metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ-2-methyl­benzoato-κ2O:O′)bis­­[(methanol-κO)copper(II)]

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 7 April 2010; accepted 10 April 2010; online 17 April 2010)

In the title compound, [Cu2(C8H7O2)4(CH3OH)2], the Cu—O bond distances are in the range 1.943 (2)–2.149 (2) Å within a sligthly distorted square-pyramidal coordination. The Cu⋯Cu separation is 2.5912 (4) Å. In the crystal, the mol­ecules are linked into polymeric chains propagating in [001] by inter­molecular O—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For our work on the synthesis of various metal complexes of 2-methyl­benzoic acid, see: Danish et al. (2010[Danish, M., Saleem, I., Ahmad, N., Raza, A. R., Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m459-m460.]). For related structures, see: Kabbani et al. (2004[Kabbani, A. T., Zaworotko, M. J., Abourahma, H., Walsh, R. D. B. & Hammud, H. H. (2004). J. Chem. Crystallogr. 34, 749-756.]); Rao et al. (1983[Rao, V. M., Sathyanarayana, D. N. & Manohar, H. (1983). J. Chem. Soc. Dalton Trans. pp. 2167-2173.]); Sunil et al. (2008[Sunil, A. C., Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2008). Acta Cryst. E64, m553-m554.]); Xin & Liu (2008[Xin, C.-W. & Liu, F.-C. (2008). Acta Cryst. E64, m1589.]).=

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H7O2)4(CH4O)2]

  • Mr = 731.71

  • Triclinic, [P \overline 1]

  • a = 10.7474 (9) Å

  • b = 12.1403 (11) Å

  • c = 14.1709 (11) Å

  • α = 113.805 (2)°

  • β = 91.096 (3)°

  • γ = 93.238 (3)°

  • V = 1687.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 296 K

  • 0.30 × 0.14 × 0.08 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.804, Tmax = 0.898

  • 27787 measured reflections

  • 8232 independent reflections

  • 5004 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.098

  • S = 1.02

  • 8232 reflections

  • 427 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of C2–C7 and C28–C33 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O7i 0.70 (3) 2.11 (3) 2.793 (3) 167 (4)
O6—H6A⋯O2ii 0.72 (3) 2.10 (3) 2.812 (2) 174 (4)
C18—H18ACg1ii 0.96 2.98 3.749 (4) 137.00
C23—H23⋯Cg1iii 0.93 2.87 3.735 (4) 154.00
C13—H13⋯Cg2iv 0.93 2.97 3.877 (4) 165.00
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y, -z+1; (iii) -x+1, -y-1, -z; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation to synthesize various metal complexes of 2-methylbenzoic acid (Danish et al., 2010), the title compound (I) (Fig. 1) is being reported here.

The crystal structure of (II) Tetrakis(µ-2-methylbenzoato-O,O') -bis(2-methylbenzoic acid-O)-di-copper(ii) (Sunil et al., 2008) has been reported. The title compound (I) differs from (II) due to the bonding of methanol at apical positions instead of o-toluic acid. The crystal structures of (III) Tetrakis(µ-2-anilinobenzoato)-bis(methanol-copper(ii)) (Xin & Liu, 2008), (IV) Tetrakis(µ-4-chloro-3-nitrobenzoato)-bis(methanol)-di-copper(ii) (Kabbani et al., 2004) and (V) Tetrakis(µ-acetato)-bis(methanol)-di-copper(ii) (Rao et al., 1983) have also been reported which have similar environments around Cu-atoms as in (I).

Although the space group is centrosymmetric but the molecules of (I) are not centrosymmetric. The C-atoms of 2-methylbenzoato A (C1—C8), B (C9—C16), C (C19—C26) and D (C27—C34) are planar with maximum r. m. s. deviations of 0.0148, 0.0278, 0.0111 & 0.0127 Å respectively, from the mean square planes. The carboxylato groups E (O1/C1/O2), F (O3/C9/O4), G (O7/C19/O8) and H (O9/C27/O10) are of course planar. The dihedral angle between A/E, B/F, C/G and D/H is 35.01 (23), 40.19 (20), 36.09 (25) and 27.16 (33)° respectively. The oppositely bonded 2-methylbenzoato groups with Cu-atoms make dihedral angles A/C 75.77 (7)° and B/D 86.29 (7)° which confirms that asymmetric units cannot be centrosymmetric. The coordination of Cu–O bond distances range 1.943 (2)–2.149 (2) Å [Table 1] and the separation between Cu to Cu is 2.5912 (4) Å. The molecules are stabilized in the form of polymeric chains due to intermolecular H-bondings and C–H···π interactions (Table 2, Fig. 2).

Related literature top

For our work on the synthesis of various metal complexes of 2-methylbenzoic acid, see: Danish et al. (2010). For related structures, see: Kabbani et al. (2004); Rao et al. (1983); Sunil et al. (2008); Xin & Liu (2008).

Experimental top

The sodium salt of 2-methylbenzoic acid (1 g, 6.32 mmol) was dissolved in 20 ml distilled water. Cu2So4.5H2O (0.789 g, 3.16 mmol) was separately dissolved in 20 ml distilled water. The former solution was slowly added to the later under continuous stirring with the formation of greenish precipitates. The reaction mixture was refluxed for 3 h and cooled to room temperature. The residue of filtration was crystallized in methanol:water (1:1). Green plate like crystals were obtained after 48 h.

Refinement top

The coordinates of H5A and H6A were refined. The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.2 for aryl & hydroxy and 1.5 for methyl H-atoms.

Structure description top

In continuation to synthesize various metal complexes of 2-methylbenzoic acid (Danish et al., 2010), the title compound (I) (Fig. 1) is being reported here.

The crystal structure of (II) Tetrakis(µ-2-methylbenzoato-O,O') -bis(2-methylbenzoic acid-O)-di-copper(ii) (Sunil et al., 2008) has been reported. The title compound (I) differs from (II) due to the bonding of methanol at apical positions instead of o-toluic acid. The crystal structures of (III) Tetrakis(µ-2-anilinobenzoato)-bis(methanol-copper(ii)) (Xin & Liu, 2008), (IV) Tetrakis(µ-4-chloro-3-nitrobenzoato)-bis(methanol)-di-copper(ii) (Kabbani et al., 2004) and (V) Tetrakis(µ-acetato)-bis(methanol)-di-copper(ii) (Rao et al., 1983) have also been reported which have similar environments around Cu-atoms as in (I).

Although the space group is centrosymmetric but the molecules of (I) are not centrosymmetric. The C-atoms of 2-methylbenzoato A (C1—C8), B (C9—C16), C (C19—C26) and D (C27—C34) are planar with maximum r. m. s. deviations of 0.0148, 0.0278, 0.0111 & 0.0127 Å respectively, from the mean square planes. The carboxylato groups E (O1/C1/O2), F (O3/C9/O4), G (O7/C19/O8) and H (O9/C27/O10) are of course planar. The dihedral angle between A/E, B/F, C/G and D/H is 35.01 (23), 40.19 (20), 36.09 (25) and 27.16 (33)° respectively. The oppositely bonded 2-methylbenzoato groups with Cu-atoms make dihedral angles A/C 75.77 (7)° and B/D 86.29 (7)° which confirms that asymmetric units cannot be centrosymmetric. The coordination of Cu–O bond distances range 1.943 (2)–2.149 (2) Å [Table 1] and the separation between Cu to Cu is 2.5912 (4) Å. The molecules are stabilized in the form of polymeric chains due to intermolecular H-bondings and C–H···π interactions (Table 2, Fig. 2).

For our work on the synthesis of various metal complexes of 2-methylbenzoic acid, see: Danish et al. (2010). For related structures, see: Kabbani et al. (2004); Rao et al. (1983); Sunil et al. (2008); Xin & Liu (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form polymeric sheets due to the intermolecular H-bondings.
Tetrakis(µ-2-methylbenzoato-κ2O:O')bis[(methanol- κO)copper(II)] top
Crystal data top
[Cu2(C8H7O2)4(CH4O)2]Z = 2
Mr = 731.71F(000) = 756
Triclinic, P1Dx = 1.440 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7474 (9) ÅCell parameters from 5004 reflections
b = 12.1403 (11) Åθ = 1.9–28.3°
c = 14.1709 (11) ŵ = 1.32 mm1
α = 113.805 (2)°T = 296 K
β = 91.096 (3)°Plate, green
γ = 93.238 (3)°0.30 × 0.14 × 0.08 mm
V = 1687.2 (2) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
8232 independent reflections
Radiation source: fine-focus sealed tube5004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 1.9°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1516
Tmin = 0.804, Tmax = 0.898l = 1816
27787 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0377P)2]
where P = (Fo2 + 2Fc2)/3
8232 reflections(Δ/σ)max = 0.001
427 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu2(C8H7O2)4(CH4O)2]γ = 93.238 (3)°
Mr = 731.71V = 1687.2 (2) Å3
Triclinic, P1Z = 2
a = 10.7474 (9) ÅMo Kα radiation
b = 12.1403 (11) ŵ = 1.32 mm1
c = 14.1709 (11) ÅT = 296 K
α = 113.805 (2)°0.30 × 0.14 × 0.08 mm
β = 91.096 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
8232 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5004 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.898Rint = 0.047
27787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.30 e Å3
8232 reflectionsΔρmin = 0.31 e Å3
427 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.46596 (3)0.03113 (3)0.18544 (2)0.0408 (1)
Cu20.58723 (3)0.00162 (3)0.33076 (2)0.0375 (1)
O10.33402 (17)0.07793 (17)0.20094 (13)0.0491 (7)
O20.42139 (16)0.07056 (17)0.34848 (12)0.0455 (6)
O30.40272 (17)0.16577 (17)0.30278 (13)0.0491 (7)
O40.53752 (17)0.15696 (16)0.42153 (12)0.0455 (7)
O50.3622 (2)0.0618 (2)0.06817 (14)0.0594 (8)
O60.68139 (18)0.02251 (19)0.45600 (13)0.0480 (7)
O70.54674 (17)0.11478 (16)0.09317 (12)0.0457 (6)
O80.61682 (17)0.15929 (16)0.22255 (12)0.0475 (7)
O90.61515 (18)0.12928 (17)0.18536 (14)0.0519 (8)
O100.73055 (16)0.07076 (18)0.28750 (14)0.0498 (7)
C10.3345 (3)0.1038 (3)0.27850 (19)0.0434 (10)
C20.2270 (3)0.1791 (3)0.29092 (18)0.0456 (10)
C30.1056 (3)0.1725 (3)0.2599 (2)0.0603 (11)
C40.0122 (3)0.2479 (4)0.2774 (3)0.0803 (14)
C50.0399 (4)0.3253 (4)0.3202 (3)0.0863 (17)
C60.1585 (4)0.3326 (3)0.3493 (3)0.0762 (16)
C70.2525 (3)0.2584 (3)0.3367 (2)0.0558 (11)
C80.0690 (3)0.0852 (4)0.2159 (3)0.0924 (18)
C90.4503 (3)0.2038 (2)0.39346 (19)0.0415 (9)
C100.3955 (2)0.3091 (3)0.4757 (2)0.0425 (9)
C110.3564 (3)0.4071 (3)0.4575 (2)0.0531 (11)
C120.3038 (3)0.4971 (3)0.5388 (3)0.0734 (12)
C130.2873 (3)0.4904 (3)0.6324 (3)0.0799 (16)
C140.3276 (3)0.3954 (3)0.6496 (2)0.0668 (11)
C150.3833 (3)0.3061 (3)0.5714 (2)0.0533 (11)
C160.3751 (3)0.4205 (3)0.3569 (2)0.0694 (12)
C170.2436 (3)0.1088 (3)0.0821 (3)0.0784 (14)
C180.8080 (3)0.0418 (3)0.4644 (3)0.0784 (14)
C190.5962 (2)0.1844 (3)0.12745 (18)0.0411 (9)
C200.6378 (3)0.3025 (3)0.05359 (19)0.0426 (9)
C210.5751 (3)0.3735 (3)0.0404 (2)0.0530 (11)
C220.6264 (4)0.4802 (3)0.1010 (2)0.0758 (13)
C230.7336 (4)0.5161 (3)0.0737 (3)0.0876 (18)
C240.7955 (4)0.4456 (3)0.0187 (3)0.0889 (17)
C250.7459 (3)0.3403 (3)0.0815 (2)0.0686 (11)
C260.4549 (3)0.3410 (3)0.0754 (2)0.0814 (16)
C270.7166 (3)0.1278 (3)0.2308 (2)0.0465 (10)
C280.8269 (3)0.1984 (3)0.2150 (2)0.0500 (11)
C290.9268 (3)0.2476 (3)0.2875 (3)0.0651 (12)
C301.0209 (3)0.3152 (3)0.2657 (3)0.0907 (18)
C311.0204 (4)0.3331 (4)0.1767 (4)0.0993 (19)
C320.9236 (4)0.2825 (4)0.1051 (3)0.0873 (17)
C330.8266 (3)0.2161 (3)0.1243 (3)0.0690 (12)
C340.9365 (3)0.2357 (4)0.3889 (3)0.0965 (19)
H40.070500.244120.259030.0966*
H50.023700.374470.329780.1035*
H5A0.387 (3)0.065 (3)0.024 (2)0.0713*
H60.176520.387260.377580.0911*
H6A0.654 (3)0.005 (3)0.505 (2)0.0576*
H70.333770.261200.358830.0670*
H8A0.096720.110720.146710.1379*
H8B0.106950.006390.257630.1379*
H8C0.020070.082490.215030.1379*
H120.278810.564370.529710.0880*
H130.248440.551040.684150.0959*
H140.317640.391100.713090.0798*
H150.413430.242220.583200.0639*
H16A0.370260.503530.368010.1038*
H16B0.311440.371740.306600.1038*
H16C0.455590.394700.332180.1038*
H17A0.203050.092340.135230.1172*
H17B0.194060.071590.018640.1172*
H17C0.252920.194410.101730.1172*
H18A0.855580.034540.494730.1179*
H18B0.837040.087730.397000.1179*
H18C0.817900.085360.507180.1179*
H220.585350.529730.163440.0910*
H230.765040.588000.117370.1052*
H240.869270.468710.038260.1070*
H250.786470.292940.144740.0825*
H26A0.406310.413380.118650.1221*
H26B0.472880.292720.113590.1221*
H26C0.408810.296190.016270.1221*
H301.087220.349910.313700.1087*
H311.085200.379330.164780.1188*
H320.923240.292880.043540.1050*
H330.760430.182830.075900.0826*
H34A0.999310.293850.433280.1448*
H34B0.958670.155870.377250.1448*
H34C0.857630.249760.420930.1448*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0499 (2)0.0448 (2)0.0270 (2)0.0077 (2)0.0030 (1)0.0133 (2)
Cu20.0442 (2)0.0408 (2)0.0248 (2)0.0041 (2)0.0020 (1)0.0104 (2)
O10.0550 (12)0.0557 (14)0.0322 (9)0.0021 (10)0.0024 (9)0.0141 (10)
O20.0463 (11)0.0563 (13)0.0301 (9)0.0044 (9)0.0017 (8)0.0149 (9)
O30.0596 (12)0.0473 (13)0.0354 (10)0.0151 (10)0.0025 (9)0.0101 (9)
O40.0522 (12)0.0411 (12)0.0350 (10)0.0080 (9)0.0018 (8)0.0066 (9)
O50.0662 (14)0.0818 (17)0.0404 (12)0.0200 (12)0.0083 (10)0.0331 (12)
O60.0541 (13)0.0587 (14)0.0286 (10)0.0147 (10)0.0019 (9)0.0135 (10)
O70.0634 (12)0.0453 (12)0.0285 (9)0.0133 (10)0.0071 (9)0.0135 (9)
O80.0696 (13)0.0420 (12)0.0276 (9)0.0116 (10)0.0033 (9)0.0096 (9)
O90.0546 (13)0.0535 (14)0.0531 (12)0.0057 (10)0.0060 (10)0.0270 (11)
O100.0459 (11)0.0567 (14)0.0509 (11)0.0039 (10)0.0076 (9)0.0258 (11)
C10.0482 (17)0.0451 (19)0.0301 (14)0.0040 (14)0.0045 (13)0.0079 (14)
C20.0458 (18)0.0491 (19)0.0287 (13)0.0008 (14)0.0008 (12)0.0027 (14)
C30.056 (2)0.070 (2)0.0434 (17)0.0019 (18)0.0024 (15)0.0117 (17)
C40.048 (2)0.108 (3)0.070 (2)0.015 (2)0.0107 (18)0.024 (2)
C50.069 (3)0.097 (3)0.081 (3)0.021 (2)0.006 (2)0.027 (3)
C60.089 (3)0.063 (3)0.073 (2)0.007 (2)0.012 (2)0.025 (2)
C70.061 (2)0.052 (2)0.0481 (17)0.0054 (17)0.0063 (15)0.0149 (16)
C80.065 (2)0.122 (4)0.094 (3)0.017 (2)0.009 (2)0.047 (3)
C90.0457 (17)0.0377 (18)0.0358 (14)0.0018 (14)0.0059 (13)0.0100 (14)
C100.0432 (16)0.0363 (17)0.0404 (15)0.0014 (13)0.0052 (12)0.0077 (14)
C110.0484 (18)0.046 (2)0.0548 (18)0.0029 (15)0.0038 (14)0.0102 (16)
C120.080 (2)0.054 (2)0.078 (2)0.0237 (19)0.000 (2)0.016 (2)
C130.077 (3)0.064 (3)0.066 (2)0.021 (2)0.0135 (19)0.010 (2)
C140.077 (2)0.057 (2)0.0482 (18)0.0014 (19)0.0166 (16)0.0025 (18)
C150.066 (2)0.0400 (19)0.0446 (16)0.0025 (15)0.0129 (14)0.0072 (15)
C160.081 (2)0.056 (2)0.074 (2)0.0041 (19)0.0089 (19)0.0300 (19)
C170.072 (2)0.107 (3)0.075 (2)0.029 (2)0.0098 (19)0.053 (2)
C180.062 (2)0.092 (3)0.070 (2)0.025 (2)0.0013 (18)0.019 (2)
C190.0437 (16)0.0451 (18)0.0315 (14)0.0013 (14)0.0030 (12)0.0125 (14)
C200.0566 (18)0.0373 (17)0.0318 (13)0.0053 (14)0.0062 (13)0.0115 (13)
C210.075 (2)0.044 (2)0.0341 (15)0.0026 (16)0.0017 (14)0.0108 (15)
C220.121 (3)0.054 (2)0.0358 (16)0.002 (2)0.0013 (19)0.0018 (17)
C230.135 (4)0.059 (3)0.060 (2)0.041 (3)0.021 (2)0.010 (2)
C240.102 (3)0.076 (3)0.078 (3)0.046 (2)0.006 (2)0.015 (2)
C250.081 (2)0.065 (2)0.0493 (18)0.025 (2)0.0042 (17)0.0100 (18)
C260.093 (3)0.069 (3)0.062 (2)0.007 (2)0.032 (2)0.009 (2)
C270.055 (2)0.0388 (18)0.0419 (15)0.0107 (15)0.0153 (14)0.0109 (14)
C280.0520 (19)0.0368 (18)0.0594 (18)0.0067 (15)0.0205 (15)0.0165 (16)
C290.055 (2)0.052 (2)0.078 (2)0.0041 (17)0.0145 (18)0.0153 (19)
C300.061 (2)0.074 (3)0.124 (4)0.011 (2)0.016 (2)0.028 (3)
C310.084 (3)0.073 (3)0.140 (4)0.006 (2)0.045 (3)0.042 (3)
C320.103 (3)0.076 (3)0.098 (3)0.008 (3)0.040 (3)0.049 (3)
C330.071 (2)0.065 (2)0.079 (2)0.0077 (19)0.0254 (19)0.036 (2)
C340.082 (3)0.107 (4)0.084 (3)0.014 (2)0.011 (2)0.025 (3)
Geometric parameters (Å, º) top
Cu1—O11.961 (2)C23—C241.374 (6)
Cu1—O31.9681 (19)C24—C251.374 (5)
Cu1—O52.149 (2)C27—C281.497 (5)
Cu1—O71.9871 (19)C28—C331.386 (5)
Cu1—O91.943 (2)C28—C291.398 (5)
Cu1—Cu22.5912 (4)C29—C341.503 (6)
Cu2—O21.9896 (19)C29—C301.384 (5)
Cu2—O41.9468 (19)C30—C311.364 (7)
Cu2—O62.1358 (19)C31—C321.369 (6)
Cu2—O81.9582 (18)C32—C331.380 (6)
Cu2—O101.959 (2)C4—H40.9300
O1—C11.259 (4)C5—H50.9300
O2—C11.272 (3)C6—H60.9300
O3—C91.263 (3)C7—H70.9300
O4—C91.261 (4)C8—H8A0.9600
O5—C171.411 (4)C8—H8B0.9600
O6—C181.405 (4)C8—H8C0.9600
O7—C191.267 (4)C12—H120.9300
O8—C191.268 (3)C13—H130.9300
O9—C271.260 (4)C14—H140.9300
O10—C271.266 (4)C15—H150.9300
O5—H5A0.70 (3)C16—H16A0.9600
O6—H6A0.72 (3)C16—H16B0.9600
C1—C21.490 (5)C16—H16C0.9600
C2—C71.396 (5)C17—H17A0.9600
C2—C31.386 (5)C17—H17B0.9600
C3—C41.413 (6)C17—H17C0.9600
C3—C81.496 (6)C18—H18A0.9600
C4—C51.351 (7)C18—H18B0.9600
C5—C61.351 (6)C18—H18C0.9600
C6—C71.378 (5)C22—H220.9300
C9—C101.499 (4)C23—H230.9300
C10—C111.400 (5)C24—H240.9300
C10—C151.380 (4)C25—H250.9300
C11—C161.515 (4)C26—H26A0.9600
C11—C121.385 (5)C26—H26B0.9600
C12—C131.375 (6)C26—H26C0.9600
C13—C141.363 (5)C30—H300.9300
C14—C151.375 (4)C31—H310.9300
C19—C201.493 (4)C32—H320.9300
C20—C251.381 (5)C33—H330.9300
C20—C211.394 (4)C34—H34A0.9600
C21—C261.504 (5)C34—H34B0.9600
C21—C221.386 (5)C34—H34C0.9600
C22—C231.358 (6)
Cu1···O23.0610 (19)C2···C18ii3.466 (5)
Cu1···O43.1243 (16)C6···C34ii3.598 (6)
Cu1···O83.102 (2)C8···O12.859 (4)
Cu1···O103.0880 (18)C9···C13.555 (4)
Cu1···O5i3.849 (2)C11···C11iii3.598 (5)
Cu2···O73.0911 (16)C15···C18ii3.561 (5)
Cu2···O13.1299 (18)C15···O6ii3.336 (4)
Cu2···O33.049 (2)C16···O32.905 (4)
Cu2···O93.078 (2)C17···O7i3.405 (4)
Cu1···H5Ai3.20 (3)C17···C31iv3.589 (6)
Cu2···H6Aii3.53 (3)C18···C15ii3.561 (5)
Cu2···H15ii3.5900C18···C2ii3.466 (5)
O1···Cu23.1299 (18)C19···C13.507 (4)
O1···O32.765 (3)C26···O72.921 (4)
O1···O53.008 (3)C31···C17v3.589 (6)
O1···O72.731 (3)C34···O102.834 (4)
O1···C82.859 (4)C34···C6ii3.598 (6)
O1···C193.183 (3)C1···H6Aii2.80 (3)
O2···C93.124 (3)C1···H8B2.8400
O2···O42.741 (3)C2···H18Aii3.0100
O2···Cu13.0610 (19)C2···H6Aii3.01 (3)
O2···O33.202 (3)C2···H23vi2.9100
O2···O63.067 (3)C4···H18Biv2.8400
O2···O82.758 (2)C4···H25iv2.9300
O2···O6ii2.812 (2)C6···H34Cii3.0100
O3···C13.190 (4)C7···H23vi2.9000
O3···O92.800 (3)C7···H6Aii3.08 (3)
O3···Cu23.049 (2)C9···H16C2.7800
O3···C162.905 (4)C12···H16Ciii3.0400
O3···O53.055 (2)C13···H16Ciii2.9600
O3···O12.765 (3)C19···H5Ai3.04 (3)
O3···O23.202 (3)C19···H26C2.7100
O3···C173.331 (4)C25···H4v2.9600
O4···O62.930 (3)C26···H33i3.0900
O4···C273.262 (3)C27···H34C2.8500
O4···O22.741 (3)C28···H13iii2.9600
O4···Cu13.1243 (16)C29···H13iii3.0700
O4···O102.793 (2)C31···H17Cv3.0600
O5···Cu1i3.849 (2)H4···C25iv2.9600
O5···O7i2.793 (3)H4···H8C2.3300
O5···O73.118 (3)H4···H18Biv2.3900
O5···O93.049 (3)H4···H25iv2.0900
O5···O33.055 (2)H5A···Cu1i3.20 (3)
O5···O13.008 (3)H5A···O7i2.11 (3)
O6···O42.930 (3)H5A···C19i3.04 (3)
O6···C15ii3.336 (4)H6···H16Avii2.5100
O6···O2ii2.812 (2)H6A···Cu2ii3.53 (3)
O6···O23.067 (3)H6A···O2ii2.10 (3)
O6···O83.087 (2)H6A···C1ii2.80 (3)
O6···O103.070 (3)H6A···C2ii3.01 (3)
O7···O5i2.793 (3)H6A···C7ii3.08 (3)
O7···O12.731 (3)H7···O22.5100
O7···Cu23.0911 (16)H8A···O12.6100
O7···C273.229 (4)H8B···O12.6700
O7···C262.921 (4)H8B···C12.8400
O7···C17i3.405 (4)H8C···H42.3300
O7···O92.760 (3)H12···H16A2.3600
O7···O53.118 (3)H13···C28iii2.9600
O8···C13.191 (4)H13···C29iii3.0700
O8···O63.087 (2)H15···O42.5400
O8···O22.758 (2)H15···Cu2ii3.5900
O8···O102.764 (3)H15···O6ii2.6300
O8···Cu13.102 (2)H16A···H6viii2.5100
O9···O72.760 (3)H16A···H122.3600
O9···Cu23.078 (2)H16B···O32.7200
O9···O53.049 (3)H16B···H30iv2.4200
O9···C93.299 (3)H16C···O32.6600
O9···O32.800 (3)H16C···C92.7800
O10···C183.414 (4)H16C···C12iii3.0400
O10···O42.793 (2)H16C···C13iii2.9600
O10···Cu13.0880 (18)H17C···C31iv3.0600
O10···C193.244 (4)H18A···C2ii3.0100
O10···C342.834 (4)H18B···C4v2.8400
O10···O82.764 (3)H18B···H4v2.3900
O10···O63.070 (3)H22···H26A2.3900
O1···H8A2.6100H23···C2vi2.9100
O1···H8B2.6700H23···C7vi2.9000
O2···H72.5100H25···O82.4800
O2···H6Aii2.10 (3)H25···C4v2.9300
O3···H16C2.6600H25···H4v2.0900
O3···H16B2.7200H26A···H222.3900
O4···H6A2.89 (4)H26B···O72.9100
O4···H152.5400H26B···O9i2.7700
O6···H15ii2.6300H26C···O72.5000
O7···H5Ai2.11 (3)H26C···C192.7100
O7···H26C2.5000H30···H16Bv2.4200
O7···H26B2.9100H30···H34A2.2700
O8···H252.4800H33···O92.4600
O9···H332.4600H33···C26i3.0900
O9···H26Bi2.7700H34A···H302.2700
O10···H34B2.6900H34B···O102.6900
O10···H34C2.5300H34C···O102.5300
C1···C93.555 (4)H34C···C272.8500
C1···C193.507 (4)H34C···C6ii3.0100
O1—Cu1—O389.46 (8)C29—C28—C33119.7 (3)
O1—Cu1—O593.97 (8)C27—C28—C29123.1 (3)
O1—Cu1—O787.51 (8)C28—C29—C30117.6 (3)
O1—Cu1—O9169.65 (8)C28—C29—C34124.5 (3)
O3—Cu1—O595.69 (8)C30—C29—C34117.9 (3)
O3—Cu1—O7166.39 (8)C29—C30—C31122.7 (4)
O3—Cu1—O991.44 (8)C30—C31—C32119.4 (4)
O5—Cu1—O797.76 (8)C31—C32—C33120.0 (4)
O5—Cu1—O996.20 (9)C28—C33—C32120.6 (3)
O7—Cu1—O989.21 (8)C3—C4—H4119.00
O2—Cu2—O488.25 (8)C5—C4—H4119.00
O2—Cu2—O695.98 (8)C4—C5—H5119.00
O2—Cu2—O888.61 (8)C6—C5—H5119.00
O2—Cu2—O10166.98 (8)C5—C6—H6120.00
O4—Cu2—O691.63 (8)C7—C6—H6120.00
O4—Cu2—O8170.33 (7)C2—C7—H7120.00
O4—Cu2—O1091.27 (8)C6—C7—H7120.00
O6—Cu2—O897.79 (8)C3—C8—H8A109.00
O6—Cu2—O1097.04 (8)C3—C8—H8B109.00
O8—Cu2—O1089.73 (8)C3—C8—H8C109.00
Cu1—O1—C1120.95 (19)H8A—C8—H8B109.00
Cu2—O2—C1122.11 (18)H8A—C8—H8C109.00
Cu1—O3—C9123.09 (19)H8B—C8—H8C109.00
Cu2—O4—C9120.24 (16)C11—C12—H12119.00
Cu1—O5—C17123.77 (19)C13—C12—H12119.00
Cu2—O6—C18127.16 (19)C12—C13—H13120.00
Cu1—O7—C19121.75 (15)C14—C13—H13120.00
Cu2—O8—C19122.5 (2)C13—C14—H14121.00
Cu1—O9—C27122.8 (2)C15—C14—H14121.00
Cu2—O10—C27121.48 (19)C10—C15—H15119.00
C17—O5—H5A109 (3)C14—C15—H15119.00
Cu1—O5—H5A125 (3)C11—C16—H16A110.00
Cu2—O6—H6A115 (3)C11—C16—H16B110.00
C18—O6—H6A113 (3)C11—C16—H16C109.00
O1—C1—O2124.7 (3)H16A—C16—H16B109.00
O1—C1—C2118.9 (3)H16A—C16—H16C109.00
O2—C1—C2116.4 (3)H16B—C16—H16C109.00
C1—C2—C7117.2 (3)O5—C17—H17A110.00
C3—C2—C7119.9 (3)O5—C17—H17B109.00
C1—C2—C3122.9 (3)O5—C17—H17C109.00
C4—C3—C8119.4 (3)H17A—C17—H17B109.00
C2—C3—C4117.1 (3)H17A—C17—H17C110.00
C2—C3—C8123.4 (3)H17B—C17—H17C109.00
C3—C4—C5121.7 (3)O6—C18—H18A109.00
C4—C5—C6121.1 (4)O6—C18—H18B109.00
C5—C6—C7119.4 (4)O6—C18—H18C109.00
C2—C7—C6120.7 (3)H18A—C18—H18B109.00
O3—C9—O4125.0 (2)H18A—C18—H18C109.00
O3—C9—C10118.0 (3)H18B—C18—H18C109.00
O4—C9—C10116.9 (2)C21—C22—H22118.00
C9—C10—C11122.2 (2)C23—C22—H22118.00
C11—C10—C15120.3 (3)C22—C23—H23120.00
C9—C10—C15117.5 (3)C24—C23—H23120.00
C10—C11—C12116.7 (3)C23—C24—H24121.00
C10—C11—C16123.1 (3)C25—C24—H24121.00
C12—C11—C16120.1 (3)C20—C25—H25119.00
C11—C12—C13122.3 (4)C24—C25—H25119.00
C12—C13—C14120.3 (3)C21—C26—H26A109.00
C13—C14—C15118.8 (3)C21—C26—H26B109.00
C10—C15—C14121.5 (3)C21—C26—H26C109.00
O7—C19—C20119.7 (2)H26A—C26—H26B109.00
O8—C19—C20116.2 (3)H26A—C26—H26C109.00
O7—C19—O8124.1 (3)H26B—C26—H26C109.00
C19—C20—C21123.8 (3)C29—C30—H30119.00
C19—C20—C25116.6 (2)C31—C30—H30119.00
C21—C20—C25119.6 (3)C30—C31—H31120.00
C20—C21—C22116.9 (3)C32—C31—H31120.00
C22—C21—C26120.0 (3)C31—C32—H32120.00
C20—C21—C26123.0 (3)C33—C32—H32120.00
C21—C22—C23123.3 (3)C28—C33—H33120.00
C22—C23—C24119.7 (4)C32—C33—H33120.00
C23—C24—C25118.5 (4)C29—C34—H34A109.00
C20—C25—C24122.1 (3)C29—C34—H34B109.00
O10—C27—C28118.9 (3)C29—C34—H34C109.00
O9—C27—O10124.5 (3)H34A—C34—H34B109.00
O9—C27—C28116.7 (3)H34A—C34—H34C109.00
C27—C28—C33117.2 (3)H34B—C34—H34C109.00
O3—Cu1—O1—C168.3 (2)C7—C2—C3—C40.4 (4)
O5—Cu1—O1—C1164.0 (2)C7—C2—C3—C8176.4 (3)
O7—Cu1—O1—C198.4 (2)C1—C2—C7—C6178.9 (3)
O1—Cu1—O3—C998.7 (2)C3—C2—C7—C61.5 (4)
O5—Cu1—O3—C9167.4 (2)C2—C3—C4—C51.6 (5)
O9—Cu1—O3—C971.0 (2)C8—C3—C4—C5177.7 (4)
O1—Cu1—O5—C1757.9 (3)C3—C4—C5—C60.8 (6)
O3—Cu1—O5—C1731.9 (3)C4—C5—C6—C71.1 (6)
O7—Cu1—O5—C17146.0 (3)C5—C6—C7—C22.3 (5)
O9—Cu1—O5—C17124.0 (3)O3—C9—C10—C1139.6 (4)
O1—Cu1—O7—C1969.7 (2)O3—C9—C10—C15139.8 (3)
O5—Cu1—O7—C19163.4 (2)O4—C9—C10—C11143.2 (3)
O9—Cu1—O7—C19100.5 (2)O4—C9—C10—C1537.4 (4)
O3—Cu1—O9—C2795.7 (2)C9—C10—C11—C12178.1 (3)
O5—Cu1—O9—C27168.4 (2)C9—C10—C11—C165.0 (4)
O7—Cu1—O9—C2770.7 (2)C15—C10—C11—C121.3 (4)
O4—Cu2—O2—C1104.1 (2)C15—C10—C11—C16175.6 (3)
O6—Cu2—O2—C1164.4 (2)C9—C10—C15—C14176.3 (3)
O8—Cu2—O2—C166.7 (2)C11—C10—C15—C143.1 (5)
O2—Cu2—O4—C966.4 (2)C10—C11—C12—C131.6 (5)
O6—Cu2—O4—C9162.3 (2)C16—C11—C12—C13178.6 (3)
O10—Cu2—O4—C9100.6 (2)C11—C12—C13—C142.7 (5)
O2—Cu2—O6—C18150.2 (3)C12—C13—C14—C150.8 (5)
O4—Cu2—O6—C18121.4 (3)C13—C14—C15—C102.0 (5)
O8—Cu2—O6—C1860.8 (3)O7—C19—C20—C2135.8 (5)
O10—Cu2—O6—C1830.0 (3)O7—C19—C20—C25143.3 (3)
O2—Cu2—O8—C1996.3 (2)O8—C19—C20—C21146.1 (3)
O6—Cu2—O8—C19167.91 (19)O8—C19—C20—C2534.8 (4)
O10—Cu2—O8—C1970.8 (2)C19—C20—C21—C22179.2 (3)
O4—Cu2—O10—C2770.4 (2)C19—C20—C21—C262.8 (5)
O6—Cu2—O10—C27162.2 (2)C25—C20—C21—C220.2 (5)
O8—Cu2—O10—C27100.0 (2)C25—C20—C21—C26178.2 (3)
Cu1—O1—C1—O25.1 (4)C19—C20—C25—C24178.1 (3)
Cu1—O1—C1—C2175.2 (2)C21—C20—C25—C241.0 (5)
Cu2—O2—C1—O113.4 (4)C20—C21—C22—C231.1 (6)
Cu2—O2—C1—C2166.3 (2)C26—C21—C22—C23179.1 (4)
Cu1—O3—C9—O44.6 (4)C21—C22—C23—C240.8 (6)
Cu1—O3—C9—C10178.5 (2)C22—C23—C24—C250.5 (6)
Cu2—O4—C9—O312.2 (4)C23—C24—C25—C201.3 (6)
Cu2—O4—C9—C10164.7 (2)O9—C27—C28—C29152.6 (3)
Cu1—O7—C19—O811.6 (4)O9—C27—C28—C3326.3 (4)
Cu1—O7—C19—C20170.5 (2)O10—C27—C28—C2927.7 (5)
Cu2—O8—C19—O75.2 (4)O10—C27—C28—C33153.3 (3)
Cu2—O8—C19—C20172.75 (19)C27—C28—C29—C30177.4 (3)
Cu1—O9—C27—O105.8 (4)C27—C28—C29—C340.3 (6)
Cu1—O9—C27—C28173.90 (19)C33—C28—C29—C301.5 (5)
Cu2—O10—C27—O910.5 (4)C33—C28—C29—C34179.2 (4)
Cu2—O10—C27—C28169.8 (2)C27—C28—C33—C32178.6 (4)
O1—C1—C2—C334.3 (4)C29—C28—C33—C320.4 (6)
O1—C1—C2—C7146.2 (3)C28—C29—C30—C311.2 (6)
O2—C1—C2—C3146.0 (3)C34—C29—C30—C31179.1 (4)
O2—C1—C2—C733.6 (4)C29—C30—C31—C320.1 (7)
C1—C2—C3—C4179.2 (3)C30—C31—C32—C331.3 (7)
C1—C2—C3—C83.2 (4)C31—C32—C33—C281.0 (7)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y, z; (vi) x+1, y1, z; (vii) x, y1, z; (viii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of C2–C7 and C28–C33 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O5—H5A···O7i0.70 (3)2.11 (3)2.793 (3)167 (4)
O6—H6A···O2ii0.72 (3)2.10 (3)2.812 (2)174 (4)
C18—H18A···Cg1ii0.962.983.749 (4)137.00
C23—H23···Cg1vi0.932.873.735 (4)154.00
C13—H13···Cg2iii0.932.973.877 (4)165.00
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (vi) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C8H7O2)4(CH4O)2]
Mr731.71
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.7474 (9), 12.1403 (11), 14.1709 (11)
α, β, γ (°)113.805 (2), 91.096 (3), 93.238 (3)
V3)1687.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.30 × 0.14 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.804, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
27787, 8232, 5004
Rint0.047
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.098, 1.02
No. of reflections8232
No. of parameters427
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of C2–C7 and C28–C33 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O5—H5A···O7i0.70 (3)2.11 (3)2.793 (3)167 (4)
O6—H6A···O2ii0.72 (3)2.10 (3)2.812 (2)174 (4)
C18—H18A···Cg1ii0.962.983.749 (4)137.00
C23—H23···Cg1iii0.932.873.735 (4)154.00
C13—H13···Cg2iv0.932.973.877 (4)165.00
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+1, y1, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha. The authors also acknowledge the technical support provided by Bana Inter­national, Karachi, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDanish, M., Saleem, I., Ahmad, N., Raza, A. R., Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m459–m460.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKabbani, A. T., Zaworotko, M. J., Abourahma, H., Walsh, R. D. B. & Hammud, H. H. (2004). J. Chem. Crystallogr. 34, 749–756.  Web of Science CSD CrossRef CAS Google Scholar
First citationRao, V. M., Sathyanarayana, D. N. & Manohar, H. (1983). J. Chem. Soc. Dalton Trans. pp. 2167–2173.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSunil, A. C., Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2008). Acta Cryst. E64, m553–m554.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXin, C.-W. & Liu, F.-C. (2008). Acta Cryst. E64, m1589.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds