholar
First citationYousefi, M., Ahmadi, R., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m3114–m3115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZordan, F. & Brammer, L. (2004). Acta Cryst. B60, 512–519.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds