metal-organic compounds
Bis(dicyclohexylphenylphosphine)silver(I) nitrate
aSynthesis and Catalysis Research Centre, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, South Africa 2006
*Correspondence e-mail: boowaga@uj.ac.za
The title compound, [Ag(C18H27P)2]NO3, is a mononuclear salt species in which the Ag atom is coordinated by two phosphine ligands, forming a cation, with the nitrate as the counter-anion, weakly interacting with the Ag atom, resulting in Ag⋯O distances of 2.602 (6) and 2.679 (6) Å. The cationic silver–phosphine complex has a non-linear geometry in which the P—Ag—P angle is 154.662 (19)°. The Ag—P bond lengths are 2.4303 (6) and 2.4046 (5) Å.
Related literature
For a review of the chemistry of silver(I) complexes, see: Meijboom et al. (2009). For the coordination chemistry of AgX salts (X = F−, Cl−, Br−, I−, BF4−, PF6−, NO3− etc) with group 15 donor ligands, with the main focus on tertiary and in their context as potential antitumor agents, see: Berners-Price et al. (1998); Liu et al. (2008). For two- and three-coordinate AgX (X = NO3−) complexes/salts with bulky phosphine ligands, see: Bowmaker et al. (1996); Camalli & Caruso (1988); Fenske et al. (2007); for X = NO2, see: Cingolani et al. (2002); for X = Cl−, Br−, I−, CN−, SCN− and NCO-, see: Bowmaker et al. (1996); Bayler et al. (1996); and for two coordinate X = ClO4-, see: Alyea et al. (1982, 2002); Baiada et al. (1990). For the solution behavior of [LnAgX] complexes, see: Muetterties & Alegranti (1972). For atomic radii, see: Pauling (1960).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810011724/bg2336sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810011724/bg2336Isup2.hkl
AgNO3 (0.14 g, 0.50 mmol) and P{(C6H11)2Ph} (0.40 g, 1.0 mmol) were dissolved in warm ethanol to give a clear solution which on cooling and solvent evaporation deposited colourless crystals of [Ag{PPh(C6H11)2].+NO3- in good yield. IR: 699, 745, 1303, 1336, 1387, 2342, 2359, 2849, 2927.
All hydrogen atoms were positioned geometrically, with C–H = 0.98 Å for methine Hydrogens, 0.97 Å for methylene hydrogen and 0.93 Å for aromatic hydrogens, and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Reaction of silver(I) salts with monodentate tertiary π-acid ligands are used in such reactions the complexes formed have been shown to be stable and univalent and these can be two-, three- or four-coordinate depending upon the size and ligation capabilities of the ligands (Baiada et al., 1990). Generally a combination of a weak donor anion and bulky phosphine ligand often leads to the formation of two- or three-coordinate complexes.
in a 1:2 stoichiometric ratio generally results in the formation of either monomeric [AgX(PR3)2]/[Ag(PR3)2]+X- or dimeric complexes [{AgX(PR3)2}2] (Meijboom et al., 2009; Bowmaker et al., 1996 and references therein) depending on the donor properties of the phosphine ligand, the bulkiness of the ligand substituents and the donor capabilities of the anion. WhenThe difference between two- and three-coordinate complexes is hinged on the correlation between increasing Ag—P bond distance and decreasing P—Ag—P angle which is determined by the donor properties of the anion (Bowmaker et al., 1996). The longer the interaction between the anion atom/s and the Ag atom, the more linear (closer to 180°) the P—Ag—P angle will be, although the presence of bulky phosphine ligands (such as tricyclohexylphosphine or phenyldicyclohexylphosphine) would also influence the P—Ag—P angle.
The title compound (I) crystallizes in the monoclinic noncentrosymmetric
P21 and the contains one Ag(I) cation and one nitrate anionic ligand. The of the title compound [Ag{PPh(C6H11)2].NO3 (Fig. 1) shows that the complex contains well resolved [Ag{PPh(C6H11)2}2]+ cation and NO3- anion. Examination of the structure with PLATON (Spek, 2009) showed that there were no solvent accessible voids in the crystal lattice.As shown in Fig. 1, the cation shows a nonlinear coordination sphere in which the P—Ag—P angle is 154.662 (19) °. The NO3- anion situated about 2.6 Å away from the Ag center. Similar distortions from linearity have been observed in [Ag{PPh2(C5H8)}2]+.ClO4- (Baiada et al., 1990). The distortion from linearity arises from weak electrostatic interactions of the Ag ion and the nitrate counterion which leads to Ag···O distances of 2.602 and 2.679 Å. In addition the presence of bulky cyclohexyl rings on the phosphine ligands may as well be a contributing factor to the nonlinear behaviour.
The cation Ag—P bond distances are 2.4303 (6) and 2.4046 (5) Å which are well within the Ag—P bond length range for two- or three-coordinate complexes of this type (2.352 -2.521 Å). Comparatively, the Ag—P distances of 2.461 (6) Å (Alyea et al., 1982) and 2.4409 (9) Å (Bayler et al., 1996) have been reported for the bis(trimesitylphosphine) silver(I) cation, an average of 2.416 (2) Å for [Ag{P(C5H9)Ph2}2].ClO4 (Baiada et al., 1990). Based on the sum of covalent radii of Ag and P atoms, the Ag—P distance is calculated as 2.44 Å (Pauling, 1960).
In the crystal, the AgI complex interacts with the three nitrate oxygens resulting in C—H···O intermolecular interactions [H51···O3 = 2.46 Å, C51—H51···O3 = 177 °; H55···O2i = 2.53 Å, C55—H55···O2 = 150 ° symmetry code: i: -x, y+1/2, z)] and a C—H···O intramolecular intraction (H56A···O1 = 2.42 Å, C56—H56A···O1 = 150 °). The structure is further stabilized by two C—H···π intermolecular interactions involving the phenyl rings [H25B···Cg1ii = 2.97 Å, C25—H25B···Cg1 = 161° and H15···Cg4ii = 2.85 Å, C15—H15···Cg4 = 151° (Fig. 2). Cg1 and Cg6 are the centroids of the C11/C12/C13/C14/C15/C16 and C41/C42/C43/C44/C45/C46 benzene rings]. Symmetry code for the two interactions, ii: is -x+1, y-1/2, -z+1. The two C—H···π interactions result in dimeric pairs of the the adjacent molecules involved (See Fig 2).
Despite the number of structural reports of [LnAgX] complexes, their solution behaviour, initiated by Muetterties & Alegranti (1972), has always shown that the coordinating ligands were labile in all complexes studied. Rapid ligand-exchange reactions have been reported for all 31P NMR spectroscopic investigations of ionic AgI monodentate phosphine complexes, thus making NMR spectroscopy of limited use for these types of complexes.
For a review of the chemistry of silver(I) complexes, see: Meijboom et al. (2009). For the coordination chemistry of AgX salts (X = F-, Cl-, Br-, I-, BF4-, PF6-, NO3- etc) with group 15 donor ligands, with the main focus on tertiary
and in their context as potential antitumor agents, see: Berners-Price et al. (1998); Liu et al. (2008). For two- and three- coordinate AgX (X = NO3-) complexes/salts with bulky phosphine ligands, see: Bowmaker et al. (1996); Camalli & Caruso (1988); Fenske et al. (2007); for X = NO2, see: Cingolani et al. (2002); for X = Cl-, Br-, I-, CN-, SCN- and NCO-, see: Bowmaker et al. (1996); Bayler et al. (1996); and for two coordinate X = ClO4-, see: Alyea et al. (1982, 2002); Baiada et al. (1990).For related literature, see: Muetterties & Alegranti (1972); Pauling (1960).
Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).[Ag(C18H27P)2]NO3 | F(000) = 756 |
Mr = 718.61 | Dx = 1.372 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 19966 reflections |
a = 10.9207 (4) Å | θ = 1.7–27.8° |
b = 13.6312 (5) Å | µ = 0.71 mm−1 |
c = 12.2121 (5) Å | T = 296 K |
β = 106.896 (1)° | Plate, colourless |
V = 1739.45 (11) Å3 | 0.42 × 0.34 × 0.14 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 6503 reflections with I > 2σ(I) |
Detector resolution: 0 pixels mm-1 | Rint = 0.020 |
φ and ω scans | θmax = 27.8°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −14→13 |
Tmin = 0.756, Tmax = 0.908 | k = −17→14 |
19954 measured reflections | l = −15→15 |
6614 independent reflections |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0323P)2 + 0.3975P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.021 | (Δ/σ)max = 0.001 |
wR(F2) = 0.055 | Δρmax = 0.75 e Å−3 |
S = 1.06 | Δρmin = −0.28 e Å−3 |
6614 reflections | Absolute structure: Flack (1983), 2322 Friedel pairs |
389 parameters | Absolute structure parameter: 0.041 (15) |
1 restraint |
[Ag(C18H27P)2]NO3 | V = 1739.45 (11) Å3 |
Mr = 718.61 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 10.9207 (4) Å | µ = 0.71 mm−1 |
b = 13.6312 (5) Å | T = 296 K |
c = 12.2121 (5) Å | 0.42 × 0.34 × 0.14 mm |
β = 106.896 (1)° |
Bruker APEXII CCD diffractometer | 6614 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 6503 reflections with I > 2σ(I) |
Tmin = 0.756, Tmax = 0.908 | Rint = 0.020 |
19954 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.055 | Δρmax = 0.75 e Å−3 |
S = 1.06 | Δρmin = −0.28 e Å−3 |
6614 reflections | Absolute structure: Flack (1983), 2322 Friedel pairs |
389 parameters | Absolute structure parameter: 0.041 (15) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C11 | 0.62500 (19) | 0.63257 (16) | 0.56623 (17) | 0.0192 (4) | |
C12 | 0.7541 (2) | 0.65504 (18) | 0.57934 (19) | 0.0238 (4) | |
H12 | 0.8061 | 0.6781 | 0.649 | 0.029* | |
C13 | 0.8040 (2) | 0.6424 (2) | 0.4866 (2) | 0.0304 (5) | |
H13 | 0.8877 | 0.6614 | 0.4936 | 0.036* | |
C14 | 0.7305 (2) | 0.60220 (18) | 0.38554 (19) | 0.0247 (5) | |
H14 | 0.7665 | 0.5895 | 0.3267 | 0.03* | |
C15 | 0.6018 (2) | 0.58046 (17) | 0.37122 (18) | 0.0216 (4) | |
H15 | 0.55 | 0.5578 | 0.3012 | 0.026* | |
C16 | 0.5517 (2) | 0.59328 (18) | 0.46349 (19) | 0.0230 (4) | |
H16 | 0.4675 | 0.575 | 0.4557 | 0.028* | |
C21 | 0.5685 (2) | 0.51594 (16) | 0.74331 (19) | 0.0209 (4) | |
H21 | 0.5338 | 0.5188 | 0.8088 | 0.025* | |
C22 | 0.7053 (2) | 0.47939 (19) | 0.7908 (2) | 0.0297 (5) | |
H22A | 0.7475 | 0.4834 | 0.7312 | 0.036* | |
H22B | 0.7508 | 0.5221 | 0.8528 | 0.036* | |
C23 | 0.7135 (3) | 0.3754 (2) | 0.8343 (2) | 0.0347 (6) | |
H23A | 0.6873 | 0.3738 | 0.9036 | 0.042* | |
H23B | 0.8018 | 0.3537 | 0.8536 | 0.042* | |
C24 | 0.6306 (3) | 0.30502 (19) | 0.7477 (3) | 0.0379 (6) | |
H24A | 0.6652 | 0.2982 | 0.6834 | 0.046* | |
H24B | 0.6323 | 0.241 | 0.7827 | 0.046* | |
C25 | 0.4941 (3) | 0.34062 (19) | 0.7054 (2) | 0.0344 (6) | |
H25A | 0.4557 | 0.3375 | 0.7676 | 0.041* | |
H25B | 0.4461 | 0.2973 | 0.6451 | 0.041* | |
C26 | 0.4845 (2) | 0.44473 (18) | 0.6600 (2) | 0.0283 (5) | |
H26A | 0.5085 | 0.4454 | 0.5895 | 0.034* | |
H26B | 0.3963 | 0.4664 | 0.6422 | 0.034* | |
C31 | 0.40036 (18) | 0.68109 (17) | 0.63811 (18) | 0.0175 (4) | |
H31 | 0.3571 | 0.6355 | 0.577 | 0.021* | |
C32 | 0.3332 (2) | 0.67641 (18) | 0.7323 (2) | 0.0236 (4) | |
H32A | 0.3781 | 0.7179 | 0.7959 | 0.028* | |
H32B | 0.3354 | 0.6096 | 0.7603 | 0.028* | |
C33 | 0.1933 (2) | 0.7106 (2) | 0.6862 (2) | 0.0346 (6) | |
H33A | 0.1464 | 0.6653 | 0.6278 | 0.042* | |
H33B | 0.1539 | 0.7104 | 0.7478 | 0.042* | |
C34 | 0.1855 (3) | 0.8127 (2) | 0.6359 (2) | 0.0354 (6) | |
H34A | 0.2253 | 0.859 | 0.6961 | 0.042* | |
H34B | 0.0964 | 0.8312 | 0.6046 | 0.042* | |
C35 | 0.2518 (2) | 0.8184 (2) | 0.5419 (2) | 0.0323 (5) | |
H35A | 0.2495 | 0.8855 | 0.5148 | 0.039* | |
H35B | 0.2067 | 0.7775 | 0.478 | 0.039* | |
C36 | 0.3913 (2) | 0.78417 (17) | 0.5874 (2) | 0.0253 (5) | |
H36A | 0.4303 | 0.7846 | 0.5255 | 0.03* | |
H36B | 0.4384 | 0.8295 | 0.6457 | 0.03* | |
C41 | 0.61465 (18) | 0.98163 (16) | 0.93476 (17) | 0.0170 (4) | |
C42 | 0.4998 (2) | 0.93063 (17) | 0.91929 (18) | 0.0210 (4) | |
H42 | 0.4969 | 0.8635 | 0.9052 | 0.025* | |
C43 | 0.3901 (2) | 0.97931 (19) | 0.92474 (19) | 0.0257 (5) | |
H43 | 0.3146 | 0.9445 | 0.9157 | 0.031* | |
C44 | 0.3926 (2) | 1.07889 (19) | 0.94354 (19) | 0.0267 (5) | |
H44 | 0.3188 | 1.1113 | 0.9466 | 0.032* | |
C45 | 0.5064 (2) | 1.13139 (18) | 0.95813 (19) | 0.0247 (5) | |
H45 | 0.5079 | 1.1989 | 0.9697 | 0.03* | |
C46 | 0.6173 (2) | 1.08229 (17) | 0.95532 (18) | 0.0199 (4) | |
H46 | 0.6935 | 1.1168 | 0.9672 | 0.024* | |
C51 | 0.84078 (19) | 0.99516 (16) | 0.85746 (18) | 0.0192 (4) | |
H51 | 0.8576 | 1.0564 | 0.9014 | 0.023* | |
C52 | 0.7564 (2) | 1.0186 (2) | 0.7380 (2) | 0.0359 (6) | |
H52A | 0.6781 | 1.0494 | 0.7428 | 0.043* | |
H52B | 0.7336 | 0.9582 | 0.6948 | 0.043* | |
C53 | 0.8250 (2) | 1.0873 (3) | 0.6755 (3) | 0.0463 (8) | |
H53A | 0.7701 | 1.1001 | 0.5988 | 0.056* | |
H53B | 0.8431 | 1.1493 | 0.7159 | 0.056* | |
C54 | 0.9503 (2) | 1.0404 (2) | 0.6691 (2) | 0.0347 (6) | |
H54A | 0.932 | 0.9798 | 0.6259 | 0.042* | |
H54B | 0.9936 | 1.0844 | 0.6301 | 0.042* | |
C55 | 1.0355 (2) | 1.0198 (2) | 0.7882 (2) | 0.0283 (5) | |
H55A | 1.0578 | 1.0812 | 0.8294 | 0.034* | |
H55B | 1.114 | 0.9892 | 0.7835 | 0.034* | |
C56 | 0.9694 (2) | 0.95221 (19) | 0.8541 (2) | 0.0252 (5) | |
H56A | 0.9555 | 0.8883 | 0.8175 | 0.03* | |
H56B | 1.0244 | 0.9435 | 0.9316 | 0.03* | |
C61 | 0.85318 (19) | 0.89667 (16) | 1.07819 (17) | 0.0176 (4) | |
H61 | 0.9256 | 0.8543 | 1.0778 | 0.021* | |
C62 | 0.9082 (2) | 0.98983 (17) | 1.1412 (2) | 0.0248 (4) | |
H62A | 0.8391 | 1.0351 | 1.1394 | 0.03* | |
H62B | 0.9641 | 1.0208 | 1.1025 | 0.03* | |
C63 | 0.9839 (2) | 0.9693 (2) | 1.2660 (2) | 0.0297 (5) | |
H63A | 1.0594 | 0.9311 | 1.2679 | 0.036* | |
H63B | 1.012 | 1.031 | 1.3048 | 0.036* | |
C64 | 0.9043 (2) | 0.9140 (2) | 1.3288 (2) | 0.0323 (5) | |
H64A | 0.957 | 0.8982 | 1.4055 | 0.039* | |
H64B | 0.8346 | 0.9555 | 1.3355 | 0.039* | |
C65 | 0.8500 (3) | 0.8203 (2) | 1.2667 (2) | 0.0380 (6) | |
H65A | 0.7951 | 0.7888 | 1.3061 | 0.046* | |
H65B | 0.9194 | 0.7756 | 1.2677 | 0.046* | |
C66 | 0.7729 (2) | 0.8412 (2) | 1.1425 (2) | 0.0322 (6) | |
H66A | 0.6981 | 0.8799 | 1.1416 | 0.039* | |
H66B | 0.7437 | 0.7797 | 1.1036 | 0.039* | |
P1 | 0.56910 (5) | 0.64378 (4) | 0.69333 (4) | 0.01558 (10) | |
P2 | 0.75517 (5) | 0.91135 (4) | 0.92785 (4) | 0.01542 (10) | |
Ag | 0.702066 (12) | 0.754956 (13) | 0.830004 (11) | 0.01948 (4) | |
N | 0.9763 (2) | 0.69958 (15) | 0.93701 (19) | 0.0315 (5) | |
O1 | 0.94184 (16) | 0.71192 (15) | 0.83128 (16) | 0.0352 (4) | |
O2 | 0.8923 (2) | 0.67588 (16) | 0.98484 (17) | 0.0425 (5) | |
O3 | 1.08964 (19) | 0.71145 (16) | 0.9931 (2) | 0.0535 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0215 (9) | 0.0226 (11) | 0.0146 (10) | 0.0002 (8) | 0.0069 (8) | −0.0013 (8) |
C12 | 0.0194 (9) | 0.0303 (12) | 0.0206 (11) | −0.0020 (9) | 0.0041 (8) | −0.0032 (9) |
C13 | 0.0204 (10) | 0.0448 (15) | 0.0277 (12) | −0.0036 (10) | 0.0099 (9) | −0.0033 (11) |
C14 | 0.0276 (10) | 0.0296 (12) | 0.0199 (11) | −0.0002 (9) | 0.0114 (9) | −0.0007 (9) |
C15 | 0.0229 (10) | 0.0249 (11) | 0.0154 (10) | −0.0001 (9) | 0.0029 (8) | −0.0039 (8) |
C16 | 0.0185 (9) | 0.0301 (12) | 0.0203 (11) | −0.0037 (9) | 0.0055 (8) | −0.0029 (9) |
C21 | 0.0238 (10) | 0.0192 (10) | 0.0203 (11) | 0.0045 (8) | 0.0073 (8) | 0.0018 (8) |
C22 | 0.0261 (11) | 0.0269 (12) | 0.0325 (13) | 0.0049 (9) | 0.0026 (10) | 0.0035 (11) |
C23 | 0.0449 (14) | 0.0338 (15) | 0.0279 (13) | 0.0170 (11) | 0.0142 (11) | 0.0062 (10) |
C24 | 0.0504 (16) | 0.0240 (14) | 0.0440 (16) | 0.0075 (11) | 0.0210 (13) | 0.0112 (11) |
C25 | 0.0402 (13) | 0.0242 (13) | 0.0445 (15) | −0.0002 (10) | 0.0214 (12) | 0.0032 (11) |
C26 | 0.0263 (11) | 0.0217 (12) | 0.0376 (14) | −0.0022 (9) | 0.0103 (10) | 0.0026 (10) |
C31 | 0.0136 (8) | 0.0222 (11) | 0.0150 (10) | 0.0021 (7) | 0.0015 (7) | −0.0026 (8) |
C32 | 0.0208 (9) | 0.0289 (12) | 0.0228 (11) | 0.0036 (8) | 0.0092 (9) | 0.0020 (9) |
C33 | 0.0237 (11) | 0.0471 (15) | 0.0351 (15) | 0.0079 (11) | 0.0117 (11) | −0.0034 (12) |
C34 | 0.0311 (12) | 0.0393 (15) | 0.0336 (14) | 0.0166 (11) | 0.0061 (11) | −0.0034 (12) |
C35 | 0.0372 (13) | 0.0303 (13) | 0.0253 (12) | 0.0159 (11) | 0.0027 (10) | 0.0018 (10) |
C36 | 0.0288 (11) | 0.0240 (12) | 0.0222 (11) | 0.0065 (8) | 0.0058 (9) | 0.0036 (8) |
C41 | 0.0172 (9) | 0.0208 (10) | 0.0125 (9) | 0.0037 (8) | 0.0037 (7) | 0.0031 (8) |
C42 | 0.0217 (10) | 0.0235 (11) | 0.0168 (10) | −0.0012 (8) | 0.0041 (8) | 0.0017 (8) |
C43 | 0.0181 (9) | 0.0376 (14) | 0.0213 (11) | 0.0009 (9) | 0.0057 (8) | 0.0037 (10) |
C44 | 0.0246 (10) | 0.0363 (14) | 0.0192 (11) | 0.0111 (10) | 0.0065 (9) | 0.0027 (10) |
C45 | 0.0313 (11) | 0.0251 (11) | 0.0173 (10) | 0.0080 (9) | 0.0062 (9) | −0.0002 (9) |
C46 | 0.0209 (9) | 0.0210 (11) | 0.0153 (10) | 0.0019 (8) | 0.0010 (8) | 0.0007 (8) |
C51 | 0.0200 (9) | 0.0202 (10) | 0.0192 (10) | 0.0014 (8) | 0.0088 (8) | 0.0044 (8) |
C52 | 0.0186 (10) | 0.0614 (19) | 0.0267 (13) | 0.0010 (11) | 0.0049 (9) | 0.0190 (12) |
C53 | 0.0272 (11) | 0.075 (2) | 0.0376 (16) | 0.0090 (14) | 0.0113 (11) | 0.0342 (15) |
C54 | 0.0247 (11) | 0.0609 (18) | 0.0195 (12) | −0.0028 (11) | 0.0081 (10) | 0.0086 (11) |
C55 | 0.0198 (10) | 0.0432 (15) | 0.0230 (13) | −0.0013 (10) | 0.0081 (9) | 0.0018 (11) |
C56 | 0.0202 (10) | 0.0330 (13) | 0.0224 (11) | 0.0049 (9) | 0.0061 (9) | 0.0063 (9) |
C61 | 0.0161 (9) | 0.0187 (10) | 0.0158 (10) | −0.0012 (7) | 0.0014 (7) | 0.0014 (8) |
C62 | 0.0333 (11) | 0.0213 (11) | 0.0179 (11) | −0.0080 (9) | 0.0043 (9) | −0.0013 (9) |
C63 | 0.0291 (11) | 0.0372 (14) | 0.0196 (12) | −0.0083 (10) | 0.0018 (10) | −0.0036 (10) |
C64 | 0.0310 (12) | 0.0481 (16) | 0.0164 (11) | 0.0002 (11) | 0.0045 (9) | 0.0058 (11) |
C65 | 0.0402 (14) | 0.0427 (16) | 0.0261 (13) | −0.0098 (12) | 0.0018 (11) | 0.0140 (12) |
C66 | 0.0345 (12) | 0.0365 (15) | 0.0207 (12) | −0.0152 (11) | 0.0005 (10) | 0.0089 (10) |
P1 | 0.0160 (2) | 0.0174 (3) | 0.0130 (2) | 0.00103 (18) | 0.00354 (18) | −0.00190 (19) |
P2 | 0.0160 (2) | 0.0154 (2) | 0.0141 (2) | 0.00057 (19) | 0.00320 (19) | 0.00052 (19) |
Ag | 0.02057 (7) | 0.01953 (7) | 0.01629 (7) | −0.00042 (7) | 0.00212 (5) | −0.00397 (7) |
N | 0.0290 (10) | 0.0190 (11) | 0.0357 (12) | 0.0087 (8) | −0.0075 (9) | −0.0074 (8) |
O1 | 0.0291 (8) | 0.0424 (11) | 0.0296 (10) | 0.0055 (7) | 0.0012 (7) | −0.0091 (8) |
O2 | 0.0540 (12) | 0.0315 (10) | 0.0356 (11) | 0.0093 (9) | 0.0030 (9) | 0.0070 (8) |
O3 | 0.0350 (10) | 0.0314 (11) | 0.0684 (15) | 0.0080 (8) | −0.0255 (10) | −0.0150 (10) |
C11—C16 | 1.385 (3) | C42—C43 | 1.389 (3) |
C11—C12 | 1.406 (3) | C42—H42 | 0.93 |
C11—P1 | 1.832 (2) | C43—C44 | 1.376 (4) |
C12—C13 | 1.402 (3) | C43—H43 | 0.93 |
C12—H12 | 0.93 | C44—C45 | 1.399 (3) |
C13—C14 | 1.376 (3) | C44—H44 | 0.93 |
C13—H13 | 0.93 | C45—C46 | 1.393 (3) |
C14—C15 | 1.397 (3) | C45—H45 | 0.93 |
C14—H14 | 0.93 | C46—H46 | 0.93 |
C15—C16 | 1.399 (3) | C51—C52 | 1.516 (3) |
C15—H15 | 0.93 | C51—C56 | 1.534 (3) |
C16—H16 | 0.93 | C51—P2 | 1.840 (2) |
C21—C26 | 1.509 (3) | C51—H51 | 0.98 |
C21—C22 | 1.520 (3) | C52—C53 | 1.534 (4) |
C21—P1 | 1.847 (2) | C52—H52A | 0.97 |
C21—H21 | 0.98 | C52—H52B | 0.97 |
C22—C23 | 1.508 (4) | C53—C54 | 1.532 (4) |
C22—H22A | 0.97 | C53—H53A | 0.97 |
C22—H22B | 0.97 | C53—H53B | 0.97 |
C23—C24 | 1.516 (4) | C54—C55 | 1.508 (3) |
C23—H23A | 0.97 | C54—H54A | 0.97 |
C23—H23B | 0.97 | C54—H54B | 0.97 |
C24—C25 | 1.509 (4) | C55—C56 | 1.534 (3) |
C24—H24A | 0.97 | C55—H55A | 0.97 |
C24—H24B | 0.97 | C55—H55B | 0.97 |
C25—C26 | 1.516 (3) | C56—H56A | 0.97 |
C25—H25A | 0.97 | C56—H56B | 0.97 |
C25—H25B | 0.97 | C61—C62 | 1.516 (3) |
C26—H26A | 0.97 | C61—C66 | 1.535 (3) |
C26—H26B | 0.97 | C61—P2 | 1.848 (2) |
C31—C36 | 1.527 (3) | C61—H61 | 0.98 |
C31—C32 | 1.535 (3) | C62—C63 | 1.533 (3) |
C31—P1 | 1.840 (2) | C62—H62A | 0.97 |
C31—H31 | 0.98 | C62—H62B | 0.97 |
C32—C33 | 1.539 (3) | C63—C64 | 1.517 (3) |
C32—H32A | 0.97 | C63—H63A | 0.97 |
C32—H32B | 0.97 | C63—H63B | 0.97 |
C33—C34 | 1.513 (4) | C64—C65 | 1.517 (4) |
C33—H33A | 0.97 | C64—H64A | 0.97 |
C33—H33B | 0.97 | C64—H64B | 0.97 |
C34—C35 | 1.527 (4) | C65—C66 | 1.533 (3) |
C34—H34A | 0.97 | C65—H65A | 0.97 |
C34—H34B | 0.97 | C65—H65B | 0.97 |
C35—C36 | 1.534 (3) | C66—H66A | 0.97 |
C35—H35A | 0.97 | C66—H66B | 0.97 |
C35—H35B | 0.97 | P1—Ag | 2.4046 (5) |
C36—H36A | 0.97 | P2—Ag | 2.4303 (6) |
C36—H36B | 0.97 | N—O3 | 1.239 (3) |
C41—C46 | 1.394 (3) | N—O1 | 1.247 (3) |
C41—C42 | 1.398 (3) | N—O2 | 1.265 (3) |
C41—P2 | 1.832 (2) | ||
C16—C11—C12 | 118.95 (18) | C42—C43—H43 | 119.9 |
C16—C11—P1 | 123.54 (15) | C43—C44—C45 | 120.0 (2) |
C12—C11—P1 | 117.10 (16) | C43—C44—H44 | 120 |
C13—C12—C11 | 119.6 (2) | C45—C44—H44 | 120 |
C13—C12—H12 | 120.2 | C46—C45—C44 | 119.8 (2) |
C11—C12—H12 | 120.2 | C46—C45—H45 | 120.1 |
C14—C13—C12 | 120.7 (2) | C44—C45—H45 | 120.1 |
C14—C13—H13 | 119.6 | C41—C46—C45 | 120.3 (2) |
C12—C13—H13 | 119.6 | C41—C46—H46 | 119.8 |
C13—C14—C15 | 120.02 (19) | C45—C46—H46 | 119.8 |
C13—C14—H14 | 120 | C52—C51—C56 | 111.09 (18) |
C15—C14—H14 | 120 | C52—C51—P2 | 109.34 (15) |
C14—C15—C16 | 119.2 (2) | C56—C51—P2 | 111.68 (15) |
C14—C15—H15 | 120.4 | C52—C51—H51 | 108.2 |
C16—C15—H15 | 120.4 | C56—C51—H51 | 108.2 |
C11—C16—C15 | 121.30 (19) | P2—C51—H51 | 108.2 |
C11—C16—H16 | 119.4 | C51—C52—C53 | 111.0 (2) |
C15—C16—H16 | 119.4 | C51—C52—H52A | 109.4 |
C26—C21—C22 | 112.6 (2) | C53—C52—H52A | 109.4 |
C26—C21—P1 | 116.35 (16) | C51—C52—H52B | 109.4 |
C22—C21—P1 | 109.75 (16) | C53—C52—H52B | 109.4 |
C26—C21—H21 | 105.8 | H52A—C52—H52B | 108 |
C22—C21—H21 | 105.8 | C54—C53—C52 | 110.1 (3) |
P1—C21—H21 | 105.8 | C54—C53—H53A | 109.6 |
C23—C22—C21 | 113.2 (2) | C52—C53—H53A | 109.6 |
C23—C22—H22A | 108.9 | C54—C53—H53B | 109.6 |
C21—C22—H22A | 108.9 | C52—C53—H53B | 109.6 |
C23—C22—H22B | 108.9 | H53A—C53—H53B | 108.2 |
C21—C22—H22B | 108.9 | C55—C54—C53 | 109.8 (2) |
H22A—C22—H22B | 107.7 | C55—C54—H54A | 109.7 |
C22—C23—C24 | 112.8 (2) | C53—C54—H54A | 109.7 |
C22—C23—H23A | 109 | C55—C54—H54B | 109.7 |
C24—C23—H23A | 109 | C53—C54—H54B | 109.7 |
C22—C23—H23B | 109 | H54A—C54—H54B | 108.2 |
C24—C23—H23B | 109 | C54—C55—C56 | 111.4 (2) |
H23A—C23—H23B | 107.8 | C54—C55—H55A | 109.3 |
C25—C24—C23 | 111.4 (2) | C56—C55—H55A | 109.3 |
C25—C24—H24A | 109.3 | C54—C55—H55B | 109.3 |
C23—C24—H24A | 109.3 | C56—C55—H55B | 109.3 |
C25—C24—H24B | 109.3 | H55A—C55—H55B | 108 |
C23—C24—H24B | 109.3 | C51—C56—C55 | 111.02 (19) |
H24A—C24—H24B | 108 | C51—C56—H56A | 109.4 |
C24—C25—C26 | 112.5 (2) | C55—C56—H56A | 109.4 |
C24—C25—H25A | 109.1 | C51—C56—H56B | 109.4 |
C26—C25—H25A | 109.1 | C55—C56—H56B | 109.4 |
C24—C25—H25B | 109.1 | H56A—C56—H56B | 108 |
C26—C25—H25B | 109.1 | C62—C61—C66 | 110.74 (18) |
H25A—C25—H25B | 107.8 | C62—C61—P2 | 116.34 (15) |
C21—C26—C25 | 113.1 (2) | C66—C61—P2 | 108.02 (15) |
C21—C26—H26A | 109 | C62—C61—H61 | 107.1 |
C25—C26—H26A | 109 | C66—C61—H61 | 107.1 |
C21—C26—H26B | 109 | P2—C61—H61 | 107.1 |
C25—C26—H26B | 109 | C61—C62—C63 | 111.82 (19) |
H26A—C26—H26B | 107.8 | C61—C62—H62A | 109.3 |
C36—C31—C32 | 110.69 (18) | C63—C62—H62A | 109.3 |
C36—C31—P1 | 110.06 (15) | C61—C62—H62B | 109.3 |
C32—C31—P1 | 111.08 (15) | C63—C62—H62B | 109.3 |
C36—C31—H31 | 108.3 | H62A—C62—H62B | 107.9 |
C32—C31—H31 | 108.3 | C64—C63—C62 | 111.7 (2) |
P1—C31—H31 | 108.3 | C64—C63—H63A | 109.3 |
C31—C32—C33 | 110.64 (19) | C62—C63—H63A | 109.3 |
C31—C32—H32A | 109.5 | C64—C63—H63B | 109.3 |
C33—C32—H32A | 109.5 | C62—C63—H63B | 109.3 |
C31—C32—H32B | 109.5 | H63A—C63—H63B | 107.9 |
C33—C32—H32B | 109.5 | C65—C64—C63 | 111.3 (2) |
H32A—C32—H32B | 108.1 | C65—C64—H64A | 109.4 |
C34—C33—C32 | 111.1 (2) | C63—C64—H64A | 109.4 |
C34—C33—H33A | 109.4 | C65—C64—H64B | 109.4 |
C32—C33—H33A | 109.4 | C63—C64—H64B | 109.4 |
C34—C33—H33B | 109.4 | H64A—C64—H64B | 108 |
C32—C33—H33B | 109.4 | C64—C65—C66 | 111.1 (2) |
H33A—C33—H33B | 108 | C64—C65—H65A | 109.4 |
C33—C34—C35 | 111.6 (2) | C66—C65—H65A | 109.4 |
C33—C34—H34A | 109.3 | C64—C65—H65B | 109.4 |
C35—C34—H34A | 109.3 | C66—C65—H65B | 109.4 |
C33—C34—H34B | 109.3 | H65A—C65—H65B | 108 |
C35—C34—H34B | 109.3 | C65—C66—C61 | 111.5 (2) |
H34A—C34—H34B | 108 | C65—C66—H66A | 109.3 |
C34—C35—C36 | 110.5 (2) | C61—C66—H66A | 109.3 |
C34—C35—H35A | 109.6 | C65—C66—H66B | 109.3 |
C36—C35—H35A | 109.6 | C61—C66—H66B | 109.3 |
C34—C35—H35B | 109.6 | H66A—C66—H66B | 108 |
C36—C35—H35B | 109.6 | C11—P1—C31 | 104.92 (10) |
H35A—C35—H35B | 108.1 | C11—P1—C21 | 103.60 (10) |
C31—C36—C35 | 111.56 (19) | C31—P1—C21 | 106.42 (10) |
C31—C36—H36A | 109.3 | C11—P1—Ag | 110.98 (7) |
C35—C36—H36A | 109.3 | C31—P1—Ag | 114.74 (7) |
C31—C36—H36B | 109.3 | C21—P1—Ag | 115.12 (7) |
C35—C36—H36B | 109.3 | C41—P2—C51 | 104.07 (9) |
H36A—C36—H36B | 108 | C41—P2—C61 | 105.19 (9) |
C46—C41—C42 | 119.01 (19) | C51—P2—C61 | 107.77 (10) |
C46—C41—P2 | 123.32 (16) | C41—P2—Ag | 113.46 (7) |
C42—C41—P2 | 117.66 (16) | C51—P2—Ag | 113.33 (7) |
C43—C42—C41 | 120.6 (2) | C61—P2—Ag | 112.34 (7) |
C43—C42—H42 | 119.7 | P1—Ag—P2 | 154.662 (19) |
C41—C42—H42 | 119.7 | O3—N—O1 | 120.5 (2) |
C44—C43—C42 | 120.2 (2) | O3—N—O2 | 121.4 (2) |
C44—C43—H43 | 119.9 | O1—N—O2 | 118.1 (2) |
C16—C11—C12—C13 | 3.5 (4) | C64—C65—C66—C61 | 55.6 (3) |
P1—C11—C12—C13 | 176.4 (2) | C62—C61—C66—C65 | −55.0 (3) |
C11—C12—C13—C14 | −4.3 (4) | P2—C61—C66—C65 | 176.6 (2) |
C12—C13—C14—C15 | 4.9 (4) | C16—C11—P1—C31 | −39.6 (2) |
C13—C14—C15—C16 | −4.7 (4) | C12—C11—P1—C31 | 147.89 (18) |
C12—C11—C16—C15 | −3.4 (4) | C16—C11—P1—C21 | 71.9 (2) |
P1—C11—C16—C15 | −175.79 (19) | C12—C11—P1—C21 | −100.68 (19) |
C14—C15—C16—C11 | 4.0 (4) | C16—C11—P1—Ag | −164.03 (18) |
C26—C21—C22—C23 | −49.1 (3) | C12—C11—P1—Ag | 23.4 (2) |
P1—C21—C22—C23 | 179.65 (17) | C36—C31—P1—C11 | −66.86 (17) |
C21—C22—C23—C24 | 51.1 (3) | C32—C31—P1—C11 | 170.20 (16) |
C22—C23—C24—C25 | −53.0 (3) | C36—C31—P1—C21 | −176.26 (15) |
C23—C24—C25—C26 | 53.3 (3) | C32—C31—P1—C21 | 60.80 (18) |
C22—C21—C26—C25 | 49.5 (3) | C36—C31—P1—Ag | 55.19 (15) |
P1—C21—C26—C25 | 177.35 (16) | C32—C31—P1—Ag | −67.75 (17) |
C24—C25—C26—C21 | −52.2 (3) | C26—C21—P1—C11 | −59.47 (17) |
C36—C31—C32—C33 | 55.8 (3) | C22—C21—P1—C11 | 69.78 (18) |
P1—C31—C32—C33 | 178.34 (18) | C26—C21—P1—C31 | 50.86 (18) |
C31—C32—C33—C34 | −56.2 (3) | C22—C21—P1—C31 | −179.89 (16) |
C32—C33—C34—C35 | 56.5 (3) | C26—C21—P1—Ag | 179.19 (13) |
C33—C34—C35—C36 | −55.8 (3) | C22—C21—P1—Ag | −51.57 (17) |
C32—C31—C36—C35 | −56.0 (2) | C46—C41—P2—C51 | −37.0 (2) |
P1—C31—C36—C35 | −179.19 (16) | C42—C41—P2—C51 | 143.49 (17) |
C34—C35—C36—C31 | 55.6 (3) | C46—C41—P2—C61 | 76.23 (19) |
C46—C41—C42—C43 | −0.3 (3) | C42—C41—P2—C61 | −103.30 (17) |
P2—C41—C42—C43 | 179.29 (17) | C46—C41—P2—Ag | −160.60 (15) |
C41—C42—C43—C44 | 1.1 (3) | C42—C41—P2—Ag | 19.87 (18) |
C42—C43—C44—C45 | −0.5 (3) | C52—C51—P2—C41 | −62.04 (19) |
C43—C44—C45—C46 | −1.0 (3) | C56—C51—P2—C41 | 174.61 (16) |
C42—C41—C46—C45 | −1.2 (3) | C52—C51—P2—C61 | −173.38 (17) |
P2—C41—C46—C45 | 179.25 (16) | C56—C51—P2—C61 | 63.27 (18) |
C44—C45—C46—C41 | 1.9 (3) | C52—C51—P2—Ag | 61.67 (18) |
C56—C51—C52—C53 | −55.5 (3) | C56—C51—P2—Ag | −61.68 (17) |
P2—C51—C52—C53 | −179.2 (2) | C62—C61—P2—C41 | −65.12 (17) |
C51—C52—C53—C54 | 58.0 (3) | C66—C61—P2—C41 | 60.08 (18) |
C52—C53—C54—C55 | −58.9 (3) | C62—C61—P2—C51 | 45.45 (18) |
C53—C54—C55—C56 | 58.1 (3) | C66—C61—P2—C51 | 170.66 (16) |
C52—C51—C56—C55 | 53.9 (3) | C62—C61—P2—Ag | 171.00 (13) |
P2—C51—C56—C55 | 176.25 (16) | C66—C61—P2—Ag | −63.80 (17) |
C54—C55—C56—C51 | −55.7 (3) | C11—P1—Ag—P2 | 100.90 (8) |
C66—C61—C62—C63 | 54.3 (3) | C31—P1—Ag—P2 | −17.80 (9) |
P2—C61—C62—C63 | 178.13 (16) | C21—P1—Ag—P2 | −141.85 (8) |
C61—C62—C63—C64 | −54.7 (3) | C41—P2—Ag—P1 | 29.07 (9) |
C62—C63—C64—C65 | 54.9 (3) | C51—P2—Ag—P1 | −89.33 (8) |
C63—C64—C65—C66 | −55.4 (3) | C61—P2—Ag—P1 | 148.22 (7) |
Experimental details
Crystal data | |
Chemical formula | [Ag(C18H27P)2]NO3 |
Mr | 718.61 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 296 |
a, b, c (Å) | 10.9207 (4), 13.6312 (5), 12.2121 (5) |
β (°) | 106.896 (1) |
V (Å3) | 1739.45 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.71 |
Crystal size (mm) | 0.42 × 0.34 × 0.14 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.756, 0.908 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19954, 6614, 6503 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.656 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.055, 1.06 |
No. of reflections | 6614 |
No. of parameters | 389 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.75, −0.28 |
Absolute structure | Flack (1983), 2322 Friedel pairs |
Absolute structure parameter | 0.041 (15) |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
Acknowledgements
ARB thanks the Research Academy for Undergraduates, University of Johannesburg, for financial support. Financial assistance from the South African National Research Foundation and University of Johannesburg is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.
References
Alyea, E. C., Ferguson, G. & Somogyvari, A. (1982). Inorg. Chem. 21, 1369–1371. CSD CrossRef CAS Web of Science Google Scholar
Alyea, E. C., Kannan, S. & Meehan, P. R. (2002). Acta Cryst. C58, m365–m367. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Baiada, A., Jardine, F. H. & Willett, R. D. (1990). Inorg. Chem. 29, 3042–3046. CSD CrossRef CAS Web of Science Google Scholar
Bayler, A., Schier, A., Bowmaker, G. A. & Schmidbaur, H. (1996). J. Am. Chem. Soc. 118, 7006–7007. CSD CrossRef CAS Web of Science Google Scholar
Berners-Price, S. J., Bowen, R. J., Harvey, P. J., Healy, P. C. & Koutsantonis, G. A. (1998). J. Chem. Soc. Dalton Trans. pp. 1743–1750. CSD CrossRef Google Scholar
Bowmaker, G. A., Harvey, P. J., Healy, P. C., Skelton, B. W. & White, A. H. (1996). J. Chem. Soc. Dalton Trans. pp. 2449–2465. CSD CrossRef Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Camalli, M. & Caruso, F. (1988). Inorg. Chim. Acta, 144, 205–211. CSD CrossRef CAS Web of Science Google Scholar
Cingolani, A., Pellei, M., Pettinari, C., Santini, C., Skelton, B. W. & White, A. H. (2002). Inorg. Chem. 41, 6633–6645. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fenske, D., Rothenberger, A. & Wieber, S. (2007). Eur. J. Inorg. Chem. pp. 648–651. Web of Science CSD CrossRef Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Liu, J. J., Galetis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C., Baguley, B. C., Bowen, R. J., Berners-Price, S. J. & McKeage, M. J. (2008). J. Inorg. Biochem. 102, 303–310. Web of Science CrossRef PubMed CAS Google Scholar
Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325–342. Web of Science CrossRef CAS Google Scholar
Muetterties, E. L. & Alegranti, C. W. (1972). J. Am. Chem. Soc. 94, 6386–6391. CrossRef CAS Web of Science Google Scholar
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., pp. 224, 256. Ithaca: Cornell University Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Reaction of silver(I) salts with monodentate tertiary phosphines in a 1:2 stoichiometric ratio generally results in the formation of either monomeric [AgX(PR3)2]/[Ag(PR3)2]+X- or dimeric complexes [{AgX(PR3)2}2] (Meijboom et al., 2009; Bowmaker et al., 1996 and references therein) depending on the donor properties of the phosphine ligand, the bulkiness of the ligand substituents and the donor capabilities of the anion. When π-acid ligands are used in such reactions the complexes formed have been shown to be stable and univalent and these can be two-, three- or four-coordinate depending upon the size and ligation capabilities of the ligands (Baiada et al., 1990). Generally a combination of a weak donor anion and bulky phosphine ligand often leads to the formation of two- or three-coordinate complexes.
The difference between two- and three-coordinate complexes is hinged on the correlation between increasing Ag—P bond distance and decreasing P—Ag—P angle which is determined by the donor properties of the anion (Bowmaker et al., 1996). The longer the interaction between the anion atom/s and the Ag atom, the more linear (closer to 180°) the P—Ag—P angle will be, although the presence of bulky phosphine ligands (such as tricyclohexylphosphine or phenyldicyclohexylphosphine) would also influence the P—Ag—P angle.
The title compound (I) crystallizes in the monoclinic noncentrosymmetric space group P21 and the asymmetric unit contains one Ag(I) cation and one nitrate anionic ligand. The crystal structure of the title compound [Ag{PPh(C6H11)2].NO3 (Fig. 1) shows that the complex contains well resolved [Ag{PPh(C6H11)2}2]+ cation and NO3- anion. Examination of the structure with PLATON (Spek, 2009) showed that there were no solvent accessible voids in the crystal lattice.
As shown in Fig. 1, the cation shows a nonlinear coordination sphere in which the P—Ag—P angle is 154.662 (19) °. The NO3- anion situated about 2.6 Å away from the Ag center. Similar distortions from linearity have been observed in [Ag{PPh2(C5H8)}2]+.ClO4- (Baiada et al., 1990). The distortion from linearity arises from weak electrostatic interactions of the Ag ion and the nitrate counterion which leads to Ag···O distances of 2.602 and 2.679 Å. In addition the presence of bulky cyclohexyl rings on the phosphine ligands may as well be a contributing factor to the nonlinear behaviour.
The cation Ag—P bond distances are 2.4303 (6) and 2.4046 (5) Å which are well within the Ag—P bond length range for two- or three-coordinate complexes of this type (2.352 -2.521 Å). Comparatively, the Ag—P distances of 2.461 (6) Å (Alyea et al., 1982) and 2.4409 (9) Å (Bayler et al., 1996) have been reported for the bis(trimesitylphosphine) silver(I) cation, an average of 2.416 (2) Å for [Ag{P(C5H9)Ph2}2].ClO4 (Baiada et al., 1990). Based on the sum of covalent radii of Ag and P atoms, the Ag—P distance is calculated as 2.44 Å (Pauling, 1960).
In the crystal, the AgI complex interacts with the three nitrate oxygens resulting in C—H···O intermolecular interactions [H51···O3 = 2.46 Å, C51—H51···O3 = 177 °; H55···O2i = 2.53 Å, C55—H55···O2 = 150 ° symmetry code: i: -x, y+1/2, z)] and a C—H···O intramolecular intraction (H56A···O1 = 2.42 Å, C56—H56A···O1 = 150 °). The structure is further stabilized by two C—H···π intermolecular interactions involving the phenyl rings [H25B···Cg1ii = 2.97 Å, C25—H25B···Cg1 = 161° and H15···Cg4ii = 2.85 Å, C15—H15···Cg4 = 151° (Fig. 2). Cg1 and Cg6 are the centroids of the C11/C12/C13/C14/C15/C16 and C41/C42/C43/C44/C45/C46 benzene rings]. Symmetry code for the two interactions, ii: is -x+1, y-1/2, -z+1. The two C—H···π interactions result in dimeric pairs of the the adjacent molecules involved (See Fig 2).
Despite the number of structural reports of [LnAgX] complexes, their solution behaviour, initiated by Muetterties & Alegranti (1972), has always shown that the coordinating ligands were labile in all complexes studied. Rapid ligand-exchange reactions have been reported for all 31P NMR spectroscopic investigations of ionic AgI monodentate phosphine complexes, thus making NMR spectroscopy of limited use for these types of complexes.