organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diphen­yl[2-(2-pyridylamino­meth­yl)phen­yl]phosphine oxide

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, Mexico, and bLaboratorio de Química Inorgánica y Catálisis, Programa de Química, Universidad del Quindío, Armenia, Quindío, Av. Bolivar calle 12 norte, Colombia
*Correspondence e-mail: simonho@unam.mx

(Received 6 March 2010; accepted 22 April 2010; online 28 April 2010)

The title compound, C24H21N2OP, was obtained by reacting 2-amino­pyridine and 2-(diphenyl­phosphin­yl)benzaldehyde in ethanol. It crystallizes with two crystallographically independent mol­ecules in the asymmetric unit. The amino­pyridine units and the benzene ring bonded to the phosphine oxide P atom form dihedral angles of 88.58 (7) and 82.47 (9)° in the two mol­ecules. The crystal structure displays strong N—H⋯O and weak C—H⋯O hydrogen bonds along the b axis and C—H⋯π aromatic intra- and inter­molecular inter­actions.

Related literature

For synthetic applications of pyridine-containing mol­ecules and amino­phosphines, see: Borah et al. (2010[Borah, B. J., Deb, B., Sarmah, P. P. & Dutta, D. K. (2010). J. Mol. Catal. A Chem. 319, 66-70.]); Koprowski et al. (2002[Koprowski, M., Sebastian, R.-M., Maraval, V., Zablocka, M., Cadierno, V., Donnadieu, B., Igau, A., Caminade, A.-M. & Majoral, J.-P. (2002). Organometallics, 21, 4680-4687.]); Landaeta et al. (2006[Landaeta, V. R., Peruzzini, M., Herrera, V., Bianchini, C., Sánchez-Delgado, R. A., Goeta, A. E. & Zanobini, F. (2006). J. Organomet. Chem. 691, 1039-1050.]); Pfeiffer et al. (2000[Pfeiffer, J., Kickelbick, G. & Schubert, U. (2000). Organometallics, 19, 62-71.]); Ribeiro et al. (2006[Ribeiro, P. E. A., Donnici, C. L. & Dos Santos, E. N. (2006). J. Organomet. Chem. 691, 2037-2043.]). For similar structures, see: Pretorius et al. (2004[Pretorius, M., Williams, D. B. G., Roodt, A. & Muller, A. (2004). Acta Cryst. C60, o384-o386.]); Sánchez et al. (2006[Sánchez, G., García, J., Meseguer, D., Serrano, J. L., García, L., Pérez, J. & López, G. (2006). Inorg. Chim. Acta, 359, 1650-1658.]).

[Scheme 1]

Experimental

Crystal data
  • C24H21N2OP

  • Mr = 384.40

  • Monoclinic, P 21 /c

  • a = 24.130 (3) Å

  • b = 8.2397 (9) Å

  • c = 21.992 (2) Å

  • β = 109.108 (2)°

  • V = 4131.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 298 K

  • 0.35 × 0.14 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.987

  • 32921 measured reflections

  • 7544 independent reflections

  • 4889 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.132

  • S = 1.06

  • 7544 reflections

  • 514 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C13–C18, C39–C44 and N48,C47,C49–C52 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N20—H20⋯O2i 0.90 (1) 1.98 (1) 2.872 (3) 177 (3)
N46—H46⋯O1ii 0.90 (1) 1.97 (1) 2.850 (3) 166 (3)
C4—H4⋯O1iii 0.93 2.53 3.329 144
C52—H52⋯O1ii 0.93 2.55 3.282 135
C3—H3⋯Cg1iii 0.93 2.95 3.627 (3) 131
C25—H25⋯Cg2 0.93 2.95 3.495 (5) 119
C30—H30⋯Cg3iv 0.93 2.93 3.772 (4) 152
C42—H42⋯Cg3i 0.93 2.96 3.746 (3) 154
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitrogen atoms of pyridine family heterocyclic compounds behave like excellent ligands in different reactions involving transition metal ions (Borah et al., 2010). The presence of named ligands provides stability to the metal complex, even if the reaction is performed at high temperatures (Landaeta et al., 2006; Ribeiro et al., 2006). Aminophosphines type P,N are known to be hemilabile (Koprowski et al., 2002; Pfeiffer et al., 2000). In the quest for P,N ligands (Pretorius et al., 2004; Sánchez et al., 2006) that improve the stability of the metal complex and decrease the hemilability, we describe the crystal structure of the title compound.

The asymmetric unit contains two crystallographically independent molecules (Z = 8). The structure with numbering scheme is shown in Fig. 1. The molecules show different planar angles between the aromatic rings. The 2-aminopyridine moieties (N20···C26 in I and N46···C52 in II), are essentially planar and almost perpendicular to the benzene rings bonded to phosphino oxide (C13···C18 and C39···C44), the dihedral angles being 88.58 (7)° in I and 82.47 (9)° in II. These angles are similar to those of related structures found in the literature (e.g. 82.24°, Pretorius et al., 2004).

Due the conformational geometry adopted by the molecules, in the crystal packing strong N—H···O intermolecular interactions and weak C—H···O as well as C—H···π intra and intermolecular interactions are present (see Tables and Fig. 2).

Related literature top

For synthetic applications of pyridine-containing molecules and aminophosphines, see: Borah et al. (2010); Koprowski et al. (2002); Landaeta et al. (2006); Pfeiffer et al. (2000); Ribeiro et al. (2006). For similar structures, see: Pretorius et al. (2004); Sánchez et al. (2006).

Experimental top

A solution of 2(diphenylphosphinyl)benzaldehyde (0.345 g, 1.189 mmol) in 5 ml of ethanol was added at room temperature to a solution of 2-aminopyridine (0.111 g, 1.189 mmol) in ethanol (5 ml). The resulting mixture was refluxed until the reaction was completed (5 hours). Then, solvent was evaporated, forming a light brown solid, which was filtered and washed with hexane. Yield: 0.408 g (89.3%).

Refinement top

Amine H atoms H20 and H46 were found in a difference map and refined with free coordinates and Uiso(H) = 1.2Ueq(N). N—H bond lengths were restrained to a sensible target value. Other H atoms were included in calculated positions (C—H = 0.93 or 0.97 Å), and refined using a riding model, with Uiso(H) = 1.2Ueq of the carrier atom.

Structure description top

Nitrogen atoms of pyridine family heterocyclic compounds behave like excellent ligands in different reactions involving transition metal ions (Borah et al., 2010). The presence of named ligands provides stability to the metal complex, even if the reaction is performed at high temperatures (Landaeta et al., 2006; Ribeiro et al., 2006). Aminophosphines type P,N are known to be hemilabile (Koprowski et al., 2002; Pfeiffer et al., 2000). In the quest for P,N ligands (Pretorius et al., 2004; Sánchez et al., 2006) that improve the stability of the metal complex and decrease the hemilability, we describe the crystal structure of the title compound.

The asymmetric unit contains two crystallographically independent molecules (Z = 8). The structure with numbering scheme is shown in Fig. 1. The molecules show different planar angles between the aromatic rings. The 2-aminopyridine moieties (N20···C26 in I and N46···C52 in II), are essentially planar and almost perpendicular to the benzene rings bonded to phosphino oxide (C13···C18 and C39···C44), the dihedral angles being 88.58 (7)° in I and 82.47 (9)° in II. These angles are similar to those of related structures found in the literature (e.g. 82.24°, Pretorius et al., 2004).

Due the conformational geometry adopted by the molecules, in the crystal packing strong N—H···O intermolecular interactions and weak C—H···O as well as C—H···π intra and intermolecular interactions are present (see Tables and Fig. 2).

For synthetic applications of pyridine-containing molecules and aminophosphines, see: Borah et al. (2010); Koprowski et al. (2002); Landaeta et al. (2006); Pfeiffer et al. (2000); Ribeiro et al. (2006). For similar structures, see: Pretorius et al. (2004); Sánchez et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The two independent molecules in the title compound with the atom-labeling scheme. Displacement ellipsoids are shown at the 40% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are drawn as dashed lines.
Diphenyl[2-(2-pyridylaminomethyl)phenyl]phosphine oxide top
Crystal data top
C24H21N2OPF(000) = 1616
Mr = 384.40Dx = 1.236 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6035 reflections
a = 24.130 (3) Åθ = 2.2–23.8°
b = 8.2397 (9) ŵ = 0.15 mm1
c = 21.992 (2) ÅT = 298 K
β = 109.108 (2)°Prism, colorless
V = 4131.5 (8) Å30.35 × 0.14 × 0.09 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
7544 independent reflections
Radiation source: fine-focus sealed tube4889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 1.8°
ω scansh = 2929
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
k = 99
Tmin = 0.950, Tmax = 0.987l = 2626
32921 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0576P)2]
where P = (Fo2 + 2Fc2)/3
7544 reflections(Δ/σ)max < 0.001
514 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.21 e Å3
0 constraints
Crystal data top
C24H21N2OPV = 4131.5 (8) Å3
Mr = 384.40Z = 8
Monoclinic, P21/cMo Kα radiation
a = 24.130 (3) ŵ = 0.15 mm1
b = 8.2397 (9) ÅT = 298 K
c = 21.992 (2) Å0.35 × 0.14 × 0.09 mm
β = 109.108 (2)°
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
7544 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4889 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.987Rint = 0.062
32921 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0562 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.31 e Å3
7544 reflectionsΔρmin = 0.21 e Å3
514 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.36928 (3)0.34803 (8)0.48820 (3)0.04454 (19)
O10.31222 (7)0.26622 (19)0.47912 (8)0.0533 (5)
C10.36101 (11)0.5619 (3)0.47160 (12)0.0469 (6)
C20.38693 (12)0.6430 (3)0.43397 (14)0.0618 (8)
H20.41280.58830.41780.074*
C30.37526 (14)0.8053 (3)0.41956 (16)0.0750 (9)
H30.39310.85920.39380.090*
C40.33743 (14)0.8863 (3)0.44333 (16)0.0718 (9)
H40.32940.99540.43360.086*
C50.31182 (17)0.8090 (4)0.48059 (19)0.0929 (12)
H50.28600.86450.49650.112*
C60.32358 (15)0.6479 (4)0.49535 (17)0.0840 (10)
H60.30600.59600.52180.101*
C70.41605 (11)0.3290 (3)0.57041 (12)0.0488 (6)
C80.40174 (13)0.2123 (3)0.60849 (14)0.0624 (8)
H80.36920.14600.59090.075*
C90.43526 (16)0.1944 (4)0.67180 (17)0.0819 (10)
H90.42510.11720.69710.098*
C100.48385 (16)0.2899 (5)0.69802 (16)0.0838 (10)
H100.50690.27570.74080.101*
C110.49844 (14)0.4056 (4)0.66157 (16)0.0817 (10)
H110.53140.46990.67960.098*
C120.46437 (12)0.4276 (4)0.59788 (14)0.0652 (8)
H120.47390.50850.57350.078*
C130.40760 (11)0.2646 (3)0.43713 (12)0.0444 (6)
C140.37875 (11)0.2465 (3)0.37016 (13)0.0490 (6)
C150.40969 (14)0.1765 (3)0.33377 (14)0.0642 (8)
H150.39150.16380.28970.077*
C160.46664 (15)0.1255 (3)0.36129 (17)0.0713 (9)
H160.48630.07940.33560.086*
C170.49465 (13)0.1416 (3)0.42583 (15)0.0636 (8)
H170.53320.10650.44420.076*
C180.46515 (11)0.2104 (3)0.46333 (13)0.0527 (7)
H180.48420.22090.50740.063*
C190.31515 (12)0.2952 (4)0.33873 (13)0.0620 (8)
H19A0.29070.21720.35110.063 (8)*
H19B0.30920.39990.35580.060 (8)*
N200.29567 (11)0.3056 (3)0.27000 (12)0.0717 (7)
H200.2706 (10)0.229 (3)0.2485 (13)0.088 (11)*
C210.30509 (12)0.4386 (4)0.23887 (14)0.0626 (8)
N220.34046 (11)0.5533 (3)0.27378 (12)0.0762 (7)
C230.34899 (16)0.6856 (5)0.2426 (2)0.0977 (12)
H230.37310.76650.26680.117*
C240.3252 (2)0.7099 (6)0.1788 (2)0.1167 (15)
H240.33280.80390.15950.140*
C250.28940 (18)0.5911 (6)0.14356 (19)0.1085 (14)
H250.27210.60390.09930.130*
C260.27881 (14)0.4540 (5)0.17265 (16)0.0819 (10)
H260.25460.37270.14880.098*
P20.16172 (3)0.96647 (8)0.17338 (3)0.0487 (2)
O20.21808 (8)1.0515 (2)0.20311 (8)0.0655 (5)
C270.14545 (12)0.8307 (3)0.22969 (12)0.0517 (7)
C280.09067 (13)0.8167 (3)0.23625 (13)0.0598 (7)
H280.05950.87730.20990.072*
C290.08174 (15)0.7131 (4)0.28181 (14)0.0728 (9)
H290.04470.70530.28600.087*
C300.1266 (2)0.6228 (4)0.32031 (16)0.0897 (11)
H300.12030.55250.35050.108*
C310.1809 (2)0.6356 (5)0.31456 (18)0.1041 (13)
H310.21170.57370.34090.125*
C320.19065 (15)0.7397 (4)0.27002 (16)0.0855 (10)
H320.22810.74870.26710.103*
C330.10068 (11)1.1037 (3)0.14587 (12)0.0479 (6)
C340.10371 (13)1.2529 (3)0.17540 (14)0.0632 (8)
H340.13751.28220.20850.076*
C350.05676 (16)1.3588 (4)0.15592 (18)0.0799 (10)
H350.05911.45910.17600.096*
C360.00708 (16)1.3166 (4)0.10740 (18)0.0848 (10)
H360.02441.38830.09470.102*
C370.00316 (14)1.1700 (4)0.07738 (15)0.0808 (10)
H370.03081.14180.04420.097*
C380.04992 (13)1.0642 (4)0.09665 (14)0.0659 (8)
H380.04730.96440.07610.079*
C390.15882 (10)0.8468 (3)0.10359 (12)0.0458 (6)
C400.17556 (10)0.9141 (3)0.05390 (12)0.0472 (6)
C410.17159 (12)0.8183 (4)0.00108 (13)0.0600 (7)
H410.18290.86120.03210.072*
C420.15121 (13)0.6606 (4)0.00373 (14)0.0674 (8)
H420.14900.59880.03980.081*
C430.13435 (12)0.5957 (3)0.04431 (14)0.0658 (8)
H430.12040.48980.04120.079*
C440.13816 (12)0.6885 (3)0.09777 (13)0.0574 (7)
H440.12660.64400.13060.069*
C450.19811 (12)1.0878 (3)0.05873 (13)0.0596 (7)
H45A0.17111.15720.07100.071*
H45B0.23561.09290.09300.071*
N460.20546 (10)1.1520 (3)0.00087 (11)0.0655 (7)
H460.2420 (6)1.166 (3)0.0005 (14)0.079*
C470.16033 (12)1.2132 (3)0.04842 (13)0.0517 (7)
N480.10652 (10)1.1985 (3)0.04558 (12)0.0667 (7)
C490.06305 (14)1.2601 (4)0.0959 (2)0.0875 (11)
H490.02491.25240.09500.105*
C500.07112 (18)1.3323 (4)0.1475 (2)0.0947 (12)
H500.03941.37120.18110.114*
C510.12719 (18)1.3467 (4)0.14908 (15)0.0808 (10)
H510.13411.39650.18390.097*
C520.17227 (13)1.2881 (3)0.09982 (13)0.0600 (7)
H520.21061.29740.10000.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0453 (4)0.0368 (4)0.0537 (4)0.0034 (3)0.0191 (3)0.0036 (3)
O10.0440 (10)0.0464 (10)0.0716 (12)0.0070 (8)0.0217 (9)0.0086 (9)
C10.0500 (15)0.0384 (14)0.0544 (16)0.0029 (12)0.0197 (13)0.0058 (12)
C20.0686 (19)0.0444 (16)0.083 (2)0.0057 (14)0.0391 (16)0.0039 (15)
C30.099 (3)0.0467 (18)0.091 (2)0.0119 (17)0.047 (2)0.0037 (17)
C40.083 (2)0.0346 (16)0.094 (2)0.0013 (16)0.0242 (19)0.0019 (16)
C50.119 (3)0.0454 (19)0.144 (3)0.0115 (19)0.083 (3)0.000 (2)
C60.114 (3)0.0493 (19)0.120 (3)0.0035 (18)0.080 (2)0.0017 (19)
C70.0506 (15)0.0481 (15)0.0527 (16)0.0001 (13)0.0236 (13)0.0009 (13)
C80.0638 (18)0.0644 (19)0.064 (2)0.0008 (15)0.0276 (16)0.0057 (16)
C90.096 (3)0.091 (3)0.066 (2)0.010 (2)0.037 (2)0.0181 (19)
C100.087 (3)0.113 (3)0.0507 (19)0.017 (2)0.0218 (19)0.002 (2)
C110.074 (2)0.099 (3)0.062 (2)0.0126 (19)0.0089 (18)0.016 (2)
C120.0689 (19)0.0671 (19)0.0585 (19)0.0118 (16)0.0195 (16)0.0020 (15)
C130.0473 (15)0.0331 (13)0.0570 (17)0.0022 (11)0.0228 (13)0.0001 (12)
C140.0566 (17)0.0376 (14)0.0546 (17)0.0023 (12)0.0208 (14)0.0009 (12)
C150.088 (2)0.0537 (17)0.0581 (18)0.0001 (17)0.0334 (17)0.0043 (15)
C160.090 (2)0.0592 (19)0.083 (2)0.0169 (17)0.053 (2)0.0038 (17)
C170.0638 (19)0.0553 (18)0.081 (2)0.0141 (15)0.0363 (17)0.0095 (17)
C180.0564 (17)0.0451 (15)0.0610 (17)0.0031 (13)0.0254 (14)0.0045 (13)
C190.0643 (19)0.0597 (19)0.0576 (19)0.0071 (15)0.0140 (15)0.0010 (15)
N200.0771 (18)0.0701 (18)0.0536 (16)0.0213 (15)0.0020 (13)0.0056 (14)
C210.0540 (17)0.071 (2)0.0556 (19)0.0042 (16)0.0077 (15)0.0050 (17)
N220.0786 (18)0.0664 (17)0.0721 (17)0.0081 (14)0.0091 (14)0.0047 (15)
C230.092 (3)0.077 (3)0.116 (3)0.006 (2)0.023 (2)0.018 (2)
C240.099 (3)0.127 (4)0.117 (4)0.009 (3)0.025 (3)0.057 (3)
C250.089 (3)0.153 (4)0.072 (3)0.027 (3)0.010 (2)0.038 (3)
C260.067 (2)0.106 (3)0.059 (2)0.012 (2)0.0026 (17)0.002 (2)
P20.0565 (4)0.0461 (4)0.0431 (4)0.0054 (3)0.0156 (3)0.0045 (3)
O20.0632 (12)0.0670 (12)0.0586 (12)0.0165 (10)0.0093 (9)0.0092 (10)
C270.0675 (18)0.0471 (15)0.0407 (15)0.0036 (14)0.0177 (14)0.0023 (12)
C280.073 (2)0.0579 (18)0.0476 (16)0.0048 (15)0.0185 (14)0.0008 (14)
C290.090 (2)0.079 (2)0.0545 (19)0.0183 (19)0.0302 (18)0.0005 (17)
C300.133 (3)0.080 (2)0.057 (2)0.007 (2)0.032 (2)0.0119 (18)
C310.123 (3)0.102 (3)0.085 (3)0.034 (3)0.031 (2)0.044 (2)
C320.087 (2)0.095 (3)0.079 (2)0.020 (2)0.032 (2)0.026 (2)
C330.0635 (17)0.0411 (14)0.0449 (15)0.0039 (13)0.0254 (14)0.0032 (12)
C340.074 (2)0.0526 (18)0.0677 (19)0.0069 (16)0.0290 (16)0.0058 (15)
C350.095 (3)0.0499 (19)0.106 (3)0.0034 (19)0.048 (2)0.0115 (19)
C360.086 (3)0.077 (2)0.095 (3)0.027 (2)0.035 (2)0.007 (2)
C370.071 (2)0.088 (2)0.074 (2)0.0184 (19)0.0108 (17)0.011 (2)
C380.071 (2)0.0598 (18)0.0625 (19)0.0109 (16)0.0159 (16)0.0121 (15)
C390.0469 (15)0.0439 (15)0.0452 (15)0.0003 (12)0.0134 (12)0.0017 (12)
C400.0451 (14)0.0540 (16)0.0409 (14)0.0046 (12)0.0118 (12)0.0015 (13)
C410.0615 (18)0.076 (2)0.0440 (16)0.0086 (16)0.0189 (14)0.0014 (15)
C420.078 (2)0.070 (2)0.0513 (18)0.0105 (17)0.0161 (16)0.0166 (16)
C430.077 (2)0.0509 (17)0.067 (2)0.0012 (15)0.0200 (16)0.0128 (16)
C440.0658 (18)0.0517 (17)0.0573 (18)0.0040 (14)0.0236 (14)0.0043 (14)
C450.0651 (18)0.0654 (18)0.0494 (16)0.0061 (15)0.0204 (14)0.0058 (14)
N460.0513 (14)0.0871 (18)0.0620 (15)0.0015 (14)0.0239 (13)0.0205 (14)
C470.0514 (17)0.0470 (15)0.0569 (17)0.0022 (13)0.0180 (14)0.0001 (13)
N480.0519 (15)0.0629 (16)0.0865 (19)0.0028 (12)0.0244 (14)0.0023 (14)
C490.051 (2)0.067 (2)0.132 (3)0.0039 (17)0.012 (2)0.006 (2)
C500.087 (3)0.075 (2)0.094 (3)0.020 (2)0.010 (2)0.003 (2)
C510.109 (3)0.069 (2)0.059 (2)0.019 (2)0.020 (2)0.0099 (17)
C520.0700 (19)0.0587 (18)0.0553 (18)0.0100 (15)0.0260 (16)0.0065 (15)
Geometric parameters (Å, º) top
P1—O11.4866 (17)P2—O21.4782 (18)
P1—C11.798 (2)P2—C331.797 (3)
P1—C71.798 (3)P2—C271.805 (3)
P1—C131.808 (2)P2—C391.806 (3)
C1—C21.364 (3)C27—C321.380 (4)
C1—C61.378 (4)C27—C281.381 (4)
C2—C31.382 (4)C28—C291.386 (4)
C2—H20.9300C28—H280.9300
C3—C41.365 (4)C29—C301.358 (4)
C3—H30.9300C29—H290.9300
C4—C51.338 (4)C30—C311.361 (5)
C4—H40.9300C30—H300.9300
C5—C61.374 (4)C31—C321.378 (5)
C5—H50.9300C31—H310.9300
C6—H60.9300C32—H320.9300
C7—C121.387 (4)C33—C341.381 (3)
C7—C81.391 (3)C33—C381.382 (4)
C8—C91.370 (4)C34—C351.382 (4)
C8—H80.9300C34—H340.9300
C9—C101.372 (5)C35—C361.363 (4)
C9—H90.9300C35—H350.9300
C10—C111.364 (4)C36—C371.365 (4)
C10—H100.9300C36—H360.9300
C11—C121.385 (4)C37—C381.379 (4)
C11—H110.9300C37—H370.9300
C12—H120.9300C38—H380.9300
C13—C181.391 (3)C39—C441.387 (3)
C13—C141.416 (3)C39—C401.398 (3)
C14—C151.386 (3)C40—C411.382 (3)
C14—C191.516 (4)C40—C451.522 (3)
C15—C161.374 (4)C41—C421.381 (4)
C15—H150.9300C41—H410.9300
C16—C171.364 (4)C42—C431.360 (4)
C16—H160.9300C42—H420.9300
C17—C181.376 (3)C43—C441.380 (4)
C17—H170.9300C43—H430.9300
C18—H180.9300C44—H440.9300
C19—N201.431 (3)C45—N461.442 (3)
C19—H19A0.9700C45—H45A0.9700
C19—H19B0.9700C45—H45B0.9700
N20—C211.350 (4)N46—C471.357 (3)
N20—H200.895 (10)N46—H460.899 (10)
C21—N221.335 (3)C47—N481.326 (3)
C21—C261.391 (4)C47—C521.398 (4)
N22—C231.339 (4)N48—C491.350 (4)
C23—C241.346 (5)C49—C501.350 (5)
C23—H230.9300C49—H490.9300
C24—C251.366 (6)C50—C511.370 (5)
C24—H240.9300C50—H500.9300
C25—C261.363 (5)C51—C521.348 (4)
C25—H250.9300C51—H510.9300
C26—H260.9300C52—H520.9300
O1—P1—C1112.39 (11)O2—P2—C33112.62 (12)
O1—P1—C7110.16 (11)O2—P2—C27111.44 (12)
C1—P1—C7106.34 (12)C33—P2—C27106.42 (12)
O1—P1—C13112.55 (10)O2—P2—C39114.12 (11)
C1—P1—C13106.98 (11)C33—P2—C39104.94 (11)
C7—P1—C13108.14 (12)C27—P2—C39106.73 (12)
C2—C1—C6117.7 (2)C32—C27—C28118.0 (3)
C2—C1—P1124.1 (2)C32—C27—P2118.3 (2)
C6—C1—P1118.0 (2)C28—C27—P2123.6 (2)
C1—C2—C3120.9 (3)C27—C28—C29120.5 (3)
C1—C2—H2119.5C27—C28—H28119.7
C3—C2—H2119.5C29—C28—H28119.7
C4—C3—C2119.8 (3)C30—C29—C28120.5 (3)
C4—C3—H3120.1C30—C29—H29119.8
C2—C3—H3120.1C28—C29—H29119.8
C5—C4—C3120.2 (3)C29—C30—C31119.7 (3)
C5—C4—H4119.9C29—C30—H30120.2
C3—C4—H4119.9C31—C30—H30120.2
C4—C5—C6120.2 (3)C30—C31—C32120.5 (3)
C4—C5—H5119.9C30—C31—H31119.8
C6—C5—H5119.9C32—C31—H31119.8
C5—C6—C1121.2 (3)C31—C32—C27120.8 (3)
C5—C6—H6119.4C31—C32—H32119.6
C1—C6—H6119.4C27—C32—H32119.6
C12—C7—C8118.8 (3)C34—C33—C38118.4 (3)
C12—C7—P1123.3 (2)C34—C33—P2119.4 (2)
C8—C7—P1117.9 (2)C38—C33—P2122.3 (2)
C9—C8—C7120.4 (3)C33—C34—C35120.3 (3)
C9—C8—H8119.8C33—C34—H34119.9
C7—C8—H8119.8C35—C34—H34119.9
C8—C9—C10120.3 (3)C36—C35—C34120.2 (3)
C8—C9—H9119.9C36—C35—H35119.9
C10—C9—H9119.9C34—C35—H35119.9
C11—C10—C9120.2 (3)C35—C36—C37120.5 (3)
C11—C10—H10119.9C35—C36—H36119.7
C9—C10—H10119.9C37—C36—H36119.7
C10—C11—C12120.3 (3)C36—C37—C38119.4 (3)
C10—C11—H11119.9C36—C37—H37120.3
C12—C11—H11119.9C38—C37—H37120.3
C11—C12—C7120.0 (3)C37—C38—C33121.2 (3)
C11—C12—H12120.0C37—C38—H38119.4
C7—C12—H12120.0C33—C38—H38119.4
C18—C13—C14118.8 (2)C44—C39—C40119.2 (2)
C18—C13—P1120.6 (2)C44—C39—P2120.30 (19)
C14—C13—P1120.59 (19)C40—C39—P2120.45 (19)
C15—C14—C13118.0 (2)C41—C40—C39118.2 (2)
C15—C14—C19120.2 (2)C41—C40—C45121.4 (2)
C13—C14—C19121.7 (2)C39—C40—C45120.4 (2)
C16—C15—C14121.5 (3)C42—C41—C40121.8 (3)
C16—C15—H15119.2C42—C41—H41119.1
C14—C15—H15119.2C40—C41—H41119.1
C17—C16—C15120.8 (3)C43—C42—C41120.0 (3)
C17—C16—H16119.6C43—C42—H42120.0
C15—C16—H16119.6C41—C42—H42120.0
C16—C17—C18119.1 (3)C42—C43—C44119.4 (3)
C16—C17—H17120.4C42—C43—H43120.3
C18—C17—H17120.4C44—C43—H43120.3
C17—C18—C13121.7 (3)C43—C44—C39121.4 (3)
C17—C18—H18119.1C43—C44—H44119.3
C13—C18—H18119.1C39—C44—H44119.3
N20—C19—C14115.5 (2)N46—C45—C40115.4 (2)
N20—C19—H19A108.4N46—C45—H45A108.4
C14—C19—H19A108.4C40—C45—H45A108.4
N20—C19—H19B108.4N46—C45—H45B108.4
C14—C19—H19B108.4C40—C45—H45B108.4
H19A—C19—H19B107.5H45A—C45—H45B107.5
C21—N20—C19122.2 (3)C47—N46—C45122.9 (2)
C21—N20—H20120 (2)C47—N46—H46117.7 (19)
C19—N20—H20117 (2)C45—N46—H46118.8 (19)
N22—C21—N20117.7 (3)N48—C47—N46118.1 (3)
N22—C21—C26121.6 (3)N48—C47—C52122.9 (3)
N20—C21—C26120.7 (3)N46—C47—C52119.1 (2)
C21—N22—C23117.3 (3)C47—N48—C49115.9 (3)
N22—C23—C24124.8 (4)C50—C49—N48124.6 (3)
N22—C23—H23117.6C50—C49—H49117.7
C24—C23—H23117.6N48—C49—H49117.7
C23—C24—C25117.4 (4)C49—C50—C51118.4 (3)
C23—C24—H24121.3C49—C50—H50120.8
C25—C24—H24121.3C51—C50—H50120.8
C26—C25—C24120.6 (4)C52—C51—C50119.5 (3)
C26—C25—H25119.7C52—C51—H51120.3
C24—C25—H25119.7C50—C51—H51120.3
C25—C26—C21118.4 (4)C51—C52—C47118.8 (3)
C25—C26—H26120.8C51—C52—H52120.6
C21—C26—H26120.8C47—C52—H52120.6
O1—P1—C1—C2132.3 (2)O2—P2—C27—C3240.9 (3)
C7—P1—C1—C2107.1 (2)C33—P2—C27—C32164.1 (2)
C13—P1—C1—C28.3 (3)C39—P2—C27—C3284.3 (2)
O1—P1—C1—C643.9 (3)O2—P2—C27—C28136.7 (2)
C7—P1—C1—C676.7 (3)C33—P2—C27—C2813.6 (3)
C13—P1—C1—C6167.9 (2)C39—P2—C27—C2898.1 (2)
C6—C1—C2—C30.9 (4)C32—C27—C28—C290.5 (4)
P1—C1—C2—C3175.3 (2)P2—C27—C28—C29178.2 (2)
C1—C2—C3—C40.2 (5)C27—C28—C29—C300.5 (4)
C2—C3—C4—C50.2 (5)C28—C29—C30—C310.7 (5)
C3—C4—C5—C60.2 (6)C29—C30—C31—C320.1 (6)
C4—C5—C6—C11.0 (6)C30—C31—C32—C271.1 (6)
C2—C1—C6—C51.3 (5)C28—C27—C32—C311.3 (5)
P1—C1—C6—C5175.2 (3)P2—C27—C32—C31179.1 (3)
O1—P1—C7—C12161.6 (2)O2—P2—C33—C3426.9 (2)
C1—P1—C7—C1239.6 (3)C27—P2—C33—C3495.5 (2)
C13—P1—C7—C1275.0 (2)C39—P2—C33—C34151.6 (2)
O1—P1—C7—C816.5 (2)O2—P2—C33—C38154.4 (2)
C1—P1—C7—C8138.5 (2)C27—P2—C33—C3883.2 (2)
C13—P1—C7—C8106.9 (2)C39—P2—C33—C3829.7 (2)
C12—C7—C8—C90.6 (4)C38—C33—C34—C350.2 (4)
P1—C7—C8—C9178.8 (2)P2—C33—C34—C35178.6 (2)
C7—C8—C9—C101.0 (5)C33—C34—C35—C360.1 (5)
C8—C9—C10—C111.3 (5)C34—C35—C36—C370.3 (5)
C9—C10—C11—C120.0 (5)C35—C36—C37—C380.2 (5)
C10—C11—C12—C71.7 (5)C36—C37—C38—C330.1 (5)
C8—C7—C12—C112.0 (4)C34—C33—C38—C370.3 (4)
P1—C7—C12—C11179.9 (2)P2—C33—C38—C37178.5 (2)
O1—P1—C13—C18126.2 (2)O2—P2—C39—C44132.3 (2)
C1—P1—C13—C18109.8 (2)C33—P2—C39—C44103.9 (2)
C7—P1—C13—C184.3 (2)C27—P2—C39—C448.8 (2)
O1—P1—C13—C1450.9 (2)O2—P2—C39—C4049.7 (2)
C1—P1—C13—C1473.0 (2)C33—P2—C39—C4074.1 (2)
C7—P1—C13—C14172.84 (19)C27—P2—C39—C40173.3 (2)
C18—C13—C14—C150.5 (3)C44—C39—C40—C411.0 (4)
P1—C13—C14—C15177.76 (18)P2—C39—C40—C41178.93 (19)
C18—C13—C14—C19177.0 (2)C44—C39—C40—C45179.7 (2)
P1—C13—C14—C190.2 (3)P2—C39—C40—C451.7 (3)
C13—C14—C15—C160.1 (4)C39—C40—C41—C420.6 (4)
C19—C14—C15—C16177.5 (3)C45—C40—C41—C42180.0 (3)
C14—C15—C16—C170.3 (4)C40—C41—C42—C430.0 (4)
C15—C16—C17—C180.2 (4)C41—C42—C43—C440.4 (4)
C16—C17—C18—C130.3 (4)C42—C43—C44—C390.0 (4)
C14—C13—C18—C170.6 (4)C40—C39—C44—C430.7 (4)
P1—C13—C18—C17177.9 (2)P2—C39—C44—C43178.6 (2)
C15—C14—C19—N2016.3 (4)C41—C40—C45—N469.8 (4)
C13—C14—C19—N20166.2 (2)C39—C40—C45—N46170.9 (2)
C14—C19—N20—C2182.7 (4)C40—C45—N46—C4781.3 (3)
C19—N20—C21—N229.1 (4)C45—N46—C47—N486.7 (4)
C19—N20—C21—C26171.1 (3)C45—N46—C47—C52173.5 (2)
N20—C21—N22—C23179.2 (3)N46—C47—N48—C49179.5 (3)
C26—C21—N22—C231.0 (4)C52—C47—N48—C490.3 (4)
C21—N22—C23—C240.9 (5)C47—N48—C49—C500.6 (5)
N22—C23—C24—C250.5 (7)N48—C49—C50—C510.9 (6)
C23—C24—C25—C260.1 (6)C49—C50—C51—C520.4 (5)
C24—C25—C26—C210.2 (6)C50—C51—C52—C470.3 (5)
N22—C21—C26—C250.7 (5)N48—C47—C52—C510.7 (4)
N20—C21—C26—C25179.5 (3)N46—C47—C52—C51179.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C13–C18, C39–C44 and N48,C47,C49–C52 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N20—H20···O2i0.90 (1)1.98 (1)2.872 (3)177 (3)
N46—H46···O1ii0.90 (1)1.97 (1)2.850 (3)166 (3)
C4—H4···O1iii0.932.533.329144
C52—H52···O1ii0.932.553.282135
C3—H3···Cg1iii0.932.953.627 (3)131
C25—H25···Cg20.932.953.495 (5)119
C30—H30···Cg3iv0.932.933.772 (4)152
C42—H42···Cg3i0.932.963.746 (3)154
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z1/2; (iii) x, y+1, z; (iv) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H21N2OP
Mr384.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)24.130 (3), 8.2397 (9), 21.992 (2)
β (°) 109.108 (2)
V3)4131.5 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.35 × 0.14 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.950, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
32921, 7544, 4889
Rint0.062
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.132, 1.06
No. of reflections7544
No. of parameters514
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C13–C18, C39–C44 and N48,C47,C49–C52 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N20—H20···O2i0.895 (10)1.978 (11)2.872 (3)177 (3)
N46—H46···O1ii0.899 (10)1.971 (12)2.850 (3)166 (3)
C4—H4···O1iii0.932.5343.329143.69
C52—H52···O1ii0.932.5543.282135.36
C3—H3···Cg1iii0.932.953.627 (3)131
C25—H25···Cg20.932.953.495 (5)119
C30—H30···Cg3iv0.932.933.772 (4)152
C42—H42···Cg3i0.932.963.746 (3)154
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z1/2; (iii) x, y+1, z; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

FCC thanks the Universidad del Quindío Armenia and Universidd del Valle Cali, Colombia.

References

First citationBorah, B. J., Deb, B., Sarmah, P. P. & Dutta, D. K. (2010). J. Mol. Catal. A Chem. 319, 66–70.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoprowski, M., Sebastian, R.-M., Maraval, V., Zablocka, M., Cadierno, V., Donnadieu, B., Igau, A., Caminade, A.-M. & Majoral, J.-P. (2002). Organometallics, 21, 4680–4687.  Web of Science CSD CrossRef CAS Google Scholar
First citationLandaeta, V. R., Peruzzini, M., Herrera, V., Bianchini, C., Sánchez-Delgado, R. A., Goeta, A. E. & Zanobini, F. (2006). J. Organomet. Chem. 691, 1039–1050.  Web of Science CSD CrossRef CAS Google Scholar
First citationPfeiffer, J., Kickelbick, G. & Schubert, U. (2000). Organometallics, 19, 62–71.  Web of Science CSD CrossRef CAS Google Scholar
First citationPretorius, M., Williams, D. B. G., Roodt, A. & Muller, A. (2004). Acta Cryst. C60, o384–o386.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRibeiro, P. E. A., Donnici, C. L. & Dos Santos, E. N. (2006). J. Organomet. Chem. 691, 2037–2043.  Web of Science CrossRef CAS Google Scholar
First citationSánchez, G., García, J., Meseguer, D., Serrano, J. L., García, L., Pérez, J. & López, G. (2006). Inorg. Chim. Acta, 359, 1650–1658.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds