metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­cyclo­hexyl­phenyl­phosphine)silver(I) nitrate

aSynthesis and Catalysis Research Centre, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, South Africa 2006
*Correspondence e-mail: boowaga@uj.ac.za

(Received 6 March 2010; accepted 29 March 2010; online 10 April 2010)

The title compound, [Ag(C18H27P)2]NO3, is a mononuclear salt species in which the Ag atom is coordinated by two phosphine ligands, forming a cation, with the nitrate as the counter-anion, weakly inter­acting with the Ag atom, resulting in Ag⋯O distances of 2.602 (6) and 2.679 (6) Å. The cationic silver–phosphine complex has a non-linear geometry in which the P—Ag—P angle is 154.662 (19)°. The Ag—P bond lengths are 2.4303 (6) and 2.4046 (5) Å.

Related literature

For a review of the chemistry of silver(I) complexes, see: Meijboom et al. (2009[Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325-342.]). For the coordination chemistry of AgX salts (X = F, Cl, Br, I, BF4, PF6, NO3 etc) with group 15 donor ligands, with the main focus on tertiary phosphines and in their context as potential anti­tumor agents, see: Berners-Price et al. (1998[Berners-Price, S. J., Bowen, R. J., Harvey, P. J., Healy, P. C. & Koutsantonis, G. A. (1998). J. Chem. Soc. Dalton Trans. pp. 1743-1750.]); Liu et al. (2008[Liu, J. J., Galetis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C., Baguley, B. C., Bowen, R. J., Berners-Price, S. J. & McKeage, M. J. (2008). J. Inorg. Biochem. 102, 303-310.]). For two- and three-coordinate AgX (X = NO3) complexes/salts with bulky phosphine ligands, see: Bowmaker et al. (1996[Bowmaker, G. A., Harvey, P. J., Healy, P. C., Skelton, B. W. & White, A. H. (1996). J. Chem. Soc. Dalton Trans. pp. 2449-2465.]); Camalli & Caruso (1988[Camalli, M. & Caruso, F. (1988). Inorg. Chim. Acta, 144, 205-211.]); Fenske et al. (2007[Fenske, D., Rothenberger, A. & Wieber, S. (2007). Eur. J. Inorg. Chem. pp. 648-651.]); for X = NO2, see: Cingolani et al. (2002[Cingolani, A., Pellei, M., Pettinari, C., Santini, C., Skelton, B. W. & White, A. H. (2002). Inorg. Chem. 41, 6633-6645.]); for X = Cl, Br, I, CN, SCN and NCO-, see: Bowmaker et al. (1996[Bowmaker, G. A., Harvey, P. J., Healy, P. C., Skelton, B. W. & White, A. H. (1996). J. Chem. Soc. Dalton Trans. pp. 2449-2465.]); Bayler et al. (1996[Bayler, A., Schier, A., Bowmaker, G. A. & Schmidbaur, H. (1996). J. Am. Chem. Soc. 118, 7006-7007.]); and for two coordinate X = ClO4-, see: Alyea et al. (1982[Alyea, E. C., Ferguson, G. & Somogyvari, A. (1982). Inorg. Chem. 21, 1369-1371.], 2002[Alyea, E. C., Kannan, S. & Meehan, P. R. (2002). Acta Cryst. C58, m365-m367.]); Baiada et al. (1990[Baiada, A., Jardine, F. H. & Willett, R. D. (1990). Inorg. Chem. 29, 3042-3046.]). For the solution behavior of [LnAgX] complexes, see: Muetterties & Alegranti (1972[Muetterties, E. L. & Alegranti, C. W. (1972). J. Am. Chem. Soc. 94, 6386-6391.]). For atomic radii, see: Pauling (1960[Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., pp. 224, 256. Ithaca: Cornell University Press.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C18H27P)2]NO3

  • Mr = 718.61

  • Monoclinic, P 21

  • a = 10.9207 (4) Å

  • b = 13.6312 (5) Å

  • c = 12.2121 (5) Å

  • β = 106.896 (1)°

  • V = 1739.45 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 296 K

  • 0.42 × 0.34 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.756, Tmax = 0.908

  • 19954 measured reflections

  • 6614 independent reflections

  • 6503 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.055

  • S = 1.06

  • 6614 reflections

  • 389 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2322 Friedel pairs

  • Flack parameter: 0.041 (15)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Reaction of silver(I) salts with monodentate tertiary phosphines in a 1:2 stoichiometric ratio generally results in the formation of either monomeric [AgX(PR3)2]/[Ag(PR3)2]+X- or dimeric complexes [{AgX(PR3)2}2] (Meijboom et al., 2009; Bowmaker et al., 1996 and references therein) depending on the donor properties of the phosphine ligand, the bulkiness of the ligand substituents and the donor capabilities of the anion. When π-acid ligands are used in such reactions the complexes formed have been shown to be stable and univalent and these can be two-, three- or four-coordinate depending upon the size and ligation capabilities of the ligands (Baiada et al., 1990). Generally a combination of a weak donor anion and bulky phosphine ligand often leads to the formation of two- or three-coordinate complexes.

The difference between two- and three-coordinate complexes is hinged on the correlation between increasing Ag—P bond distance and decreasing P—Ag—P angle which is determined by the donor properties of the anion (Bowmaker et al., 1996). The longer the interaction between the anion atom/s and the Ag atom, the more linear (closer to 180°) the P—Ag—P angle will be, although the presence of bulky phosphine ligands (such as tricyclohexylphosphine or phenyldicyclohexylphosphine) would also influence the P—Ag—P angle.

The title compound (I) crystallizes in the monoclinic noncentrosymmetric space group P21 and the asymmetric unit contains one Ag(I) cation and one nitrate anionic ligand. The crystal structure of the title compound [Ag{PPh(C6H11)2].NO3 (Fig. 1) shows that the complex contains well resolved [Ag{PPh(C6H11)2}2]+ cation and NO3- anion. Examination of the structure with PLATON (Spek, 2009) showed that there were no solvent accessible voids in the crystal lattice.

As shown in Fig. 1, the cation shows a nonlinear coordination sphere in which the P—Ag—P angle is 154.662 (19) °. The NO3- anion situated about 2.6 Å away from the Ag center. Similar distortions from linearity have been observed in [Ag{PPh2(C5H8)}2]+.ClO4- (Baiada et al., 1990). The distortion from linearity arises from weak electrostatic interactions of the Ag ion and the nitrate counterion which leads to Ag···O distances of 2.602 and 2.679 Å. In addition the presence of bulky cyclohexyl rings on the phosphine ligands may as well be a contributing factor to the nonlinear behaviour.

The cation Ag—P bond distances are 2.4303 (6) and 2.4046 (5) Å which are well within the Ag—P bond length range for two- or three-coordinate complexes of this type (2.352 -2.521 Å). Comparatively, the Ag—P distances of 2.461 (6) Å (Alyea et al., 1982) and 2.4409 (9) Å (Bayler et al., 1996) have been reported for the bis(trimesitylphosphine) silver(I) cation, an average of 2.416 (2) Å for [Ag{P(C5H9)Ph2}2].ClO4 (Baiada et al., 1990). Based on the sum of covalent radii of Ag and P atoms, the Ag—P distance is calculated as 2.44 Å (Pauling, 1960).

In the crystal, the AgI complex interacts with the three nitrate oxygens resulting in C—H···O intermolecular interactions [H51···O3 = 2.46 Å, C51—H51···O3 = 177 °; H55···O2i = 2.53 Å, C55—H55···O2 = 150 ° symmetry code: i: -x, y+1/2, z)] and a C—H···O intramolecular intraction (H56A···O1 = 2.42 Å, C56—H56A···O1 = 150 °). The structure is further stabilized by two C—H···π intermolecular interactions involving the phenyl rings [H25B···Cg1ii = 2.97 Å, C25—H25B···Cg1 = 161° and H15···Cg4ii = 2.85 Å, C15—H15···Cg4 = 151° (Fig. 2). Cg1 and Cg6 are the centroids of the C11/C12/C13/C14/C15/C16 and C41/C42/C43/C44/C45/C46 benzene rings]. Symmetry code for the two interactions, ii: is -x+1, y-1/2, -z+1. The two C—H···π interactions result in dimeric pairs of the the adjacent molecules involved (See Fig 2).

Despite the number of structural reports of [LnAgX] complexes, their solution behaviour, initiated by Muetterties & Alegranti (1972), has always shown that the coordinating ligands were labile in all complexes studied. Rapid ligand-exchange reactions have been reported for all 31P NMR spectroscopic investigations of ionic AgI monodentate phosphine complexes, thus making NMR spectroscopy of limited use for these types of complexes.

Related literature top

For a review of the chemistry of silver(I) complexes, see: Meijboom et al. (2009). For the coordination chemistry of AgX salts (X = F-, Cl-, Br-, I-, BF4-, PF6-, NO3- etc) with group 15 donor ligands, with the main focus on tertiary phosphines and in their context as potential antitumor agents, see: Berners-Price et al. (1998); Liu et al. (2008). For two- and three- coordinate AgX (X = NO3-) complexes/salts with bulky phosphine ligands, see: Bowmaker et al. (1996); Camalli & Caruso (1988); Fenske et al. (2007); for X = NO2, see: Cingolani et al. (2002); for X = Cl-, Br-, I-, CN-, SCN- and NCO-, see: Bowmaker et al. (1996); Bayler et al. (1996); and for two coordinate X = ClO4-, see: Alyea et al. (1982, 2002); Baiada et al. (1990).

For related literature, see: Muetterties & Alegranti (1972); Pauling (1960).

Experimental top

AgNO3 (0.14 g, 0.50 mmol) and P{(C6H11)2Ph} (0.40 g, 1.0 mmol) were dissolved in warm ethanol to give a clear solution which on cooling and solvent evaporation deposited colourless crystals of [Ag{PPh(C6H11)2].+NO3- in good yield. IR: 699, 745, 1303, 1336, 1387, 2342, 2359, 2849, 2927.

Refinement top

All hydrogen atoms were positioned geometrically, with C–H = 0.98 Å for methine Hydrogens, 0.97 Å for methylene hydrogen and 0.93 Å for aromatic hydrogens, and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

Reaction of silver(I) salts with monodentate tertiary phosphines in a 1:2 stoichiometric ratio generally results in the formation of either monomeric [AgX(PR3)2]/[Ag(PR3)2]+X- or dimeric complexes [{AgX(PR3)2}2] (Meijboom et al., 2009; Bowmaker et al., 1996 and references therein) depending on the donor properties of the phosphine ligand, the bulkiness of the ligand substituents and the donor capabilities of the anion. When π-acid ligands are used in such reactions the complexes formed have been shown to be stable and univalent and these can be two-, three- or four-coordinate depending upon the size and ligation capabilities of the ligands (Baiada et al., 1990). Generally a combination of a weak donor anion and bulky phosphine ligand often leads to the formation of two- or three-coordinate complexes.

The difference between two- and three-coordinate complexes is hinged on the correlation between increasing Ag—P bond distance and decreasing P—Ag—P angle which is determined by the donor properties of the anion (Bowmaker et al., 1996). The longer the interaction between the anion atom/s and the Ag atom, the more linear (closer to 180°) the P—Ag—P angle will be, although the presence of bulky phosphine ligands (such as tricyclohexylphosphine or phenyldicyclohexylphosphine) would also influence the P—Ag—P angle.

The title compound (I) crystallizes in the monoclinic noncentrosymmetric space group P21 and the asymmetric unit contains one Ag(I) cation and one nitrate anionic ligand. The crystal structure of the title compound [Ag{PPh(C6H11)2].NO3 (Fig. 1) shows that the complex contains well resolved [Ag{PPh(C6H11)2}2]+ cation and NO3- anion. Examination of the structure with PLATON (Spek, 2009) showed that there were no solvent accessible voids in the crystal lattice.

As shown in Fig. 1, the cation shows a nonlinear coordination sphere in which the P—Ag—P angle is 154.662 (19) °. The NO3- anion situated about 2.6 Å away from the Ag center. Similar distortions from linearity have been observed in [Ag{PPh2(C5H8)}2]+.ClO4- (Baiada et al., 1990). The distortion from linearity arises from weak electrostatic interactions of the Ag ion and the nitrate counterion which leads to Ag···O distances of 2.602 and 2.679 Å. In addition the presence of bulky cyclohexyl rings on the phosphine ligands may as well be a contributing factor to the nonlinear behaviour.

The cation Ag—P bond distances are 2.4303 (6) and 2.4046 (5) Å which are well within the Ag—P bond length range for two- or three-coordinate complexes of this type (2.352 -2.521 Å). Comparatively, the Ag—P distances of 2.461 (6) Å (Alyea et al., 1982) and 2.4409 (9) Å (Bayler et al., 1996) have been reported for the bis(trimesitylphosphine) silver(I) cation, an average of 2.416 (2) Å for [Ag{P(C5H9)Ph2}2].ClO4 (Baiada et al., 1990). Based on the sum of covalent radii of Ag and P atoms, the Ag—P distance is calculated as 2.44 Å (Pauling, 1960).

In the crystal, the AgI complex interacts with the three nitrate oxygens resulting in C—H···O intermolecular interactions [H51···O3 = 2.46 Å, C51—H51···O3 = 177 °; H55···O2i = 2.53 Å, C55—H55···O2 = 150 ° symmetry code: i: -x, y+1/2, z)] and a C—H···O intramolecular intraction (H56A···O1 = 2.42 Å, C56—H56A···O1 = 150 °). The structure is further stabilized by two C—H···π intermolecular interactions involving the phenyl rings [H25B···Cg1ii = 2.97 Å, C25—H25B···Cg1 = 161° and H15···Cg4ii = 2.85 Å, C15—H15···Cg4 = 151° (Fig. 2). Cg1 and Cg6 are the centroids of the C11/C12/C13/C14/C15/C16 and C41/C42/C43/C44/C45/C46 benzene rings]. Symmetry code for the two interactions, ii: is -x+1, y-1/2, -z+1. The two C—H···π interactions result in dimeric pairs of the the adjacent molecules involved (See Fig 2).

Despite the number of structural reports of [LnAgX] complexes, their solution behaviour, initiated by Muetterties & Alegranti (1972), has always shown that the coordinating ligands were labile in all complexes studied. Rapid ligand-exchange reactions have been reported for all 31P NMR spectroscopic investigations of ionic AgI monodentate phosphine complexes, thus making NMR spectroscopy of limited use for these types of complexes.

For a review of the chemistry of silver(I) complexes, see: Meijboom et al. (2009). For the coordination chemistry of AgX salts (X = F-, Cl-, Br-, I-, BF4-, PF6-, NO3- etc) with group 15 donor ligands, with the main focus on tertiary phosphines and in their context as potential antitumor agents, see: Berners-Price et al. (1998); Liu et al. (2008). For two- and three- coordinate AgX (X = NO3-) complexes/salts with bulky phosphine ligands, see: Bowmaker et al. (1996); Camalli & Caruso (1988); Fenske et al. (2007); for X = NO2, see: Cingolani et al. (2002); for X = Cl-, Br-, I-, CN-, SCN- and NCO-, see: Bowmaker et al. (1996); Bayler et al. (1996); and for two coordinate X = ClO4-, see: Alyea et al. (1982, 2002); Baiada et al. (1990).

For related literature, see: Muetterties & Alegranti (1972); Pauling (1960).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A perspective of (I) where C—H···O and C—H···π intermolecular interactions are shown in dashed lines [Symmetry codes: (i) -x+1, y-1/2, -z+1; (ii) -x+2, -y-1/2, -z+2].
Bis(dicyclohexylphenylphosphine)silver(I) nitrate top
Crystal data top
[Ag(C18H27P)2]NO3F(000) = 756
Mr = 718.61Dx = 1.372 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 19966 reflections
a = 10.9207 (4) Åθ = 1.7–27.8°
b = 13.6312 (5) ŵ = 0.71 mm1
c = 12.2121 (5) ÅT = 296 K
β = 106.896 (1)°Plate, colourless
V = 1739.45 (11) Å30.42 × 0.34 × 0.14 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
6503 reflections with I > 2σ(I)
Detector resolution: 0 pixels mm-1Rint = 0.020
φ and ω scansθmax = 27.8°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1413
Tmin = 0.756, Tmax = 0.908k = 1714
19954 measured reflectionsl = 1515
6614 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0323P)2 + 0.3975P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max = 0.001
wR(F2) = 0.055Δρmax = 0.75 e Å3
S = 1.06Δρmin = 0.28 e Å3
6614 reflectionsAbsolute structure: Flack (1983), 2322 Friedel pairs
389 parametersAbsolute structure parameter: 0.041 (15)
1 restraint
Crystal data top
[Ag(C18H27P)2]NO3V = 1739.45 (11) Å3
Mr = 718.61Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.9207 (4) ŵ = 0.71 mm1
b = 13.6312 (5) ÅT = 296 K
c = 12.2121 (5) Å0.42 × 0.34 × 0.14 mm
β = 106.896 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6614 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
6503 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.908Rint = 0.020
19954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.055Δρmax = 0.75 e Å3
S = 1.06Δρmin = 0.28 e Å3
6614 reflectionsAbsolute structure: Flack (1983), 2322 Friedel pairs
389 parametersAbsolute structure parameter: 0.041 (15)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.62500 (19)0.63257 (16)0.56623 (17)0.0192 (4)
C120.7541 (2)0.65504 (18)0.57934 (19)0.0238 (4)
H120.80610.67810.6490.029*
C130.8040 (2)0.6424 (2)0.4866 (2)0.0304 (5)
H130.88770.66140.49360.036*
C140.7305 (2)0.60220 (18)0.38554 (19)0.0247 (5)
H140.76650.58950.32670.03*
C150.6018 (2)0.58046 (17)0.37122 (18)0.0216 (4)
H150.550.55780.30120.026*
C160.5517 (2)0.59328 (18)0.46349 (19)0.0230 (4)
H160.46750.5750.45570.028*
C210.5685 (2)0.51594 (16)0.74331 (19)0.0209 (4)
H210.53380.51880.80880.025*
C220.7053 (2)0.47939 (19)0.7908 (2)0.0297 (5)
H22A0.74750.48340.73120.036*
H22B0.75080.52210.85280.036*
C230.7135 (3)0.3754 (2)0.8343 (2)0.0347 (6)
H23A0.68730.37380.90360.042*
H23B0.80180.35370.85360.042*
C240.6306 (3)0.30502 (19)0.7477 (3)0.0379 (6)
H24A0.66520.29820.68340.046*
H24B0.63230.2410.78270.046*
C250.4941 (3)0.34062 (19)0.7054 (2)0.0344 (6)
H25A0.45570.33750.76760.041*
H25B0.44610.29730.64510.041*
C260.4845 (2)0.44473 (18)0.6600 (2)0.0283 (5)
H26A0.50850.44540.58950.034*
H26B0.39630.46640.64220.034*
C310.40036 (18)0.68109 (17)0.63811 (18)0.0175 (4)
H310.35710.63550.5770.021*
C320.3332 (2)0.67641 (18)0.7323 (2)0.0236 (4)
H32A0.37810.71790.79590.028*
H32B0.33540.60960.76030.028*
C330.1933 (2)0.7106 (2)0.6862 (2)0.0346 (6)
H33A0.14640.66530.62780.042*
H33B0.15390.71040.74780.042*
C340.1855 (3)0.8127 (2)0.6359 (2)0.0354 (6)
H34A0.22530.8590.69610.042*
H34B0.09640.83120.60460.042*
C350.2518 (2)0.8184 (2)0.5419 (2)0.0323 (5)
H35A0.24950.88550.51480.039*
H35B0.20670.77750.4780.039*
C360.3913 (2)0.78417 (17)0.5874 (2)0.0253 (5)
H36A0.43030.78460.52550.03*
H36B0.43840.82950.64570.03*
C410.61465 (18)0.98163 (16)0.93476 (17)0.0170 (4)
C420.4998 (2)0.93063 (17)0.91929 (18)0.0210 (4)
H420.49690.86350.90520.025*
C430.3901 (2)0.97931 (19)0.92474 (19)0.0257 (5)
H430.31460.94450.91570.031*
C440.3926 (2)1.07889 (19)0.94354 (19)0.0267 (5)
H440.31881.11130.94660.032*
C450.5064 (2)1.13139 (18)0.95813 (19)0.0247 (5)
H450.50791.19890.96970.03*
C460.6173 (2)1.08229 (17)0.95532 (18)0.0199 (4)
H460.69351.11680.96720.024*
C510.84078 (19)0.99516 (16)0.85746 (18)0.0192 (4)
H510.85761.05640.90140.023*
C520.7564 (2)1.0186 (2)0.7380 (2)0.0359 (6)
H52A0.67811.04940.74280.043*
H52B0.73360.95820.69480.043*
C530.8250 (2)1.0873 (3)0.6755 (3)0.0463 (8)
H53A0.77011.10010.59880.056*
H53B0.84311.14930.71590.056*
C540.9503 (2)1.0404 (2)0.6691 (2)0.0347 (6)
H54A0.9320.97980.62590.042*
H54B0.99361.08440.63010.042*
C551.0355 (2)1.0198 (2)0.7882 (2)0.0283 (5)
H55A1.05781.08120.82940.034*
H55B1.1140.98920.78350.034*
C560.9694 (2)0.95221 (19)0.8541 (2)0.0252 (5)
H56A0.95550.88830.81750.03*
H56B1.02440.94350.93160.03*
C610.85318 (19)0.89667 (16)1.07819 (17)0.0176 (4)
H610.92560.85431.07780.021*
C620.9082 (2)0.98983 (17)1.1412 (2)0.0248 (4)
H62A0.83911.03511.13940.03*
H62B0.96411.02081.10250.03*
C630.9839 (2)0.9693 (2)1.2660 (2)0.0297 (5)
H63A1.05940.93111.26790.036*
H63B1.0121.0311.30480.036*
C640.9043 (2)0.9140 (2)1.3288 (2)0.0323 (5)
H64A0.9570.89821.40550.039*
H64B0.83460.95551.33550.039*
C650.8500 (3)0.8203 (2)1.2667 (2)0.0380 (6)
H65A0.79510.78881.30610.046*
H65B0.91940.77561.26770.046*
C660.7729 (2)0.8412 (2)1.1425 (2)0.0322 (6)
H66A0.69810.87991.14160.039*
H66B0.74370.77971.10360.039*
P10.56910 (5)0.64378 (4)0.69333 (4)0.01558 (10)
P20.75517 (5)0.91135 (4)0.92785 (4)0.01542 (10)
Ag0.702066 (12)0.754956 (13)0.830004 (11)0.01948 (4)
N0.9763 (2)0.69958 (15)0.93701 (19)0.0315 (5)
O10.94184 (16)0.71192 (15)0.83128 (16)0.0352 (4)
O20.8923 (2)0.67588 (16)0.98484 (17)0.0425 (5)
O31.08964 (19)0.71145 (16)0.9931 (2)0.0535 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0215 (9)0.0226 (11)0.0146 (10)0.0002 (8)0.0069 (8)0.0013 (8)
C120.0194 (9)0.0303 (12)0.0206 (11)0.0020 (9)0.0041 (8)0.0032 (9)
C130.0204 (10)0.0448 (15)0.0277 (12)0.0036 (10)0.0099 (9)0.0033 (11)
C140.0276 (10)0.0296 (12)0.0199 (11)0.0002 (9)0.0114 (9)0.0007 (9)
C150.0229 (10)0.0249 (11)0.0154 (10)0.0001 (9)0.0029 (8)0.0039 (8)
C160.0185 (9)0.0301 (12)0.0203 (11)0.0037 (9)0.0055 (8)0.0029 (9)
C210.0238 (10)0.0192 (10)0.0203 (11)0.0045 (8)0.0073 (8)0.0018 (8)
C220.0261 (11)0.0269 (12)0.0325 (13)0.0049 (9)0.0026 (10)0.0035 (11)
C230.0449 (14)0.0338 (15)0.0279 (13)0.0170 (11)0.0142 (11)0.0062 (10)
C240.0504 (16)0.0240 (14)0.0440 (16)0.0075 (11)0.0210 (13)0.0112 (11)
C250.0402 (13)0.0242 (13)0.0445 (15)0.0002 (10)0.0214 (12)0.0032 (11)
C260.0263 (11)0.0217 (12)0.0376 (14)0.0022 (9)0.0103 (10)0.0026 (10)
C310.0136 (8)0.0222 (11)0.0150 (10)0.0021 (7)0.0015 (7)0.0026 (8)
C320.0208 (9)0.0289 (12)0.0228 (11)0.0036 (8)0.0092 (9)0.0020 (9)
C330.0237 (11)0.0471 (15)0.0351 (15)0.0079 (11)0.0117 (11)0.0034 (12)
C340.0311 (12)0.0393 (15)0.0336 (14)0.0166 (11)0.0061 (11)0.0034 (12)
C350.0372 (13)0.0303 (13)0.0253 (12)0.0159 (11)0.0027 (10)0.0018 (10)
C360.0288 (11)0.0240 (12)0.0222 (11)0.0065 (8)0.0058 (9)0.0036 (8)
C410.0172 (9)0.0208 (10)0.0125 (9)0.0037 (8)0.0037 (7)0.0031 (8)
C420.0217 (10)0.0235 (11)0.0168 (10)0.0012 (8)0.0041 (8)0.0017 (8)
C430.0181 (9)0.0376 (14)0.0213 (11)0.0009 (9)0.0057 (8)0.0037 (10)
C440.0246 (10)0.0363 (14)0.0192 (11)0.0111 (10)0.0065 (9)0.0027 (10)
C450.0313 (11)0.0251 (11)0.0173 (10)0.0080 (9)0.0062 (9)0.0002 (9)
C460.0209 (9)0.0210 (11)0.0153 (10)0.0019 (8)0.0010 (8)0.0007 (8)
C510.0200 (9)0.0202 (10)0.0192 (10)0.0014 (8)0.0088 (8)0.0044 (8)
C520.0186 (10)0.0614 (19)0.0267 (13)0.0010 (11)0.0049 (9)0.0190 (12)
C530.0272 (11)0.075 (2)0.0376 (16)0.0090 (14)0.0113 (11)0.0342 (15)
C540.0247 (11)0.0609 (18)0.0195 (12)0.0028 (11)0.0081 (10)0.0086 (11)
C550.0198 (10)0.0432 (15)0.0230 (13)0.0013 (10)0.0081 (9)0.0018 (11)
C560.0202 (10)0.0330 (13)0.0224 (11)0.0049 (9)0.0061 (9)0.0063 (9)
C610.0161 (9)0.0187 (10)0.0158 (10)0.0012 (7)0.0014 (7)0.0014 (8)
C620.0333 (11)0.0213 (11)0.0179 (11)0.0080 (9)0.0043 (9)0.0013 (9)
C630.0291 (11)0.0372 (14)0.0196 (12)0.0083 (10)0.0018 (10)0.0036 (10)
C640.0310 (12)0.0481 (16)0.0164 (11)0.0002 (11)0.0045 (9)0.0058 (11)
C650.0402 (14)0.0427 (16)0.0261 (13)0.0098 (12)0.0018 (11)0.0140 (12)
C660.0345 (12)0.0365 (15)0.0207 (12)0.0152 (11)0.0005 (10)0.0089 (10)
P10.0160 (2)0.0174 (3)0.0130 (2)0.00103 (18)0.00354 (18)0.00190 (19)
P20.0160 (2)0.0154 (2)0.0141 (2)0.00057 (19)0.00320 (19)0.00052 (19)
Ag0.02057 (7)0.01953 (7)0.01629 (7)0.00042 (7)0.00212 (5)0.00397 (7)
N0.0290 (10)0.0190 (11)0.0357 (12)0.0087 (8)0.0075 (9)0.0074 (8)
O10.0291 (8)0.0424 (11)0.0296 (10)0.0055 (7)0.0012 (7)0.0091 (8)
O20.0540 (12)0.0315 (10)0.0356 (11)0.0093 (9)0.0030 (9)0.0070 (8)
O30.0350 (10)0.0314 (11)0.0684 (15)0.0080 (8)0.0255 (10)0.0150 (10)
Geometric parameters (Å, º) top
C11—C161.385 (3)C42—C431.389 (3)
C11—C121.406 (3)C42—H420.93
C11—P11.832 (2)C43—C441.376 (4)
C12—C131.402 (3)C43—H430.93
C12—H120.93C44—C451.399 (3)
C13—C141.376 (3)C44—H440.93
C13—H130.93C45—C461.393 (3)
C14—C151.397 (3)C45—H450.93
C14—H140.93C46—H460.93
C15—C161.399 (3)C51—C521.516 (3)
C15—H150.93C51—C561.534 (3)
C16—H160.93C51—P21.840 (2)
C21—C261.509 (3)C51—H510.98
C21—C221.520 (3)C52—C531.534 (4)
C21—P11.847 (2)C52—H52A0.97
C21—H210.98C52—H52B0.97
C22—C231.508 (4)C53—C541.532 (4)
C22—H22A0.97C53—H53A0.97
C22—H22B0.97C53—H53B0.97
C23—C241.516 (4)C54—C551.508 (3)
C23—H23A0.97C54—H54A0.97
C23—H23B0.97C54—H54B0.97
C24—C251.509 (4)C55—C561.534 (3)
C24—H24A0.97C55—H55A0.97
C24—H24B0.97C55—H55B0.97
C25—C261.516 (3)C56—H56A0.97
C25—H25A0.97C56—H56B0.97
C25—H25B0.97C61—C621.516 (3)
C26—H26A0.97C61—C661.535 (3)
C26—H26B0.97C61—P21.848 (2)
C31—C361.527 (3)C61—H610.98
C31—C321.535 (3)C62—C631.533 (3)
C31—P11.840 (2)C62—H62A0.97
C31—H310.98C62—H62B0.97
C32—C331.539 (3)C63—C641.517 (3)
C32—H32A0.97C63—H63A0.97
C32—H32B0.97C63—H63B0.97
C33—C341.513 (4)C64—C651.517 (4)
C33—H33A0.97C64—H64A0.97
C33—H33B0.97C64—H64B0.97
C34—C351.527 (4)C65—C661.533 (3)
C34—H34A0.97C65—H65A0.97
C34—H34B0.97C65—H65B0.97
C35—C361.534 (3)C66—H66A0.97
C35—H35A0.97C66—H66B0.97
C35—H35B0.97P1—Ag2.4046 (5)
C36—H36A0.97P2—Ag2.4303 (6)
C36—H36B0.97N—O31.239 (3)
C41—C461.394 (3)N—O11.247 (3)
C41—C421.398 (3)N—O21.265 (3)
C41—P21.832 (2)
C16—C11—C12118.95 (18)C42—C43—H43119.9
C16—C11—P1123.54 (15)C43—C44—C45120.0 (2)
C12—C11—P1117.10 (16)C43—C44—H44120
C13—C12—C11119.6 (2)C45—C44—H44120
C13—C12—H12120.2C46—C45—C44119.8 (2)
C11—C12—H12120.2C46—C45—H45120.1
C14—C13—C12120.7 (2)C44—C45—H45120.1
C14—C13—H13119.6C41—C46—C45120.3 (2)
C12—C13—H13119.6C41—C46—H46119.8
C13—C14—C15120.02 (19)C45—C46—H46119.8
C13—C14—H14120C52—C51—C56111.09 (18)
C15—C14—H14120C52—C51—P2109.34 (15)
C14—C15—C16119.2 (2)C56—C51—P2111.68 (15)
C14—C15—H15120.4C52—C51—H51108.2
C16—C15—H15120.4C56—C51—H51108.2
C11—C16—C15121.30 (19)P2—C51—H51108.2
C11—C16—H16119.4C51—C52—C53111.0 (2)
C15—C16—H16119.4C51—C52—H52A109.4
C26—C21—C22112.6 (2)C53—C52—H52A109.4
C26—C21—P1116.35 (16)C51—C52—H52B109.4
C22—C21—P1109.75 (16)C53—C52—H52B109.4
C26—C21—H21105.8H52A—C52—H52B108
C22—C21—H21105.8C54—C53—C52110.1 (3)
P1—C21—H21105.8C54—C53—H53A109.6
C23—C22—C21113.2 (2)C52—C53—H53A109.6
C23—C22—H22A108.9C54—C53—H53B109.6
C21—C22—H22A108.9C52—C53—H53B109.6
C23—C22—H22B108.9H53A—C53—H53B108.2
C21—C22—H22B108.9C55—C54—C53109.8 (2)
H22A—C22—H22B107.7C55—C54—H54A109.7
C22—C23—C24112.8 (2)C53—C54—H54A109.7
C22—C23—H23A109C55—C54—H54B109.7
C24—C23—H23A109C53—C54—H54B109.7
C22—C23—H23B109H54A—C54—H54B108.2
C24—C23—H23B109C54—C55—C56111.4 (2)
H23A—C23—H23B107.8C54—C55—H55A109.3
C25—C24—C23111.4 (2)C56—C55—H55A109.3
C25—C24—H24A109.3C54—C55—H55B109.3
C23—C24—H24A109.3C56—C55—H55B109.3
C25—C24—H24B109.3H55A—C55—H55B108
C23—C24—H24B109.3C51—C56—C55111.02 (19)
H24A—C24—H24B108C51—C56—H56A109.4
C24—C25—C26112.5 (2)C55—C56—H56A109.4
C24—C25—H25A109.1C51—C56—H56B109.4
C26—C25—H25A109.1C55—C56—H56B109.4
C24—C25—H25B109.1H56A—C56—H56B108
C26—C25—H25B109.1C62—C61—C66110.74 (18)
H25A—C25—H25B107.8C62—C61—P2116.34 (15)
C21—C26—C25113.1 (2)C66—C61—P2108.02 (15)
C21—C26—H26A109C62—C61—H61107.1
C25—C26—H26A109C66—C61—H61107.1
C21—C26—H26B109P2—C61—H61107.1
C25—C26—H26B109C61—C62—C63111.82 (19)
H26A—C26—H26B107.8C61—C62—H62A109.3
C36—C31—C32110.69 (18)C63—C62—H62A109.3
C36—C31—P1110.06 (15)C61—C62—H62B109.3
C32—C31—P1111.08 (15)C63—C62—H62B109.3
C36—C31—H31108.3H62A—C62—H62B107.9
C32—C31—H31108.3C64—C63—C62111.7 (2)
P1—C31—H31108.3C64—C63—H63A109.3
C31—C32—C33110.64 (19)C62—C63—H63A109.3
C31—C32—H32A109.5C64—C63—H63B109.3
C33—C32—H32A109.5C62—C63—H63B109.3
C31—C32—H32B109.5H63A—C63—H63B107.9
C33—C32—H32B109.5C65—C64—C63111.3 (2)
H32A—C32—H32B108.1C65—C64—H64A109.4
C34—C33—C32111.1 (2)C63—C64—H64A109.4
C34—C33—H33A109.4C65—C64—H64B109.4
C32—C33—H33A109.4C63—C64—H64B109.4
C34—C33—H33B109.4H64A—C64—H64B108
C32—C33—H33B109.4C64—C65—C66111.1 (2)
H33A—C33—H33B108C64—C65—H65A109.4
C33—C34—C35111.6 (2)C66—C65—H65A109.4
C33—C34—H34A109.3C64—C65—H65B109.4
C35—C34—H34A109.3C66—C65—H65B109.4
C33—C34—H34B109.3H65A—C65—H65B108
C35—C34—H34B109.3C65—C66—C61111.5 (2)
H34A—C34—H34B108C65—C66—H66A109.3
C34—C35—C36110.5 (2)C61—C66—H66A109.3
C34—C35—H35A109.6C65—C66—H66B109.3
C36—C35—H35A109.6C61—C66—H66B109.3
C34—C35—H35B109.6H66A—C66—H66B108
C36—C35—H35B109.6C11—P1—C31104.92 (10)
H35A—C35—H35B108.1C11—P1—C21103.60 (10)
C31—C36—C35111.56 (19)C31—P1—C21106.42 (10)
C31—C36—H36A109.3C11—P1—Ag110.98 (7)
C35—C36—H36A109.3C31—P1—Ag114.74 (7)
C31—C36—H36B109.3C21—P1—Ag115.12 (7)
C35—C36—H36B109.3C41—P2—C51104.07 (9)
H36A—C36—H36B108C41—P2—C61105.19 (9)
C46—C41—C42119.01 (19)C51—P2—C61107.77 (10)
C46—C41—P2123.32 (16)C41—P2—Ag113.46 (7)
C42—C41—P2117.66 (16)C51—P2—Ag113.33 (7)
C43—C42—C41120.6 (2)C61—P2—Ag112.34 (7)
C43—C42—H42119.7P1—Ag—P2154.662 (19)
C41—C42—H42119.7O3—N—O1120.5 (2)
C44—C43—C42120.2 (2)O3—N—O2121.4 (2)
C44—C43—H43119.9O1—N—O2118.1 (2)
C16—C11—C12—C133.5 (4)C64—C65—C66—C6155.6 (3)
P1—C11—C12—C13176.4 (2)C62—C61—C66—C6555.0 (3)
C11—C12—C13—C144.3 (4)P2—C61—C66—C65176.6 (2)
C12—C13—C14—C154.9 (4)C16—C11—P1—C3139.6 (2)
C13—C14—C15—C164.7 (4)C12—C11—P1—C31147.89 (18)
C12—C11—C16—C153.4 (4)C16—C11—P1—C2171.9 (2)
P1—C11—C16—C15175.79 (19)C12—C11—P1—C21100.68 (19)
C14—C15—C16—C114.0 (4)C16—C11—P1—Ag164.03 (18)
C26—C21—C22—C2349.1 (3)C12—C11—P1—Ag23.4 (2)
P1—C21—C22—C23179.65 (17)C36—C31—P1—C1166.86 (17)
C21—C22—C23—C2451.1 (3)C32—C31—P1—C11170.20 (16)
C22—C23—C24—C2553.0 (3)C36—C31—P1—C21176.26 (15)
C23—C24—C25—C2653.3 (3)C32—C31—P1—C2160.80 (18)
C22—C21—C26—C2549.5 (3)C36—C31—P1—Ag55.19 (15)
P1—C21—C26—C25177.35 (16)C32—C31—P1—Ag67.75 (17)
C24—C25—C26—C2152.2 (3)C26—C21—P1—C1159.47 (17)
C36—C31—C32—C3355.8 (3)C22—C21—P1—C1169.78 (18)
P1—C31—C32—C33178.34 (18)C26—C21—P1—C3150.86 (18)
C31—C32—C33—C3456.2 (3)C22—C21—P1—C31179.89 (16)
C32—C33—C34—C3556.5 (3)C26—C21—P1—Ag179.19 (13)
C33—C34—C35—C3655.8 (3)C22—C21—P1—Ag51.57 (17)
C32—C31—C36—C3556.0 (2)C46—C41—P2—C5137.0 (2)
P1—C31—C36—C35179.19 (16)C42—C41—P2—C51143.49 (17)
C34—C35—C36—C3155.6 (3)C46—C41—P2—C6176.23 (19)
C46—C41—C42—C430.3 (3)C42—C41—P2—C61103.30 (17)
P2—C41—C42—C43179.29 (17)C46—C41—P2—Ag160.60 (15)
C41—C42—C43—C441.1 (3)C42—C41—P2—Ag19.87 (18)
C42—C43—C44—C450.5 (3)C52—C51—P2—C4162.04 (19)
C43—C44—C45—C461.0 (3)C56—C51—P2—C41174.61 (16)
C42—C41—C46—C451.2 (3)C52—C51—P2—C61173.38 (17)
P2—C41—C46—C45179.25 (16)C56—C51—P2—C6163.27 (18)
C44—C45—C46—C411.9 (3)C52—C51—P2—Ag61.67 (18)
C56—C51—C52—C5355.5 (3)C56—C51—P2—Ag61.68 (17)
P2—C51—C52—C53179.2 (2)C62—C61—P2—C4165.12 (17)
C51—C52—C53—C5458.0 (3)C66—C61—P2—C4160.08 (18)
C52—C53—C54—C5558.9 (3)C62—C61—P2—C5145.45 (18)
C53—C54—C55—C5658.1 (3)C66—C61—P2—C51170.66 (16)
C52—C51—C56—C5553.9 (3)C62—C61—P2—Ag171.00 (13)
P2—C51—C56—C55176.25 (16)C66—C61—P2—Ag63.80 (17)
C54—C55—C56—C5155.7 (3)C11—P1—Ag—P2100.90 (8)
C66—C61—C62—C6354.3 (3)C31—P1—Ag—P217.80 (9)
P2—C61—C62—C63178.13 (16)C21—P1—Ag—P2141.85 (8)
C61—C62—C63—C6454.7 (3)C41—P2—Ag—P129.07 (9)
C62—C63—C64—C6554.9 (3)C51—P2—Ag—P189.33 (8)
C63—C64—C65—C6655.4 (3)C61—P2—Ag—P1148.22 (7)

Experimental details

Crystal data
Chemical formula[Ag(C18H27P)2]NO3
Mr718.61
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)10.9207 (4), 13.6312 (5), 12.2121 (5)
β (°) 106.896 (1)
V3)1739.45 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.42 × 0.34 × 0.14
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.756, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
19954, 6614, 6503
Rint0.020
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.055, 1.06
No. of reflections6614
No. of parameters389
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.28
Absolute structureFlack (1983), 2322 Friedel pairs
Absolute structure parameter0.041 (15)

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

 

Acknowledgements

ARB thanks the Research Academy for Undergraduates, University of Johannesburg, for financial support. Financial assistance from the South African National Research Foundation and University of Johannesburg is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

References

First citationAlyea, E. C., Ferguson, G. & Somogyvari, A. (1982). Inorg. Chem. 21, 1369–1371.  CSD CrossRef CAS Web of Science Google Scholar
First citationAlyea, E. C., Kannan, S. & Meehan, P. R. (2002). Acta Cryst. C58, m365–m367.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBaiada, A., Jardine, F. H. & Willett, R. D. (1990). Inorg. Chem. 29, 3042–3046.  CSD CrossRef CAS Web of Science Google Scholar
First citationBayler, A., Schier, A., Bowmaker, G. A. & Schmidbaur, H. (1996). J. Am. Chem. Soc. 118, 7006–7007.  CSD CrossRef CAS Web of Science Google Scholar
First citationBerners-Price, S. J., Bowen, R. J., Harvey, P. J., Healy, P. C. & Koutsantonis, G. A. (1998). J. Chem. Soc. Dalton Trans. pp. 1743–1750.  CSD CrossRef Google Scholar
First citationBowmaker, G. A., Harvey, P. J., Healy, P. C., Skelton, B. W. & White, A. H. (1996). J. Chem. Soc. Dalton Trans. pp. 2449–2465.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamalli, M. & Caruso, F. (1988). Inorg. Chim. Acta, 144, 205–211.  CSD CrossRef CAS Web of Science Google Scholar
First citationCingolani, A., Pellei, M., Pettinari, C., Santini, C., Skelton, B. W. & White, A. H. (2002). Inorg. Chem. 41, 6633–6645.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFenske, D., Rothenberger, A. & Wieber, S. (2007). Eur. J. Inorg. Chem. pp. 648–651.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, J. J., Galetis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C., Baguley, B. C., Bowen, R. J., Berners-Price, S. J. & McKeage, M. J. (2008). J. Inorg. Biochem. 102, 303–310.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325–342.  Web of Science CrossRef CAS Google Scholar
First citationMuetterties, E. L. & Alegranti, C. W. (1972). J. Am. Chem. Soc. 94, 6386–6391.  CrossRef CAS Web of Science Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., pp. 224, 256. Ithaca: Cornell University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds