organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of 1-cyclo­hexyl-3-(2-furo­yl)thio­urea

aInstituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, Cuba, bInstituto de Química, UNAM, Mexico, and cEscuela Superior de Física y Matemática, IPN, Mexico
*Correspondence e-mail: oestevezh@yahoo.com

(Received 24 March 2010; accepted 13 April 2010; online 17 April 2010)

The title compound, C12H16N2O2S, was synthesized from furoyl isothio­cyanate and cyclo­hexyl­amine in dry acetone, and the crystal structure redetermined. The thio­urea group is in the thio­amide form. The structure [Otazo-Sánchez et al. (2001[Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218] has been redetermined in order to establish the intra- and inter­molecular inter­actions. The transcis geometry of the thio­urea group is stabilized by intra­molecular hydrogen bonding between the carbonyl and cis-thio­amide groups, resulting in a pseudo-S(6) planar ring which makes a dihedral angle of 3.24 (6)° with the 2-furoyl group and a torsion angle of −84.3 (2)° with the cyclo­hexyl group. There is also an intra­molecular hydrogen bond between the furan O atom and the other thio­amide H atom. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds, forming chains along [010].

Related literature

For general background to the applications of aroylthio­ureas in coordination chemistry and mol­ecular electronics, see: Aly et al. (2007[Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73-93.]); Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.]); Duque et al. (2009[Duque, J., Estévez-Hernández, O., Reguera, E., Ellena, J. & Corrêa, R. S. (2009). J. Coord. Chem. 62, 2804-2813.]); Estévez-Hernández et al. (2006[Estévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2006). Spectrochim. Acta (A), 64, 961-971.]). For related structures, see: Estévez-Hernández et al. (2008[Estévez-Hernández, O., Duque, J., Ellena, J. & Corrêa, R. S. (2008). Acta Cryst. E64, o1157.]). For the synthesis, see: Otazo-Sánchez et al. (2001[Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2O2S

  • Mr = 252.33

  • Orthorhombic, P b c a

  • a = 7.2667 (5) Å

  • b = 10.2058 (7) Å

  • c = 34.239 (3) Å

  • V = 2539.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.37 × 0.34 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.914, Tmax = 0.946

  • 30412 measured reflections

  • 2232 independent reflections

  • 2175 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.072

  • S = 1.20

  • 2232 reflections

  • 160 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.83 (2) 2.329 (19) 2.7342 (17) 110.8 (16)
N1—H1⋯O2i 0.83 (2) 2.32 (2) 3.0799 (18) 153.0 (18)
N2—H2⋯O2 0.83 (2) 1.983 (19) 2.6574 (18) 138.0 (18)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Aroylthioureas have applications in metal complexes and molecular electronics (Aly et al., 2007, Duque et al., 2009). Coordination chemistry of such derivatives is more varied than that of simple thiourea and physiochemical properties result in a number of potential technical and analytical applications (Koch, 2001, Estévez-Hernández et al., 2006). The structure of the title compound (I), Fig.1, has been re-determined and the results adds significantly to the information already in the public domain (Otazo-Sánchez et al., 2001), especially about the intra and intermolecular interactions (not reported previously). The data and the refinement of the structure are also of a little better quality (present refinement: R: 0.033 and wR: 0.072; previous refinement: R: 0.031 and wR: 0.082), because it was measured at low temperature (100 °K) to diminish disorder of the atoms in the unit cell. The main bond lengths and angles are are within the ranges obtained for similar compounds (Estévez-Hernández et al., 2006). The C6—S1 and C5—O1 bonds show typical double-bond character. However, the C—N bond lengths, C5—N1, C6—N1, C6—N2 are shorter than the normal C—N single-bond length of about 1.48 Å. These results can be explained by the existence of resonance in this part of the molecule. The central thiourea fragment (N1/C6/S1/N2) makes dihedral angle of 3.24 (6) ° with the 2-furoyl group (O1/O2/C5/C1—C4/) and a torsion angle of -84.3 (2)° with the cyclohexyl group (C6—N2—C7—C8), respectively. The trans-cis geometry in the thiourea moiety is stabilized by the N2—H2···O2 hydrogen bond (Fig.1 and Table 1). An additional intramolecular hydrogen bond N1—H1···O1 is observed. In the crystal structure symmetry related molecules are linked by N1—H1···O2 interactions to form one-dimensional chains along the b axis (Fig. 2 and Table 1).

Related literature top

For general background to the applications of aroylthioureas in metal complexes and molecular electronics, see: Aly et al. (2007); Koch (2001); Duque et al. (2009); Estévez-Hernández et al. (2006). For related structures, see: Estévez-Hernández et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).

Experimental top

The title compound, (I), was synthesized according to a procedure described by Otazo-Sánchez et al. (2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with cyclohexylamine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p. 70-71 °C). Elemental analysis for C12H16N2O2S found: C 57.28, H 6.18, N 11.08, S 12.36 %; calculated: C 57.14, H 6.35, N 11.11, S 12.70 %.

Refinement top

All H atoms were refined with Uiso(H)=1.2Ueq(C/N).

Structure description top

Aroylthioureas have applications in metal complexes and molecular electronics (Aly et al., 2007, Duque et al., 2009). Coordination chemistry of such derivatives is more varied than that of simple thiourea and physiochemical properties result in a number of potential technical and analytical applications (Koch, 2001, Estévez-Hernández et al., 2006). The structure of the title compound (I), Fig.1, has been re-determined and the results adds significantly to the information already in the public domain (Otazo-Sánchez et al., 2001), especially about the intra and intermolecular interactions (not reported previously). The data and the refinement of the structure are also of a little better quality (present refinement: R: 0.033 and wR: 0.072; previous refinement: R: 0.031 and wR: 0.082), because it was measured at low temperature (100 °K) to diminish disorder of the atoms in the unit cell. The main bond lengths and angles are are within the ranges obtained for similar compounds (Estévez-Hernández et al., 2006). The C6—S1 and C5—O1 bonds show typical double-bond character. However, the C—N bond lengths, C5—N1, C6—N1, C6—N2 are shorter than the normal C—N single-bond length of about 1.48 Å. These results can be explained by the existence of resonance in this part of the molecule. The central thiourea fragment (N1/C6/S1/N2) makes dihedral angle of 3.24 (6) ° with the 2-furoyl group (O1/O2/C5/C1—C4/) and a torsion angle of -84.3 (2)° with the cyclohexyl group (C6—N2—C7—C8), respectively. The trans-cis geometry in the thiourea moiety is stabilized by the N2—H2···O2 hydrogen bond (Fig.1 and Table 1). An additional intramolecular hydrogen bond N1—H1···O1 is observed. In the crystal structure symmetry related molecules are linked by N1—H1···O2 interactions to form one-dimensional chains along the b axis (Fig. 2 and Table 1).

For general background to the applications of aroylthioureas in metal complexes and molecular electronics, see: Aly et al. (2007); Koch (2001); Duque et al. (2009); Estévez-Hernández et al. (2006). For related structures, see: Estévez-Hernández et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50 % probability level. The intramolecular N—H···O hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. View of the crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
1-cyclohexyl-3-(2-furoyl)thiourea top
Crystal data top
C12H16N2O2SF(000) = 1072
Mr = 252.33Dx = 1.32 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9926 reflections
a = 7.2667 (5) Åθ = 2.9–25.1°
b = 10.2058 (7) ŵ = 0.25 mm1
c = 34.239 (3) ÅT = 100 K
V = 2539.3 (3) Å3Prism, colourless
Z = 80.37 × 0.34 × 0.23 mm
Data collection top
Bruker APEXII CCD
diffractometer
2232 independent reflections
Radiation source: fine-focus sealed tube2175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.333 pixels mm-1θmax = 25.0°, θmin = 2.4°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 1212
Tmin = 0.914, Tmax = 0.946l = 4040
30412 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0145P)2 + 2.5358P]
where P = (Fo2 + 2Fc2)/3
2232 reflections(Δ/σ)max = 0.001
160 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H16N2O2SV = 2539.3 (3) Å3
Mr = 252.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.2667 (5) ŵ = 0.25 mm1
b = 10.2058 (7) ÅT = 100 K
c = 34.239 (3) Å0.37 × 0.34 × 0.23 mm
Data collection top
Bruker APEXII CCD
diffractometer
2232 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2175 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.946Rint = 0.019
30412 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.25 e Å3
2232 reflectionsΔρmin = 0.22 e Å3
160 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.02582 (6)0.83305 (4)0.380695 (12)0.01791 (12)
O10.23646 (16)0.91176 (11)0.51723 (3)0.0176 (3)
O20.20639 (16)1.18582 (10)0.45356 (3)0.0175 (3)
N10.15353 (19)0.96757 (14)0.44114 (4)0.0150 (3)
N20.0950 (2)1.08928 (14)0.38546 (4)0.0166 (3)
C10.2661 (2)1.03689 (15)0.50384 (5)0.0145 (3)
C20.3595 (2)1.10760 (16)0.53071 (5)0.0179 (4)
H2A0.39781.19630.52840.022*
C30.3890 (2)1.02359 (17)0.56302 (5)0.0188 (4)
H3A0.44991.04510.58670.023*
C40.3138 (2)0.90723 (17)0.55358 (5)0.0194 (4)
H4A0.31450.83210.570.023*
C50.2064 (2)1.07079 (15)0.46440 (5)0.0142 (3)
C60.0933 (2)0.97236 (16)0.40230 (5)0.0149 (3)
C70.0241 (2)1.11541 (16)0.34625 (5)0.0158 (3)
H7A0.08591.05840.34180.019*
C80.1656 (2)1.08560 (17)0.31451 (5)0.0195 (4)
H8A0.27621.14080.31840.023*
H8B0.20350.99260.31620.023*
C90.0824 (3)1.11309 (17)0.27440 (5)0.0213 (4)
H9A0.0231.05350.26990.026*
H9B0.17561.09560.2540.026*
C100.0172 (2)1.25554 (18)0.27119 (5)0.0223 (4)
H10A0.12471.31490.27260.027*
H10B0.04341.2690.24560.027*
C110.1176 (2)1.28941 (17)0.30388 (5)0.0218 (4)
H11A0.23261.23890.30020.026*
H11B0.14861.38380.30250.026*
C120.0375 (2)1.25877 (16)0.34414 (5)0.0175 (4)
H12A0.13161.27560.36440.021*
H12B0.06891.31680.34930.021*
H10.167 (3)0.894 (2)0.4510 (5)0.021*
H20.139 (3)1.1503 (19)0.3985 (6)0.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0206 (2)0.0144 (2)0.0188 (2)0.00266 (17)0.00123 (16)0.00125 (16)
O10.0224 (6)0.0128 (6)0.0175 (5)0.0014 (5)0.0014 (5)0.0024 (5)
O20.0222 (6)0.0114 (6)0.0190 (6)0.0007 (5)0.0007 (5)0.0007 (5)
N10.0179 (7)0.0112 (7)0.0159 (7)0.0005 (6)0.0013 (6)0.0024 (6)
N20.0196 (7)0.0143 (7)0.0158 (7)0.0012 (6)0.0026 (6)0.0005 (6)
C10.0139 (8)0.0112 (8)0.0185 (8)0.0022 (6)0.0037 (7)0.0011 (6)
C20.0188 (8)0.0137 (8)0.0213 (8)0.0013 (7)0.0014 (7)0.0031 (7)
C30.0172 (8)0.0234 (9)0.0159 (8)0.0036 (7)0.0010 (7)0.0028 (7)
C40.0219 (9)0.0221 (9)0.0141 (8)0.0032 (7)0.0005 (7)0.0036 (7)
C50.0101 (8)0.0145 (8)0.0179 (8)0.0013 (6)0.0026 (6)0.0013 (6)
C60.0105 (8)0.0167 (8)0.0174 (8)0.0009 (6)0.0005 (6)0.0001 (6)
C70.0157 (8)0.0159 (8)0.0159 (8)0.0002 (7)0.0018 (7)0.0002 (6)
C80.0195 (8)0.0181 (8)0.0211 (8)0.0036 (7)0.0016 (7)0.0005 (7)
C90.0236 (9)0.0216 (9)0.0187 (8)0.0011 (7)0.0032 (7)0.0021 (7)
C100.0257 (9)0.0244 (9)0.0169 (8)0.0026 (8)0.0001 (7)0.0038 (7)
C110.0251 (9)0.0207 (8)0.0196 (8)0.0057 (7)0.0019 (7)0.0019 (7)
C120.0191 (8)0.0170 (8)0.0165 (8)0.0029 (7)0.0002 (7)0.0006 (6)
Geometric parameters (Å, º) top
S1—C61.6760 (16)C7—C81.527 (2)
O1—C41.3665 (19)C7—C121.532 (2)
O1—C11.3739 (19)C7—H7A1
O2—C51.2313 (19)C8—C91.527 (2)
N1—C51.376 (2)C8—H8A0.99
N1—C61.401 (2)C8—H8B0.99
N1—H10.83 (2)C9—C101.533 (2)
N2—C61.325 (2)C9—H9A0.99
N2—C71.462 (2)C9—H9B0.99
N2—H20.83 (2)C10—C111.527 (2)
C1—C21.352 (2)C10—H10A0.99
C1—C51.460 (2)C10—H10B0.99
C2—C31.416 (2)C11—C121.529 (2)
C2—H2A0.95C11—H11A0.99
C3—C41.346 (2)C11—H11B0.99
C3—H3A0.95C12—H12A0.99
C4—H4A0.95C12—H12B0.99
C4—O1—C1105.71 (13)C9—C8—C7109.70 (14)
C5—N1—C6127.62 (14)C9—C8—H8A109.7
C5—N1—H1115.0 (13)C7—C8—H8A109.7
C6—N1—H1117.2 (13)C9—C8—H8B109.7
C6—N2—C7124.08 (14)C7—C8—H8B109.7
C6—N2—H2116.5 (13)H8A—C8—H8B108.2
C7—N2—H2119.4 (13)C8—C9—C10111.18 (14)
C2—C1—O1110.36 (14)C8—C9—H9A109.4
C2—C1—C5130.70 (15)C10—C9—H9A109.4
O1—C1—C5118.84 (13)C8—C9—H9B109.4
C1—C2—C3106.52 (15)C10—C9—H9B109.4
C1—C2—H2A126.7H9A—C9—H9B108
C3—C2—H2A126.7C11—C10—C9111.13 (14)
C4—C3—C2106.57 (15)C11—C10—H10A109.4
C4—C3—H3A126.7C9—C10—H10A109.4
C2—C3—H3A126.7C11—C10—H10B109.4
C3—C4—O1110.83 (15)C9—C10—H10B109.4
C3—C4—H4A124.6H10A—C10—H10B108
O1—C4—H4A124.6C10—C11—C12111.76 (14)
O2—C5—N1123.74 (15)C10—C11—H11A109.3
O2—C5—C1120.34 (14)C12—C11—H11A109.3
N1—C5—C1115.92 (14)C10—C11—H11B109.3
N2—C6—N1116.20 (14)C12—C11—H11B109.3
N2—C6—S1125.06 (12)H11A—C11—H11B107.9
N1—C6—S1118.74 (12)C11—C12—C7110.44 (13)
N2—C7—C8112.33 (13)C11—C12—H12A109.6
N2—C7—C12108.69 (13)C7—C12—H12A109.6
C8—C7—C12110.71 (13)C11—C12—H12B109.6
N2—C7—H7A108.3C7—C12—H12B109.6
C8—C7—H7A108.3H12A—C12—H12B108.1
C12—C7—H7A108.3
C4—O1—C1—C20.37 (17)C7—N2—C6—S15.0 (2)
C4—O1—C1—C5177.02 (14)C5—N1—C6—N23.2 (2)
O1—C1—C2—C30.65 (18)C5—N1—C6—S1176.93 (13)
C5—C1—C2—C3176.78 (16)C6—N2—C7—C884.29 (19)
C1—C2—C3—C40.68 (19)C6—N2—C7—C12152.86 (15)
C2—C3—C4—O10.47 (19)N2—C7—C8—C9179.24 (14)
C1—O1—C4—C30.08 (18)C12—C7—C8—C959.05 (18)
C6—N1—C5—O20.4 (3)C7—C8—C9—C1057.79 (19)
C6—N1—C5—C1179.07 (15)C8—C9—C10—C1155.4 (2)
C2—C1—C5—O214.7 (3)C9—C10—C11—C1253.9 (2)
O1—C1—C5—O2169.45 (14)C10—C11—C12—C755.05 (19)
C2—C1—C5—N1164.83 (17)N2—C7—C12—C11178.47 (13)
O1—C1—C5—N111.0 (2)C8—C7—C12—C1157.71 (18)
C7—N2—C6—N1175.11 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.83 (2)2.329 (19)2.7342 (17)110.8 (16)
N1—H1···O2i0.83 (2)2.32 (2)3.0799 (18)153.0 (18)
N2—H2···O20.83 (2)1.983 (19)2.6574 (18)138.0 (18)
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC12H16N2O2S
Mr252.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)7.2667 (5), 10.2058 (7), 34.239 (3)
V3)2539.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.37 × 0.34 × 0.23
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.914, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
30412, 2232, 2175
Rint0.019
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.072, 1.20
No. of reflections2232
No. of parameters160
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.83 (2)2.329 (19)2.7342 (17)110.8 (16)
N1—H1···O2i0.83 (2)2.32 (2)3.0799 (18)153.0 (18)
N2—H2···O20.83 (2)1.983 (19)2.6574 (18)138.0 (18)
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

OE thanks CONACyT of México for research grant No. 61541. JD and HY-M thank CONACyT of México for research grants 82575 and J00.04.45.

References

First citationAly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationDuque, J., Estévez-Hernández, O., Reguera, E., Ellena, J. & Corrêa, R. S. (2009). J. Coord. Chem. 62, 2804–2813.  Web of Science CSD CrossRef CAS Google Scholar
First citationEstévez-Hernández, O., Duque, J., Ellena, J. & Corrêa, R. S. (2008). Acta Cryst. E64, o1157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEstévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2006). Spectrochim. Acta (A), 64, 961–971.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds