organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1,2-Di­phenyl­ethenyl methane­sulfonate

aZhejiang Xianju Xianle Pharmaceutical Co. Ltd, People's Republic of China, bZhejiang Silver-Elephant Bio-Engineering Co. Ltd, People's Republic of China, and cDepartment of Medicinal Chemistry, College of Pharmaceutical Science, Zhejiang University, People's Republic of China
*Correspondence e-mail: chenzhang@zju.edu.cn

(Received 8 January 2010; accepted 6 April 2010; online 24 April 2010)

In the title compound, C15H14O3S, the dihedral angle between the two benzene rings is 59.3 (8)°. The crystal structure is stabilized by weak inter­molecular C—H⋯π inter­actions between the benzene rings and the central ethyl­ene bridge, and a weak non-classical C—H⋯O hydrogen bond occurs in the structure.

Related literature

For general background to the design and synthesis of vinyl sulfonate derivatives, see: Limmert et al. (2005[Limmert, M. E., Roy, A. H. & Hartwig, J. F. (2005). J. Org. Chem. 70, 9364-9370.]). For related structures, see: Cui et al. (2009[Cui, D.-M., Meng, Q., Zheng, J. Z. & Zhang, C. (2009). Chem. Commun. pp. 1577-1579.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O3S

  • Mr = 274.33

  • Orthorhombic, P 21 21 21

  • a = 8.3789 (3) Å

  • b = 11.1397 (4) Å

  • c = 14.8365 (5) Å

  • V = 1384.82 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.41 × 0.39 × 0.29 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.887, Tmax = 0.934

  • 13673 measured reflections

  • 3163 independent reflections

  • 2606 reflections with F2 > 2.0σ(F2)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 1.00

  • 3163 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1341 Friedel Pairs

  • Flack parameter: −0.03 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.53 3.376 (2) 152
C15—H152⋯Cg1ii 0.96 2.68 3.514 (1) 145
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C9–C14 ring.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure (Rigaku Americas, 2007[Rigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.]).

Supporting information


Comment top

Vinyl sulfonates, important building blocks in organic synthesis, especially as electrophiles for cross-coupling chemistry, have received much attention in recent years. These kinds of compounds are not generally stable. The title compound (I) seems to be stable by weak intermolecular interactions (Figure 2) between the benzene rings and central ethylene bridge, and also weak non-classical H bond occurs in the structure (Table 1). In (I), all bond lengths and angles are normal (Allen et al., 1987), and the dihedral angle between the two benzene rings is 59.3 (8)° (Figure 1).

Related literature top

For general background to the design and synthesis of vinyl sulfonate derivatives, see: Limmert et al. (2005). For related structures, see: Cui et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

1,2-diphenylethyne and methanesulfonic acid in the presence of a catalytic amount of (Ph3P)AuNO3 (5 mol%) and phthalimide (10 mol%) in dichloroethane was stirred for 8 h at 373 K. It was quenched with saturated solution of NaHCO3 and then extracted with ethyl acetate (3 x 10 ml). The organic layer was washed with brine, dried over Na2SO4 and concentrated in vacuo. The residue was purified by flash chromatography to give the pure product. It proceeds efficiently to form the adduct in 73% yield.

Refinement top

All H atoms were placed in calculated positions, with C—H distances in the range 0.93-0.98 and included in the final cycles of refinement in the riding-model approximation, with Uiso(H) = k1.2Ueq(C).

Structure description top

Vinyl sulfonates, important building blocks in organic synthesis, especially as electrophiles for cross-coupling chemistry, have received much attention in recent years. These kinds of compounds are not generally stable. The title compound (I) seems to be stable by weak intermolecular interactions (Figure 2) between the benzene rings and central ethylene bridge, and also weak non-classical H bond occurs in the structure (Table 1). In (I), all bond lengths and angles are normal (Allen et al., 1987), and the dihedral angle between the two benzene rings is 59.3 (8)° (Figure 1).

For general background to the design and synthesis of vinyl sulfonate derivatives, see: Limmert et al. (2005). For related structures, see: Cui et al. (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku, 2007).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels showing the 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of (I) viewed down the a-axis. Hydrogen bonds are shown as dashed lines. Symmetry code: (i) -0.5+x, 1.5-y, -z.
(E)-1,2-Diphenylethenyl methanesulfonate top
Crystal data top
C15H14O3SF(000) = 576.00
Mr = 274.33Dx = 1.316 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ac 2abCell parameters from 11138 reflections
a = 8.3789 (3) Åθ = 3.0–27.4°
b = 11.1397 (4) ŵ = 0.23 mm1
c = 14.8365 (5) ÅT = 296 K
V = 1384.82 (8) Å3Chunk, colorless
Z = 40.41 × 0.39 × 0.29 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2606 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.026
ω scansθmax = 27.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.887, Tmax = 0.934k = 1314
13673 measured reflectionsl = 1918
3163 independent reflections
Refinement top
Refinement on F2(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.032Δρmax = 0.15 e Å3
wR(F2) = 0.092Δρmin = 0.20 e Å3
S = 1.00Extinction correction: SHELXL97 (Sheldrick, 2008)
3163 reflectionsExtinction coefficient: 0.0173 (19)
174 parametersAbsolute structure: Flack (1983), 1341 Friedel Pairs
H-atom parameters constrainedAbsolute structure parameter: 0.03 (7)
w = 1/[σ2(Fo2) + (0.0507P)2 + 0.1656P]
where P = (Fo2 + 2Fc2)/3
Crystal data top
C15H14O3SV = 1384.82 (8) Å3
Mr = 274.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.3789 (3) ŵ = 0.23 mm1
b = 11.1397 (4) ÅT = 296 K
c = 14.8365 (5) Å0.41 × 0.39 × 0.29 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3163 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2606 reflections with F2 > 2.0σ(F2)
Tmin = 0.887, Tmax = 0.934Rint = 0.026
13673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.15 e Å3
S = 1.00Δρmin = 0.20 e Å3
3163 reflectionsAbsolute structure: Flack (1983), 1341 Friedel Pairs
174 parametersAbsolute structure parameter: 0.03 (7)
Special details top

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.61979 (6)0.70614 (5)0.09128 (3)0.05358 (15)
O10.47962 (16)0.75814 (11)0.15261 (8)0.0510 (3)
O20.6188 (2)0.78154 (19)0.01488 (11)0.1006 (6)
O30.6001 (2)0.58046 (14)0.08152 (12)0.0874 (5)
C10.3992 (2)0.68265 (13)0.21579 (10)0.0413 (3)
C20.4741 (2)0.68403 (14)0.30602 (11)0.0426 (3)
C30.4984 (2)0.57768 (18)0.35269 (12)0.0528 (4)
C40.5742 (2)0.5788 (2)0.43570 (13)0.0720 (6)
C50.6285 (3)0.6847 (2)0.47133 (13)0.0848 (7)
C60.6049 (3)0.7911 (2)0.42591 (13)0.0842 (7)
C70.5272 (2)0.7914 (2)0.34348 (12)0.0635 (5)
C80.2696 (2)0.62793 (16)0.18488 (12)0.0462 (4)
C90.1462 (2)0.56029 (14)0.23397 (11)0.0429 (3)
C100.0528 (2)0.47874 (19)0.18648 (13)0.0553 (4)
C110.0714 (2)0.4185 (2)0.22810 (16)0.0649 (5)
C120.1058 (2)0.43858 (18)0.31661 (16)0.0612 (5)
C130.0169 (2)0.51958 (19)0.36462 (14)0.0608 (5)
C140.1080 (2)0.57984 (17)0.32428 (12)0.0522 (4)
C150.7899 (2)0.7341 (2)0.15510 (18)0.0714 (6)
H30.46370.50540.32820.063*
H40.58840.50750.46730.086*
H50.68150.68470.52640.102*
H60.64110.86280.45060.101*
H70.51060.86340.31320.076*
H80.25440.63310.12290.055*
H100.07410.46450.12590.066*
H110.13200.36370.19540.078*
H120.18910.39750.34430.073*
H130.04090.53410.42480.073*
H140.16770.63430.35780.063*
H1510.88290.71310.12080.086*
H1520.79400.81780.17050.086*
H1530.78650.68700.20920.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0561 (2)0.0659 (2)0.0387 (2)0.0098 (2)0.0083 (2)0.0016 (2)
O10.0526 (7)0.0517 (6)0.0486 (6)0.0011 (5)0.0082 (5)0.0140 (5)
O20.0944 (13)0.1520 (18)0.0553 (8)0.0003 (14)0.0209 (9)0.0421 (10)
O30.0931 (12)0.0749 (10)0.0941 (11)0.0237 (9)0.0330 (11)0.0417 (9)
C10.0450 (9)0.0403 (8)0.0387 (7)0.0011 (7)0.0059 (7)0.0078 (6)
C20.0409 (8)0.0484 (9)0.0384 (7)0.0008 (7)0.0074 (6)0.0006 (7)
C30.0595 (11)0.0550 (10)0.0437 (9)0.0102 (9)0.0020 (8)0.0018 (8)
C40.0755 (15)0.0970 (17)0.0437 (10)0.0231 (14)0.0026 (9)0.0089 (11)
C50.0799 (16)0.136 (2)0.0381 (9)0.0057 (19)0.0035 (11)0.0126 (13)
C60.1004 (19)0.1041 (18)0.0483 (11)0.0390 (17)0.0141 (12)0.0247 (12)
C70.0851 (15)0.0571 (10)0.0484 (9)0.0150 (11)0.0131 (10)0.0055 (9)
C80.0468 (9)0.0533 (10)0.0384 (8)0.0025 (8)0.0015 (7)0.0060 (7)
C90.0408 (9)0.0441 (8)0.0438 (8)0.0030 (7)0.0029 (7)0.0030 (7)
C100.0524 (10)0.0632 (11)0.0504 (9)0.0025 (9)0.0063 (9)0.0050 (9)
C110.0552 (12)0.0616 (12)0.0777 (14)0.0128 (10)0.0067 (10)0.0075 (11)
C120.0477 (10)0.0565 (10)0.0795 (13)0.0095 (9)0.0092 (10)0.0034 (10)
C130.0573 (12)0.0659 (12)0.0591 (11)0.0072 (10)0.0161 (10)0.0025 (10)
C140.0493 (9)0.0560 (10)0.0511 (9)0.0091 (9)0.0067 (9)0.0061 (8)
C150.0518 (11)0.0768 (15)0.0857 (16)0.0016 (11)0.0009 (10)0.0069 (13)
Geometric parameters (Å, º) top
S1—O11.5946 (13)C11—C121.363 (3)
S1—O21.4108 (18)C12—C131.370 (3)
S1—O31.4172 (17)C13—C141.380 (2)
S1—C151.739 (2)C3—H30.930
O1—C11.428 (2)C4—H40.930
C1—C21.478 (2)C5—H50.930
C1—C81.328 (2)C6—H60.930
C2—C31.387 (2)C7—H70.930
C2—C71.392 (2)C8—H80.930
C3—C41.386 (2)C10—H100.930
C4—C51.370 (4)C11—H110.930
C5—C61.378 (4)C12—H120.930
C6—C71.385 (3)C13—H130.930
C8—C91.472 (2)C14—H140.930
C9—C101.391 (2)C15—H1510.960
C9—C141.395 (2)C15—H1520.960
C10—C111.384 (3)C15—H1530.960
O1—S1—O2103.76 (10)C4—C3—H3119.9
O1—S1—O3109.35 (9)C3—C4—H4119.9
O1—S1—C15103.16 (9)C5—C4—H4119.9
O2—S1—O3120.36 (11)C4—C5—H5119.9
O2—S1—C15109.61 (12)C6—C5—H5119.9
O3—S1—C15109.16 (11)C5—C6—H6119.9
S1—O1—C1120.53 (10)C7—C6—H6119.9
O1—C1—C2112.84 (13)C2—C7—H7120.0
O1—C1—C8115.45 (14)C6—C7—H7120.0
C2—C1—C8131.66 (15)C1—C8—H8115.1
C1—C2—C3120.36 (15)C9—C8—H8115.1
C1—C2—C7120.41 (15)C9—C10—H10119.5
C3—C2—C7119.18 (16)C11—C10—H10119.5
C2—C3—C4120.20 (19)C10—C11—H11119.7
C3—C4—C5120.2 (2)C12—C11—H11119.7
C4—C5—C6120.3 (2)C11—C12—H12120.2
C5—C6—C7120.1 (2)C13—C12—H12120.2
C2—C7—C6120.0 (2)C12—C13—H13119.8
C1—C8—C9129.70 (16)C14—C13—H13119.8
C8—C9—C10118.61 (15)C9—C14—H14119.5
C8—C9—C14123.81 (15)C13—C14—H14119.5
C10—C9—C14117.37 (16)S1—C15—H151109.5
C9—C10—C11120.93 (19)S1—C15—H152109.5
C10—C11—C12120.6 (2)S1—C15—H153109.5
C11—C12—C13119.6 (2)H151—C15—H152109.5
C12—C13—C14120.5 (2)H151—C15—H153109.5
C9—C14—C13120.97 (18)H152—C15—H153109.5
C2—C3—H3119.9
O2—S1—O1—C1154.37 (13)C2—C3—C4—C51.3 (3)
O3—S1—O1—C124.77 (15)C3—C4—C5—C61.5 (3)
C15—S1—O1—C191.29 (14)C4—C5—C6—C70.6 (4)
S1—O1—C1—C290.79 (14)C5—C6—C7—C20.5 (3)
S1—O1—C1—C891.52 (17)C1—C8—C9—C10158.77 (19)
O1—C1—C2—C3135.28 (16)C1—C8—C9—C1426.6 (2)
O1—C1—C2—C741.9 (2)C8—C9—C10—C11175.86 (18)
O1—C1—C8—C9169.44 (16)C8—C9—C14—C13175.14 (18)
C2—C1—C8—C97.7 (3)C10—C9—C14—C130.5 (2)
C8—C1—C2—C347.5 (2)C14—C9—C10—C110.9 (2)
C8—C1—C2—C7135.3 (2)C9—C10—C11—C120.6 (3)
C1—C2—C3—C4177.46 (18)C10—C11—C12—C130.3 (3)
C1—C2—C7—C6176.5 (2)C11—C12—C13—C140.7 (3)
C3—C2—C7—C60.7 (3)C12—C13—C14—C90.3 (3)
C7—C2—C3—C40.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.533.376 (2)152
C15—H152···Cg1ii0.962.683.514 (1)145
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14O3S
Mr274.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.3789 (3), 11.1397 (4), 14.8365 (5)
V3)1384.82 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.41 × 0.39 × 0.29
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.887, 0.934
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
13673, 3163, 2606
Rint0.026
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.00
No. of reflections3163
No. of parameters174
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.20
Absolute structureFlack (1983), 1341 Friedel Pairs
Absolute structure parameter0.03 (7)

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.9302.5253.376 (2)152
C15—H152···Cg1ii0.9602.6803.514 (1)145
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

Mr Jianming Gu of the X-ray crystallography facility of Zhejiang University is acknowledged for assistance with the crystal structure analysis.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCui, D.-M., Meng, Q., Zheng, J. Z. & Zhang, C. (2009). Chem. Commun. pp. 1577–1579.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLimmert, M. E., Roy, A. H. & Hartwig, J. F. (2005). J. Org. Chem. 70, 9364–9370.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds