organic compounds
Redetermination of 1-cyclohexyl-3-(2-furoyl)thiourea
aInstituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, Cuba, bInstituto de Química, UNAM, Mexico, and cEscuela Superior de Física y Matemática, IPN, Mexico
*Correspondence e-mail: oestevezh@yahoo.com
The title compound, C12H16N2O2S, was synthesized from furoyl isothiocyanate and cyclohexylamine in dry acetone, and the redetermined. The thiourea group is in the thioamide form. The structure [Otazo-Sánchez et al. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218] has been redetermined in order to establish the intra- and intermolecular interactions. The trans–cis geometry of the thiourea group is stabilized by intramolecular hydrogen bonding between the carbonyl and cis-thioamide groups, resulting in a pseudo-S(6) planar ring which makes a dihedral angle of 3.24 (6)° with the 2-furoyl group and a torsion angle of −84.3 (2)° with the cyclohexyl group. There is also an intramolecular hydrogen bond between the furan O atom and the other thioamide H atom. In the molecules are linked by intermolecular N—H⋯O hydrogen bonds, forming chains along [010].
Related literature
For general background to the applications of aroylthioureas in coordination chemistry and molecular electronics, see: Aly et al. (2007); Koch (2001); Duque et al. (2009); Estévez-Hernández et al. (2006). For related structures, see: Estévez-Hernández et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810013693/bq2204sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810013693/bq2204Isup2.hkl
The title compound, (I), was synthesized according to a procedure described by Otazo-Sánchez et al. (2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with cyclohexylamine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p. 70-71 °C). Elemental analysis for C12H16N2O2S found: C 57.28, H 6.18, N 11.08, S 12.36 %; calculated: C 57.14, H 6.35, N 11.11, S 12.70 %.
Aroylthioureas have applications in metal complexes and molecular electronics (Aly et al., 2007, Duque et al., 2009). Coordination chemistry of such derivatives is more varied than that of simple thiourea and physiochemical properties result in a number of potential technical and analytical applications (Koch, 2001, Estévez-Hernández et al., 2006). The structure of the title compound (I), Fig.1, has been re-determined and the results adds significantly to the information already in the public domain (Otazo-Sánchez et al., 2001), especially about the intra and intermolecular interactions (not reported previously). The data and the
of the structure are also of a little better quality (present R: 0.033 and wR: 0.072; previous R: 0.031 and wR: 0.082), because it was measured at low temperature (100 °K) to diminish disorder of the atoms in the The main bond lengths and angles are are within the ranges obtained for similar compounds (Estévez-Hernández et al., 2006). The C6—S1 and C5—O1 bonds show typical double-bond character. However, the C—N bond lengths, C5—N1, C6—N1, C6—N2 are shorter than the normal C—N single-bond length of about 1.48 Å. These results can be explained by the existence of resonance in this part of the molecule. The central thiourea fragment (N1/C6/S1/N2) makes dihedral angle of 3.24 (6) ° with the 2-furoyl group (O1/O2/C5/C1—C4/) and a torsion angle of -84.3 (2)° with the cyclohexyl group (C6—N2—C7—C8), respectively. The trans-cis geometry in the thiourea moiety is stabilized by the N2—H2···O2 hydrogen bond (Fig.1 and Table 1). An additional intramolecular hydrogen bond N1—H1···O1 is observed. In the symmetry related molecules are linked by N1—H1···O2 interactions to form one-dimensional chains along the b axis (Fig. 2 and Table 1).For general background to the applications of aroylthioureas in metal complexes and molecular electronics, see: Aly et al. (2007); Koch (2001); Duque et al. (2009); Estévez-Hernández et al. (2006). For related structures, see: Estévez-Hernández et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).C12H16N2O2S | F(000) = 1072 |
Mr = 252.33 | Dx = 1.32 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 9926 reflections |
a = 7.2667 (5) Å | θ = 2.9–25.1° |
b = 10.2058 (7) Å | µ = 0.25 mm−1 |
c = 34.239 (3) Å | T = 100 K |
V = 2539.3 (3) Å3 | Prism, colourless |
Z = 8 | 0.37 × 0.34 × 0.23 mm |
Bruker APEXII CCD diffractometer | 2232 independent reflections |
Radiation source: fine-focus sealed tube | 2175 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 8.333 pixels mm-1 | θmax = 25.0°, θmin = 2.4° |
φ and ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | k = −12→12 |
Tmin = 0.914, Tmax = 0.946 | l = −40→40 |
30412 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.072 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.20 | w = 1/[σ2(Fo2) + (0.0145P)2 + 2.5358P] where P = (Fo2 + 2Fc2)/3 |
2232 reflections | (Δ/σ)max = 0.001 |
160 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C12H16N2O2S | V = 2539.3 (3) Å3 |
Mr = 252.33 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 7.2667 (5) Å | µ = 0.25 mm−1 |
b = 10.2058 (7) Å | T = 100 K |
c = 34.239 (3) Å | 0.37 × 0.34 × 0.23 mm |
Bruker APEXII CCD diffractometer | 2232 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 2175 reflections with I > 2σ(I) |
Tmin = 0.914, Tmax = 0.946 | Rint = 0.019 |
30412 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.072 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.20 | Δρmax = 0.25 e Å−3 |
2232 reflections | Δρmin = −0.22 e Å−3 |
160 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.02582 (6) | 0.83305 (4) | 0.380695 (12) | 0.01791 (12) | |
O1 | 0.23646 (16) | 0.91176 (11) | 0.51723 (3) | 0.0176 (3) | |
O2 | 0.20639 (16) | 1.18582 (10) | 0.45356 (3) | 0.0175 (3) | |
N1 | 0.15353 (19) | 0.96757 (14) | 0.44114 (4) | 0.0150 (3) | |
N2 | 0.0950 (2) | 1.08928 (14) | 0.38546 (4) | 0.0166 (3) | |
C1 | 0.2661 (2) | 1.03689 (15) | 0.50384 (5) | 0.0145 (3) | |
C2 | 0.3595 (2) | 1.10760 (16) | 0.53071 (5) | 0.0179 (4) | |
H2A | 0.3978 | 1.1963 | 0.5284 | 0.022* | |
C3 | 0.3890 (2) | 1.02359 (17) | 0.56302 (5) | 0.0188 (4) | |
H3A | 0.4499 | 1.0451 | 0.5867 | 0.023* | |
C4 | 0.3138 (2) | 0.90723 (17) | 0.55358 (5) | 0.0194 (4) | |
H4A | 0.3145 | 0.8321 | 0.57 | 0.023* | |
C5 | 0.2064 (2) | 1.07079 (15) | 0.46440 (5) | 0.0142 (3) | |
C6 | 0.0933 (2) | 0.97236 (16) | 0.40230 (5) | 0.0149 (3) | |
C7 | 0.0241 (2) | 1.11541 (16) | 0.34625 (5) | 0.0158 (3) | |
H7A | −0.0859 | 1.0584 | 0.3418 | 0.019* | |
C8 | 0.1656 (2) | 1.08560 (17) | 0.31451 (5) | 0.0195 (4) | |
H8A | 0.2762 | 1.1408 | 0.3184 | 0.023* | |
H8B | 0.2035 | 0.9926 | 0.3162 | 0.023* | |
C9 | 0.0824 (3) | 1.11309 (17) | 0.27440 (5) | 0.0213 (4) | |
H9A | −0.023 | 1.0535 | 0.2699 | 0.026* | |
H9B | 0.1756 | 1.0956 | 0.254 | 0.026* | |
C10 | 0.0172 (2) | 1.25554 (18) | 0.27119 (5) | 0.0223 (4) | |
H10A | 0.1247 | 1.3149 | 0.2726 | 0.027* | |
H10B | −0.0434 | 1.269 | 0.2456 | 0.027* | |
C11 | −0.1176 (2) | 1.28941 (17) | 0.30388 (5) | 0.0218 (4) | |
H11A | −0.2326 | 1.2389 | 0.3002 | 0.026* | |
H11B | −0.1486 | 1.3838 | 0.3025 | 0.026* | |
C12 | −0.0375 (2) | 1.25877 (16) | 0.34414 (5) | 0.0175 (4) | |
H12A | −0.1316 | 1.2756 | 0.3644 | 0.021* | |
H12B | 0.0689 | 1.3168 | 0.3493 | 0.021* | |
H1 | 0.167 (3) | 0.894 (2) | 0.4510 (5) | 0.021* | |
H2 | 0.139 (3) | 1.1503 (19) | 0.3985 (6) | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0206 (2) | 0.0144 (2) | 0.0188 (2) | −0.00266 (17) | −0.00123 (16) | −0.00125 (16) |
O1 | 0.0224 (6) | 0.0128 (6) | 0.0175 (5) | −0.0014 (5) | −0.0014 (5) | 0.0024 (5) |
O2 | 0.0222 (6) | 0.0114 (6) | 0.0190 (6) | 0.0007 (5) | −0.0007 (5) | 0.0007 (5) |
N1 | 0.0179 (7) | 0.0112 (7) | 0.0159 (7) | 0.0005 (6) | −0.0013 (6) | 0.0024 (6) |
N2 | 0.0196 (7) | 0.0143 (7) | 0.0158 (7) | −0.0012 (6) | −0.0026 (6) | −0.0005 (6) |
C1 | 0.0139 (8) | 0.0112 (8) | 0.0185 (8) | 0.0022 (6) | 0.0037 (7) | 0.0011 (6) |
C2 | 0.0188 (8) | 0.0137 (8) | 0.0213 (8) | 0.0013 (7) | 0.0014 (7) | −0.0031 (7) |
C3 | 0.0172 (8) | 0.0234 (9) | 0.0159 (8) | 0.0036 (7) | −0.0010 (7) | −0.0028 (7) |
C4 | 0.0219 (9) | 0.0221 (9) | 0.0141 (8) | 0.0032 (7) | −0.0005 (7) | 0.0036 (7) |
C5 | 0.0101 (8) | 0.0145 (8) | 0.0179 (8) | 0.0013 (6) | 0.0026 (6) | −0.0013 (6) |
C6 | 0.0105 (8) | 0.0167 (8) | 0.0174 (8) | 0.0009 (6) | 0.0005 (6) | 0.0001 (6) |
C7 | 0.0157 (8) | 0.0159 (8) | 0.0159 (8) | −0.0002 (7) | −0.0018 (7) | −0.0002 (6) |
C8 | 0.0195 (8) | 0.0181 (8) | 0.0211 (8) | 0.0036 (7) | 0.0016 (7) | 0.0005 (7) |
C9 | 0.0236 (9) | 0.0216 (9) | 0.0187 (8) | 0.0011 (7) | 0.0032 (7) | −0.0021 (7) |
C10 | 0.0257 (9) | 0.0244 (9) | 0.0169 (8) | 0.0026 (8) | −0.0001 (7) | 0.0038 (7) |
C11 | 0.0251 (9) | 0.0207 (8) | 0.0196 (8) | 0.0057 (7) | −0.0019 (7) | 0.0019 (7) |
C12 | 0.0191 (8) | 0.0170 (8) | 0.0165 (8) | 0.0029 (7) | −0.0002 (7) | −0.0006 (6) |
S1—C6 | 1.6760 (16) | C7—C8 | 1.527 (2) |
O1—C4 | 1.3665 (19) | C7—C12 | 1.532 (2) |
O1—C1 | 1.3739 (19) | C7—H7A | 1 |
O2—C5 | 1.2313 (19) | C8—C9 | 1.527 (2) |
N1—C5 | 1.376 (2) | C8—H8A | 0.99 |
N1—C6 | 1.401 (2) | C8—H8B | 0.99 |
N1—H1 | 0.83 (2) | C9—C10 | 1.533 (2) |
N2—C6 | 1.325 (2) | C9—H9A | 0.99 |
N2—C7 | 1.462 (2) | C9—H9B | 0.99 |
N2—H2 | 0.83 (2) | C10—C11 | 1.527 (2) |
C1—C2 | 1.352 (2) | C10—H10A | 0.99 |
C1—C5 | 1.460 (2) | C10—H10B | 0.99 |
C2—C3 | 1.416 (2) | C11—C12 | 1.529 (2) |
C2—H2A | 0.95 | C11—H11A | 0.99 |
C3—C4 | 1.346 (2) | C11—H11B | 0.99 |
C3—H3A | 0.95 | C12—H12A | 0.99 |
C4—H4A | 0.95 | C12—H12B | 0.99 |
C4—O1—C1 | 105.71 (13) | C9—C8—C7 | 109.70 (14) |
C5—N1—C6 | 127.62 (14) | C9—C8—H8A | 109.7 |
C5—N1—H1 | 115.0 (13) | C7—C8—H8A | 109.7 |
C6—N1—H1 | 117.2 (13) | C9—C8—H8B | 109.7 |
C6—N2—C7 | 124.08 (14) | C7—C8—H8B | 109.7 |
C6—N2—H2 | 116.5 (13) | H8A—C8—H8B | 108.2 |
C7—N2—H2 | 119.4 (13) | C8—C9—C10 | 111.18 (14) |
C2—C1—O1 | 110.36 (14) | C8—C9—H9A | 109.4 |
C2—C1—C5 | 130.70 (15) | C10—C9—H9A | 109.4 |
O1—C1—C5 | 118.84 (13) | C8—C9—H9B | 109.4 |
C1—C2—C3 | 106.52 (15) | C10—C9—H9B | 109.4 |
C1—C2—H2A | 126.7 | H9A—C9—H9B | 108 |
C3—C2—H2A | 126.7 | C11—C10—C9 | 111.13 (14) |
C4—C3—C2 | 106.57 (15) | C11—C10—H10A | 109.4 |
C4—C3—H3A | 126.7 | C9—C10—H10A | 109.4 |
C2—C3—H3A | 126.7 | C11—C10—H10B | 109.4 |
C3—C4—O1 | 110.83 (15) | C9—C10—H10B | 109.4 |
C3—C4—H4A | 124.6 | H10A—C10—H10B | 108 |
O1—C4—H4A | 124.6 | C10—C11—C12 | 111.76 (14) |
O2—C5—N1 | 123.74 (15) | C10—C11—H11A | 109.3 |
O2—C5—C1 | 120.34 (14) | C12—C11—H11A | 109.3 |
N1—C5—C1 | 115.92 (14) | C10—C11—H11B | 109.3 |
N2—C6—N1 | 116.20 (14) | C12—C11—H11B | 109.3 |
N2—C6—S1 | 125.06 (12) | H11A—C11—H11B | 107.9 |
N1—C6—S1 | 118.74 (12) | C11—C12—C7 | 110.44 (13) |
N2—C7—C8 | 112.33 (13) | C11—C12—H12A | 109.6 |
N2—C7—C12 | 108.69 (13) | C7—C12—H12A | 109.6 |
C8—C7—C12 | 110.71 (13) | C11—C12—H12B | 109.6 |
N2—C7—H7A | 108.3 | C7—C12—H12B | 109.6 |
C8—C7—H7A | 108.3 | H12A—C12—H12B | 108.1 |
C12—C7—H7A | 108.3 | ||
C4—O1—C1—C2 | 0.37 (17) | C7—N2—C6—S1 | 5.0 (2) |
C4—O1—C1—C5 | 177.02 (14) | C5—N1—C6—N2 | 3.2 (2) |
O1—C1—C2—C3 | −0.65 (18) | C5—N1—C6—S1 | −176.93 (13) |
C5—C1—C2—C3 | −176.78 (16) | C6—N2—C7—C8 | −84.29 (19) |
C1—C2—C3—C4 | 0.68 (19) | C6—N2—C7—C12 | 152.86 (15) |
C2—C3—C4—O1 | −0.47 (19) | N2—C7—C8—C9 | 179.24 (14) |
C1—O1—C4—C3 | 0.08 (18) | C12—C7—C8—C9 | −59.05 (18) |
C6—N1—C5—O2 | 0.4 (3) | C7—C8—C9—C10 | 57.79 (19) |
C6—N1—C5—C1 | −179.07 (15) | C8—C9—C10—C11 | −55.4 (2) |
C2—C1—C5—O2 | −14.7 (3) | C9—C10—C11—C12 | 53.9 (2) |
O1—C1—C5—O2 | 169.45 (14) | C10—C11—C12—C7 | −55.05 (19) |
C2—C1—C5—N1 | 164.83 (17) | N2—C7—C12—C11 | −178.47 (13) |
O1—C1—C5—N1 | −11.0 (2) | C8—C7—C12—C11 | 57.71 (18) |
C7—N2—C6—N1 | −175.11 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.83 (2) | 2.329 (19) | 2.7342 (17) | 110.8 (16) |
N1—H1···O2i | 0.83 (2) | 2.32 (2) | 3.0799 (18) | 153.0 (18) |
N2—H2···O2 | 0.83 (2) | 1.983 (19) | 2.6574 (18) | 138.0 (18) |
Symmetry code: (i) −x+1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C12H16N2O2S |
Mr | 252.33 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 100 |
a, b, c (Å) | 7.2667 (5), 10.2058 (7), 34.239 (3) |
V (Å3) | 2539.3 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.37 × 0.34 × 0.23 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008) |
Tmin, Tmax | 0.914, 0.946 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 30412, 2232, 2175 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.072, 1.20 |
No. of reflections | 2232 |
No. of parameters | 160 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.22 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.83 (2) | 2.329 (19) | 2.7342 (17) | 110.8 (16) |
N1—H1···O2i | 0.83 (2) | 2.32 (2) | 3.0799 (18) | 153.0 (18) |
N2—H2···O2 | 0.83 (2) | 1.983 (19) | 2.6574 (18) | 138.0 (18) |
Symmetry code: (i) −x+1/2, y−1/2, z. |
Acknowledgements
OE thanks CONACyT of México for research grant No. 61541. JD and HY-M thank CONACyT of México for research grants 82575 and J00.04.45.
References
Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93. CrossRef CAS Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA. Google Scholar
Duque, J., Estévez-Hernández, O., Reguera, E., Ellena, J. & Corrêa, R. S. (2009). J. Coord. Chem. 62, 2804–2813. Web of Science CSD CrossRef CAS Google Scholar
Estévez-Hernández, O., Duque, J., Ellena, J. & Corrêa, R. S. (2008). Acta Cryst. E64, o1157. Web of Science CSD CrossRef IUCr Journals Google Scholar
Estévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2006). Spectrochim. Acta (A), 64, 961–971. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Koch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aroylthioureas have applications in metal complexes and molecular electronics (Aly et al., 2007, Duque et al., 2009). Coordination chemistry of such derivatives is more varied than that of simple thiourea and physiochemical properties result in a number of potential technical and analytical applications (Koch, 2001, Estévez-Hernández et al., 2006). The structure of the title compound (I), Fig.1, has been re-determined and the results adds significantly to the information already in the public domain (Otazo-Sánchez et al., 2001), especially about the intra and intermolecular interactions (not reported previously). The data and the refinement of the structure are also of a little better quality (present refinement: R: 0.033 and wR: 0.072; previous refinement: R: 0.031 and wR: 0.082), because it was measured at low temperature (100 °K) to diminish disorder of the atoms in the unit cell. The main bond lengths and angles are are within the ranges obtained for similar compounds (Estévez-Hernández et al., 2006). The C6—S1 and C5—O1 bonds show typical double-bond character. However, the C—N bond lengths, C5—N1, C6—N1, C6—N2 are shorter than the normal C—N single-bond length of about 1.48 Å. These results can be explained by the existence of resonance in this part of the molecule. The central thiourea fragment (N1/C6/S1/N2) makes dihedral angle of 3.24 (6) ° with the 2-furoyl group (O1/O2/C5/C1—C4/) and a torsion angle of -84.3 (2)° with the cyclohexyl group (C6—N2—C7—C8), respectively. The trans-cis geometry in the thiourea moiety is stabilized by the N2—H2···O2 hydrogen bond (Fig.1 and Table 1). An additional intramolecular hydrogen bond N1—H1···O1 is observed. In the crystal structure symmetry related molecules are linked by N1—H1···O2 interactions to form one-dimensional chains along the b axis (Fig. 2 and Table 1).