metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m423-m424

Substitutional disorder in the ionic diorgano­anti­mony halide adduct [bromido/chlorido(0.33/0.67)][2-(di­methyl­amino­meth­yl)phen­yl][2-(di­methyl­ammonio­meth­yl)phen­yl]anti­mony(III) 0.75-bromide 0.25-chloride

aFaculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Street, No. 11, RO-400028, Cluj Napoca, Romania
*Correspondence e-mail: asoran@chem.ubbcluj.ro

(Received 20 January 2010; accepted 16 March 2010; online 20 March 2010)

The title complex, [SbBr0.33Cl0.67(C9H13N)(C9H12N)]Br0.75Cl0.25, exhibits substitutional disorder of both halogen atoms in the asymmetric unit, however, with different occupancies. Thus, the halogen atom bonded to Sb has 0.67 (4) occupancy for Cl and 0.33 (4) for Br, while the anionic halogen atom shows 0.75 (4) occupancy for Br and 0.25 (4) for Cl. An N—H⋯Cl/Br hydrogen bond is established between the cation and the halide anion. The coordination geometry of the Sb center in the cation is distorted pseudo-trigonal-bipyramidal as a result of the strong intra­molecular N→Sb coordination trans to the Sb—Cl/Br bond. The pendant arm on the second ligand is twisted away from the metal center. The compound crystallizes as a racemate, i.e. a mixture of (RN2,CSb1) and (SN2,ASb1) isomers with respect to planar chirality induced by the coordinating N atom and chelate-induced Sb chirality. These isomers are associated through Cphen­yl—H⋯Cl/Br hydrogen bonds, forming a three-dimensional architecture.

Related literature

For an isostructural compound, see: Opris et al. (2003[Opris, L. M., Silvestru, A., Silvestru, C., Breunig, H. J. & Lork, E. (2003). Dalton Trans. pp. 4367-4374.]). For related ionic organoantimony adducts, see: Sharma et al. (2004[Sharma, P., Castillo, D., Rosas, N., Cabrera, A., Gomez, E., Toscano, A., Lara, F., Hernandez, S. & Espinosa, G. (2004). J. Organomet. Chem. 689, 2593-2600.]). For the chirality induced by the coordination of the N atom, see: IUPAC (1979[IUPAC (1979). Nomenclature of Organic Chemistry. Oxford: Pergamon Press.], 2005[IUPAC (2005). Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005. Cambridge, England: RSC Publishing.]). For Sb—N distances, see: Emsley (1994[Emsley, J. (1994). Die Elemente. Berlin: Walter de Gruyter.]).

[Scheme 1]

Experimental

Crystal data
  • [SbBr0.33Cl0.67(C9H13N)(C9H12N)]Br0.75Cl0.25

  • Mr = 510.07

  • Monoclinic, P 21 /c

  • a = 13.8159 (19) Å

  • b = 12.6775 (18) Å

  • c = 12.5984 (17) Å

  • β = 105.342 (3)°

  • V = 2128.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.30 mm−1

  • T = 297 K

  • 0.28 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.458, Tmax = 0.588

  • 15150 measured reflections

  • 3745 independent reflections

  • 3298 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.112

  • S = 1.15

  • 3745 reflections

  • 216 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.47 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

X = Cl/Br.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯X2i 0.86 (6) 2.39 3.220 (7) 164
C12—H12⋯X1ii 0.93 2.91 3.827 (6) 167
C14—H14⋯X1iii 0.93 2.86 3.766 (8) 164
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The chlorido/bromido[2-(dimethylaminomethyl)phenyl][2-(dimethylammoniomethyl)-phenyl]antimony chloride/bromide, [C72H100Br4.32Cl3.68N8Sb4], exhibits substitutional disorder of both halogen atoms of the asymmetric unit, however with different occupancies. Thus, the halogen bonded to Sb has 0.67 (4) occupancy for Cl and 0.33 (4) for Br while the anionic halogen shows 0.75 (4) occupancy for Br and 0.25 (4) for Cl.

A hydrogen bond is established between the cation and the halide anion [Cl2/Br2···H1 = 2.39 Å; N1—H1···Cl2/Br2 = 163.6°].

The title compound is isostructural with [{2-(Me2NCH2)C6H4}Sb{C6H4(CH2NHMe2)-2}]+[I]- (Opris et al., 2003), having only a slightly smaller cell volume.

The coordination geometry of the Sb center in the cationic fragment is distorted, peudo-trigonal bipyramidal as a result of the strong intramolecular NSb coordination [Sb1—N2 = 2.414 (5) Å] trans to the Sb1—Cl1/Br1 bond [(N2—Sb1—Cl1/Br1 = 166.8 (1)°]. The pendant arm on the second ligand is twisted away from the metal center [non-bonding Sb1–N1 = 4.312 (6) Å] (Emsley, 1994), its N1 atom being protonated (Fig. 1.)

Coordination of N atom induces planar chirality, with the phenyl ring as chiral plane and the nitrogen as pilot atom (IUPAC, 1979). This intramolecular coordination of the nitrogen atom to antimony induces chirality at the Sb centre (IUPAC, 2005). Thus the compound crystallizes as a racemate, i.e. a mixture of (RN2,CSb1) and (SN2,ASb1) isomers (Fig. 2.), with two of each isomers in the unit cell.

Same kind of isomers form ribbon-like all-(RN2,CSb1) and all-(SN2,ASb1) polymers through [H12···.Cl1/Br1 = 2.91 Å] hydrogen bonds (Fig. 3.). These ribbon-like polymers are further associated through hydrogen bonds [H14···.Cl1/Br1 = 2.86 Å] to form a three-dimensional architecture (Fig. 4.)

Related literature top

For the isostructural compound [{2-(Me2NCH2)C6H4}Sb{C6H4(CH2NHMe2)-2}]+[I]-, see: Opris et al. (2003). For related iterature [on what subject?], see: Sharma et al. (2004). For the chirality induced by the coordination of the N atom, see: IUPAC (1979, 2005). For Sb—N distances, see: Emsley (1994).

Experimental top

In the attempted synthesis of R2SbMes from mesitylmagnesium bromide and R2SbCl.(R = 2-Me2NCH2C6H4), crystals of the title compound were isolated from a chloroform-hexane mixture, due to partial hydrolysis followed by the protonation of one of the organic ligands.

Refinement top

All hydrogen atoms, except H1 attached to N1, were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and with Uiso=1.5Ueq (C) for methyl H and Uiso= 1.2Ueq (C) for aryl H. The methyl groups were allowed to rotate while retaining tetrahedral geometry. The H1 hydrogen atom attached to N1 nitrogen atom was located from the difference map and the N1—H1 distance was restrained to 0.86 Å. The two halide atoms were refined as substitutional disorder between chlorine and bromine, with 0.67 occupancy for Cl and 0.33 for Br for Cl1/Br1 and 0.75 occupancy for Br and 0.25 for Cl for Cl2/Br2.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit showing the atom-numbering scheme at 30% probability thermal ellipsoids for the (RN2,CSb1) isomer.
[Figure 2] Fig. 2. Molecular structure at 30% probability ellipsoids of (RN2,CSb1) (a) and (SN2,ASb1) (b) isomers present in crystals of the title compound. Only the cationic fragment is shown. All hydrogen atoms except H1 atoms have been omitted. Symmetry code: (i) 1-x, 1-y, -z.
[Figure 3] Fig. 3. Unit cell showing polymeric all-(RN2,CSb1) (thick lines) and all-(SN2,ASb1) (thin lines) strands formed as a result of H12···.Cl1/Br1 hydrogen bonding. All hydrogen atoms except H12 and H1 atoms have been omitted.
[Figure 4] Fig. 4. Three-dimensional network formed by polymeric all-(RN2,CSb1) and all-(SN2,ASb1) strands bridged by H14···Cl1/Br1 hydrogen bonds (thick green lines). All hydrogen atoms except H12, H14 and H1 atoms have been omitted.
[bromido/chlorido(0.33/0.67)][2-(dimethylaminomethyl)phenyl][2- (dimethylammoniomethyl)phenyl]antimony(III) 0.75-bromide 0.25-chloride top
Crystal data top
[SbBr0.33Cl0.67(C9H13N)(C9H12N)]Br0.75Cl0.25F(000) = 1000
Mr = 510.07Dx = 1.581 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3355 reflections
a = 13.8159 (19) Åθ = 2.3–22.7°
b = 12.6775 (18) ŵ = 3.30 mm1
c = 12.5984 (17) ÅT = 297 K
β = 105.342 (3)°Block, colourless
V = 2128.0 (5) Å30.28 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3745 independent reflections
Radiation source: fine-focus sealed tube3298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1616
Tmin = 0.458, Tmax = 0.588k = 1515
15150 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0441P)2 + 3.758P]
where P = (Fo2 + 2Fc2)/3
3745 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 1.47 e Å3
2 restraintsΔρmin = 0.56 e Å3
Crystal data top
[SbBr0.33Cl0.67(C9H13N)(C9H12N)]Br0.75Cl0.25V = 2128.0 (5) Å3
Mr = 510.07Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8159 (19) ŵ = 3.30 mm1
b = 12.6775 (18) ÅT = 297 K
c = 12.5984 (17) Å0.28 × 0.22 × 0.18 mm
β = 105.342 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3745 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3298 reflections with I > 2σ(I)
Tmin = 0.458, Tmax = 0.588Rint = 0.044
15150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 1.47 e Å3
3745 reflectionsΔρmin = 0.56 e Å3
216 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br20.96752 (7)0.33618 (8)0.40075 (9)0.0779 (3)0.75
Br10.25490 (8)0.45952 (8)0.05792 (9)0.0561 (3)0.33
C10.2796 (4)0.5553 (4)0.3124 (4)0.0415 (13)
C20.1990 (5)0.5470 (5)0.3592 (5)0.0474 (14)
C30.2080 (5)0.4808 (5)0.4502 (5)0.0593 (17)
H30.15500.47560.48250.071*
C40.2929 (6)0.4238 (6)0.4923 (5)0.069 (2)
H40.29680.37900.55170.082*
C50.3730 (5)0.4323 (5)0.4473 (5)0.0623 (18)
H50.43150.39430.47700.075*
C60.3662 (5)0.4972 (5)0.3581 (5)0.0503 (15)
H60.42040.50240.32770.060*
C70.1020 (5)0.6079 (5)0.3195 (5)0.0540 (16)
H7A0.08840.64510.38130.065*
H7B0.11000.66010.26620.065*
C80.0235 (6)0.4925 (8)0.1645 (6)0.094 (3)
H8A0.03440.44990.13260.141*
H8B0.08270.44940.17900.141*
H8C0.02850.54780.11420.141*
C90.0813 (6)0.6012 (8)0.2520 (9)0.100 (3)
H9A0.08000.66020.20460.150*
H9B0.08670.62640.32210.150*
H9C0.13790.55720.21950.150*
C100.4296 (4)0.6542 (4)0.1811 (5)0.0414 (13)
C110.4834 (4)0.7263 (4)0.2586 (5)0.0435 (13)
C120.5832 (5)0.7454 (5)0.2665 (6)0.0598 (17)
H120.61900.79250.31900.072*
C130.6304 (5)0.6950 (5)0.1970 (6)0.0594 (17)
H130.69750.70940.20220.071*
C140.5804 (5)0.6252 (5)0.1218 (6)0.0564 (16)
H140.61310.59080.07590.068*
C150.4796 (4)0.6046 (5)0.1128 (5)0.0481 (14)
H150.44510.55690.06020.058*
C160.4306 (5)0.7800 (5)0.3341 (5)0.0559 (16)
H16A0.43370.73590.39790.067*
H16B0.46340.84650.35950.067*
C170.3179 (6)0.8851 (5)0.1948 (6)0.0618 (18)
H17A0.33990.94960.23360.093*
H17B0.24950.89260.15210.093*
H17C0.35960.86960.14680.093*
C180.2643 (6)0.8243 (6)0.3521 (6)0.0659 (19)
H18A0.27000.76780.40420.099*
H18B0.19520.83290.31220.099*
H18C0.28850.88840.39050.099*
Cl10.25490 (8)0.45952 (8)0.05792 (9)0.0561 (3)0.67
Cl20.96752 (7)0.33618 (8)0.40075 (9)0.0779 (3)0.25
H10.008 (6)0.492 (5)0.315 (5)0.08 (3)*
N10.0135 (4)0.5386 (5)0.2675 (5)0.0636 (15)
N20.3249 (4)0.7990 (4)0.2740 (4)0.0486 (12)
Sb10.27062 (3)0.64376 (3)0.16318 (3)0.03907 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.0744 (6)0.0738 (6)0.0876 (7)0.0200 (5)0.0252 (5)0.0053 (5)
Br10.0655 (7)0.0544 (6)0.0513 (6)0.0023 (5)0.0203 (5)0.0077 (5)
C10.053 (3)0.041 (3)0.030 (3)0.002 (3)0.010 (2)0.000 (2)
C20.052 (4)0.049 (3)0.039 (3)0.006 (3)0.009 (3)0.002 (3)
C30.064 (4)0.073 (5)0.043 (3)0.011 (4)0.017 (3)0.009 (3)
C40.085 (5)0.071 (5)0.042 (4)0.007 (4)0.004 (4)0.015 (3)
C50.069 (5)0.053 (4)0.054 (4)0.007 (3)0.004 (3)0.011 (3)
C60.050 (4)0.054 (4)0.046 (3)0.004 (3)0.012 (3)0.001 (3)
C70.056 (4)0.057 (4)0.056 (4)0.000 (3)0.026 (3)0.003 (3)
C80.077 (6)0.135 (8)0.064 (5)0.026 (5)0.010 (4)0.011 (5)
C90.044 (4)0.111 (7)0.145 (9)0.006 (4)0.023 (5)0.025 (6)
C100.042 (3)0.044 (3)0.040 (3)0.002 (2)0.013 (2)0.004 (2)
C110.050 (3)0.039 (3)0.039 (3)0.004 (3)0.006 (3)0.003 (2)
C120.054 (4)0.052 (4)0.063 (4)0.010 (3)0.002 (3)0.005 (3)
C130.048 (4)0.056 (4)0.075 (5)0.001 (3)0.018 (3)0.013 (3)
C140.052 (4)0.061 (4)0.062 (4)0.008 (3)0.024 (3)0.005 (3)
C150.050 (4)0.052 (3)0.041 (3)0.000 (3)0.012 (3)0.001 (3)
C160.062 (4)0.052 (4)0.049 (4)0.000 (3)0.007 (3)0.013 (3)
C170.076 (5)0.040 (3)0.067 (4)0.003 (3)0.015 (4)0.003 (3)
C180.082 (5)0.061 (4)0.059 (4)0.008 (4)0.026 (4)0.018 (3)
Cl10.0655 (7)0.0544 (6)0.0513 (6)0.0023 (5)0.0203 (5)0.0077 (5)
Cl20.0744 (6)0.0738 (6)0.0876 (7)0.0200 (5)0.0252 (5)0.0053 (5)
N10.050 (3)0.076 (4)0.067 (4)0.001 (3)0.018 (3)0.013 (3)
N20.062 (3)0.041 (3)0.044 (3)0.004 (2)0.016 (2)0.006 (2)
Sb10.0428 (2)0.0423 (2)0.0326 (2)0.00455 (16)0.01080 (16)0.00087 (16)
Geometric parameters (Å, º) top
Br1—Sb12.6662 (11)C10—C111.398 (8)
C1—C61.393 (8)C10—Sb12.152 (6)
C1—C21.396 (8)C11—C121.378 (9)
C1—Sb12.164 (5)C11—C161.507 (8)
C2—C31.400 (8)C12—C131.379 (9)
C2—C71.512 (9)C12—H120.9300
C3—C41.359 (10)C13—C141.347 (9)
C3—H30.9300C13—H130.9300
C4—C51.375 (10)C14—C151.392 (9)
C4—H40.9300C14—H140.9300
C5—C61.376 (8)C15—H150.9300
C5—H50.9300C16—N21.476 (8)
C6—H60.9300C16—H16A0.9700
C7—N11.507 (8)C16—H16B0.9700
C7—H7A0.9700C17—N21.465 (8)
C7—H7B0.9700C17—H17A0.9600
C8—N11.463 (10)C17—H17B0.9600
C8—H8A0.9600C17—H17C0.9600
C8—H8B0.9600C18—N21.486 (8)
C8—H8C0.9600C18—H18A0.9600
C9—N11.500 (9)C18—H18B0.9600
C9—H9A0.9600C18—H18C0.9600
C9—H9B0.9600N1—H10.86 (6)
C9—H9C0.9600N2—Sb12.414 (5)
C10—C151.388 (8)
C6—C1—C2118.6 (5)C14—C13—C12120.7 (6)
C6—C1—Sb1118.6 (4)C14—C13—H13119.6
C2—C1—Sb1122.5 (4)C12—C13—H13119.6
C1—C2—C3118.9 (6)C13—C14—C15119.7 (6)
C1—C2—C7123.9 (5)C13—C14—H14120.1
C3—C2—C7117.2 (6)C15—C14—H14120.1
C4—C3—C2121.3 (6)C10—C15—C14121.1 (6)
C4—C3—H3119.4C10—C15—H15119.5
C2—C3—H3119.4C14—C15—H15119.5
C3—C4—C5120.2 (6)N2—C16—C11109.2 (5)
C3—C4—H4119.9N2—C16—H16A109.8
C5—C4—H4119.9C11—C16—H16A109.8
C4—C5—C6119.6 (6)N2—C16—H16B109.8
C4—C5—H5120.2C11—C16—H16B109.8
C6—C5—H5120.2H16A—C16—H16B108.3
C5—C6—C1121.4 (6)N2—C17—H17A109.5
C5—C6—H6119.3N2—C17—H17B109.5
C1—C6—H6119.3H17A—C17—H17B109.5
N1—C7—C2113.1 (5)N2—C17—H17C109.5
N1—C7—H7A109.0H17A—C17—H17C109.5
C2—C7—H7A109.0H17B—C17—H17C109.5
N1—C7—H7B109.0N2—C18—H18A109.5
C2—C7—H7B109.0N2—C18—H18B109.5
H7A—C7—H7B107.8H18A—C18—H18B109.5
N1—C8—H8A109.5N2—C18—H18C109.5
N1—C8—H8B109.5H18A—C18—H18C109.5
H8A—C8—H8B109.5H18B—C18—H18C109.5
N1—C8—H8C109.5C8—N1—C9112.3 (7)
H8A—C8—H8C109.5C8—N1—C7111.3 (5)
H8B—C8—H8C109.5C9—N1—C7109.2 (6)
N1—C9—H9A109.5C8—N1—H1113 (5)
N1—C9—H9B109.5C9—N1—H1103 (5)
H9A—C9—H9B109.5C7—N1—H1108 (5)
N1—C9—H9C109.5C17—N2—C16110.4 (5)
H9A—C9—H9C109.5C17—N2—C18110.0 (5)
H9B—C9—H9C109.5C16—N2—C18110.5 (5)
C15—C10—C11118.0 (5)C17—N2—Sb1105.0 (4)
C15—C10—Sb1124.6 (4)C16—N2—Sb1106.1 (3)
C11—C10—Sb1116.9 (4)C18—N2—Sb1114.6 (4)
C12—C11—C10120.2 (6)C10—Sb1—C196.8 (2)
C12—C11—C16121.2 (6)C10—Sb1—N274.76 (19)
C10—C11—C16118.6 (5)C1—Sb1—N288.97 (18)
C11—C12—C13120.3 (6)C10—Sb1—Br193.01 (15)
C11—C12—H12119.8C1—Sb1—Br187.51 (14)
C13—C12—H12119.8N2—Sb1—Br1166.78 (12)
C6—C1—C2—C30.0 (8)C2—C7—N1—C866.9 (7)
Sb1—C1—C2—C3174.4 (4)C2—C7—N1—C9168.5 (6)
C6—C1—C2—C7178.3 (6)C11—C16—N2—C1773.5 (6)
Sb1—C1—C2—C77.3 (8)C11—C16—N2—C18164.6 (5)
C1—C2—C3—C40.9 (10)C11—C16—N2—Sb139.8 (5)
C7—C2—C3—C4179.3 (6)C15—C10—Sb1—C1112.6 (5)
C2—C3—C4—C51.5 (11)C11—C10—Sb1—C175.7 (4)
C3—C4—C5—C61.2 (11)C15—C10—Sb1—N2160.4 (5)
C4—C5—C6—C10.3 (10)C11—C10—Sb1—N211.3 (4)
C2—C1—C6—C50.3 (9)C15—C10—Sb1—Br124.7 (5)
Sb1—C1—C6—C5174.3 (5)C11—C10—Sb1—Br1163.6 (4)
C1—C2—C7—N1112.2 (6)C6—C1—Sb1—C1022.0 (5)
C3—C2—C7—N169.5 (7)C2—C1—Sb1—C10163.7 (5)
C15—C10—C11—C120.9 (8)C6—C1—Sb1—N296.5 (5)
Sb1—C10—C11—C12173.1 (4)C2—C1—Sb1—N289.1 (5)
C15—C10—C11—C16179.4 (5)C6—C1—Sb1—Br170.8 (4)
Sb1—C10—C11—C168.3 (7)C2—C1—Sb1—Br1103.6 (4)
C10—C11—C12—C131.1 (9)C17—N2—Sb1—C1088.5 (4)
C16—C11—C12—C13179.6 (6)C16—N2—Sb1—C1028.5 (4)
C11—C12—C13—C141.1 (10)C18—N2—Sb1—C10150.6 (5)
C12—C13—C14—C150.9 (10)C17—N2—Sb1—C1174.2 (4)
C11—C10—C15—C140.6 (9)C16—N2—Sb1—C168.8 (4)
Sb1—C10—C15—C14172.3 (5)C18—N2—Sb1—C153.3 (4)
C13—C14—C15—C100.7 (9)C17—N2—Sb1—Br1111.3 (6)
C12—C11—C16—N2146.5 (6)C16—N2—Sb1—Br15.7 (8)
C10—C11—C16—N234.9 (7)C18—N2—Sb1—Br1127.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.86 (6)2.393.220 (7)164
C12—H12···Cl1ii0.932.913.827 (6)167
C14—H14···Cl1iii0.932.863.766 (8)164
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[SbBr0.33Cl0.67(C9H13N)(C9H12N)]Br0.75Cl0.25
Mr510.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)13.8159 (19), 12.6775 (18), 12.5984 (17)
β (°) 105.342 (3)
V3)2128.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.30
Crystal size (mm)0.28 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.458, 0.588
No. of measured, independent and
observed [I > 2σ(I)] reflections
15150, 3745, 3298
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.112, 1.15
No. of reflections3745
No. of parameters216
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.47, 0.56

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.86 (6)2.393.220 (7)164
C12—H12···Cl1ii0.932.913.827 (6)167
C14—H14···Cl1iii0.932.863.766 (8)164
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z.
 

Acknowledgements

Financial support from the National University Research Council (Research Project PNII-ID 2052/2009) is greatly appreciated. We also thank the National Center for X-ray Diffraction (Babes-Bolyai University, Cluj-Napoca, Romania) for support of the solid-state structure determinations.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEmsley, J. (1994). Die Elemente. Berlin: Walter de Gruyter.  Google Scholar
First citationIUPAC (1979). Nomenclature of Organic Chemistry. Oxford: Pergamon Press.  Google Scholar
First citationIUPAC (2005). Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005. Cambridge, England: RSC Publishing.  Google Scholar
First citationOpris, L. M., Silvestru, A., Silvestru, C., Breunig, H. J. & Lork, E. (2003). Dalton Trans. pp. 4367–4374.  Web of Science CSD CrossRef Google Scholar
First citationSharma, P., Castillo, D., Rosas, N., Cabrera, A., Gomez, E., Toscano, A., Lara, F., Hernandez, S. & Espinosa, G. (2004). J. Organomet. Chem. 689, 2593–2600.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m423-m424
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds