metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­[chlorido(di­meth­oxy­phenyl­phosphine)palladium(II)]

aDepartment of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland
*Correspondence e-mail: amzs@st-and.ac.uk

(Received 19 March 2010; accepted 30 March 2010; online 10 April 2010)

The title compound, [Pd2Cl4(C8H11O2P)2], is binuclear and disposed about a crystallographic centre of symmetry with a Pd⋯Pd distance of 3.4662 (17) Å. It has a similar geometry to that observed in the triphenyl­phosphite and triphenyl­phosphine analogues. The Pd—P bond length is ca 0.04 Å shorter than those in mononuclear PdCl2(P(OMe)2Ph)2, possibly due to the lower trans-influence of the bridging Cl compared to a single-bonded Cl atom.

Related literature

For binuclear analogues, see: Grigsby & Nicholson (1992[Grigsby, W. J. & Nicholson, B. K. (1992). Acta Cryst. C48, 362-364.]); Sui-Seng et al. (2003[Sui-Seng, C., Bélanger-Gariépy, F. & Zargarian, D. (2003). Acta Cryst. E59, m618-m619.]). For the related mononuclear palladium compound, see: Slawin et al. (2010[Slawin, A. M. Z., Waddell, P. G. & Woollins, J. D. (2010). Acta Cryst. E66, m321.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd2Cl4(C8H11O2P)2]

  • Mr = 694.91

  • Triclinic, [P \overline 1]

  • a = 7.078 (3) Å

  • b = 8.938 (3) Å

  • c = 9.838 (5) Å

  • α = 87.54 (3)°

  • β = 89.55 (3)°

  • γ = 69.46 (2)°

  • V = 582.3 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.16 mm−1

  • T = 125 K

  • 0.21 × 0.12 × 0.09 mm

Data collection
  • Rigaku Mercury70 CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.591, Tmax = 0.823

  • 6130 measured reflections

  • 2087 independent reflections

  • 1993 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.075

  • S = 1.10

  • 2087 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—P1 2.1940 (14)
Pd1—Cl2 2.2820 (15)
Pd1—Cl1i 2.3163 (15)
Pd1—Cl1 2.4170 (14)
P1—Pd1—Cl2 86.39 (5)
P1—Pd1—Cl1i 95.34 (5)
Cl2—Pd1—Cl1i 176.98 (4)
P1—Pd1—Cl1 178.39 (4)
Cl2—Pd1—Cl1 92.45 (5)
Cl1i—Pd1—Cl1 85.86 (5)
Pd1i—Cl1—Pd1 94.14 (5)
Symmetry code: (i) -x, -y+1, -z.

Data collection: SCXMini (Rigaku, 2006[Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: SCXMini; data reduction: SCXMini; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2009[Rigaku (2009). Crystal Structure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

In the structure of the title compound the palladium atoms are in distorted square planar environments. The Pd-Cl bondlengths vary with the shortest being the terminal Pd-Cl, the longest being the bridging Pd-Cl trans to P and the intermediate length being for bridging Pd-Cl trans to Cl. This pattern is also observed in the known analogues: the triphenylphosphine analogue (Sei-Sung et al., 2003) has Pd-P 2.2278 (6) Å, Pd-Cl(terminal) 2.2722 (7) Å, Pd-Cl (bridging trans to P) 2.4128 (6) Å and Pd-Cl (bridging trans to Cl) 2.3228 (6) Å whilst in the P(OPh)3 analogue (Grigsby & Nicholson, 1992) the values are Pd-P 2.2187 (3), Pd-Cl(terminal) 2.269 (3) Pd-Cl (bridging trans to P) 2.413 (2) Pd-Cl (bridging trans to Cl) 2.309 (2) Å. The Pd-P distance in the title compound (2.1940 (14) Å) is shorter than either of the above previously published structures.

Related literature top

For binuclear analogues, see: Grigsby & Nicholson (1992); Sui-Seng et al. (2003). For the related monuclear palladium compound, see: Slawin et al. (2010).

Experimental top

1 g (2.6 mmol) of bis(benzonitrile)palladium(II) dichloride was dissolved in 25 ml of dichloromethane to which 0.84 ml (5.3 mmol) of dimethyl phenylphosphonite was added. The solution was stirred at room temperature for 30 mins before being filtered and then precipitated by slow addition of hexane to give a pale yellow solid. Crystals were grown for X-ray crystallographyv ia slow diffusion of hexane into a solution of the product in dichloromethane.Yield: 0.321 g (0.46 mmol), 19 %.

Refinement top

All H atoms were included in calculated positions and refined as riding atoms with Uiso(H) = 1.5 Ueq. The highest peak in the difference map is 1.09 Å from atom Pd1

Structure description top

In the structure of the title compound the palladium atoms are in distorted square planar environments. The Pd-Cl bondlengths vary with the shortest being the terminal Pd-Cl, the longest being the bridging Pd-Cl trans to P and the intermediate length being for bridging Pd-Cl trans to Cl. This pattern is also observed in the known analogues: the triphenylphosphine analogue (Sei-Sung et al., 2003) has Pd-P 2.2278 (6) Å, Pd-Cl(terminal) 2.2722 (7) Å, Pd-Cl (bridging trans to P) 2.4128 (6) Å and Pd-Cl (bridging trans to Cl) 2.3228 (6) Å whilst in the P(OPh)3 analogue (Grigsby & Nicholson, 1992) the values are Pd-P 2.2187 (3), Pd-Cl(terminal) 2.269 (3) Pd-Cl (bridging trans to P) 2.413 (2) Pd-Cl (bridging trans to Cl) 2.309 (2) Å. The Pd-P distance in the title compound (2.1940 (14) Å) is shorter than either of the above previously published structures.

For binuclear analogues, see: Grigsby & Nicholson (1992); Sui-Seng et al. (2003). For the related monuclear palladium compound, see: Slawin et al. (2010).

Computing details top

Data collection: SCXMini (Rigaku, 2006); cell refinement: SCXMini (Rigaku, 2006); data reduction: SCXMini (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level, hydrogen atoms omitted for clarity.
Di-µ-chlorido-bis[chlorido(dimethoxyphenylphosphine)palladium(II)] top
Crystal data top
[Pd2Cl4(C8H11O2P)2]Z = 1
Mr = 694.91F(000) = 340.00
Triclinic, P1Dx = 1.982 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.078 (3) ÅCell parameters from 2478 reflections
b = 8.938 (3) Åθ = 2.1–26.4°
c = 9.838 (5) ŵ = 2.16 mm1
α = 87.54 (3)°T = 125 K
β = 89.55 (3)°Prism, orange
γ = 69.46 (2)°0.21 × 0.12 × 0.09 mm
V = 582.3 (4) Å3
Data collection top
Rigaku Mercury70 CCD
diffractometer
1993 reflections with F2 > 2σ(F2)
ω scansRint = 0.042
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
θmax = 25.4°
Tmin = 0.591, Tmax = 0.823h = 88
6130 measured reflectionsk = 109
2087 independent reflectionsl = 1110
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0152P)2 + 1.7632P]
where P = (Fo2 + 2Fc2)/3
2087 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.67 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Pd2Cl4(C8H11O2P)2]γ = 69.46 (2)°
Mr = 694.91V = 582.3 (4) Å3
Triclinic, P1Z = 1
a = 7.078 (3) ÅMo Kα radiation
b = 8.938 (3) ŵ = 2.16 mm1
c = 9.838 (5) ÅT = 125 K
α = 87.54 (3)°0.21 × 0.12 × 0.09 mm
β = 89.55 (3)°
Data collection top
Rigaku Mercury70 CCD
diffractometer
2087 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1993 reflections with F2 > 2σ(F2)
Tmin = 0.591, Tmax = 0.823Rint = 0.042
6130 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.10Δρmax = 0.58 e Å3
2087 reflectionsΔρmin = 0.67 e Å3
127 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.09659 (5)0.37691 (4)0.14271 (3)0.01955 (12)
Cl10.13513 (17)0.60837 (13)0.02692 (11)0.0258 (3)
Cl20.33715 (18)0.36169 (14)0.30113 (11)0.0293 (3)
P10.06174 (17)0.16984 (13)0.25330 (11)0.0196 (2)
O10.1234 (5)0.1371 (3)0.1902 (3)0.0247 (7)
O20.0252 (5)0.1858 (3)0.4113 (3)0.0251 (7)
C10.2737 (7)0.0122 (5)0.2477 (4)0.0213 (9)
C20.3205 (7)0.0794 (6)0.1210 (5)0.0278 (10)
H20.24250.02740.04320.033*
C30.4803 (7)0.2215 (6)0.1083 (5)0.0337 (12)
H30.51140.26800.02210.040*
C40.5941 (8)0.2954 (6)0.2212 (5)0.0340 (12)
H40.70380.39320.21260.041*
C50.5504 (8)0.2288 (6)0.3467 (5)0.0352 (12)
H50.63060.28020.42380.042*
C60.3898 (7)0.0872 (5)0.3604 (5)0.0275 (10)
H60.35920.04150.44690.033*
C70.1241 (8)0.3299 (5)0.4628 (5)0.0323 (11)
H7A0.09180.42350.43130.039*
H7B0.12260.32270.56250.039*
H7C0.25840.34030.42930.039*
C80.1806 (8)0.0038 (6)0.2437 (5)0.0294 (11)
H8A0.10430.09330.19670.035*
H8B0.32530.02870.22880.035*
H8C0.15040.01320.34130.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0218 (2)0.01731 (19)0.01916 (19)0.00664 (14)0.00007 (14)0.00122 (13)
Cl10.0318 (6)0.0231 (6)0.0250 (6)0.0135 (5)0.0074 (5)0.0059 (4)
Cl20.0299 (6)0.0328 (6)0.0272 (6)0.0140 (5)0.0073 (5)0.0044 (5)
P10.0213 (6)0.0180 (6)0.0182 (5)0.0055 (5)0.0010 (4)0.0018 (4)
O10.0244 (17)0.0238 (17)0.0275 (17)0.0109 (13)0.0029 (13)0.0053 (13)
O20.0333 (19)0.0188 (16)0.0196 (15)0.0050 (14)0.0041 (13)0.0022 (12)
C10.024 (2)0.019 (2)0.022 (2)0.0081 (18)0.0047 (18)0.0003 (17)
C20.025 (3)0.032 (3)0.023 (2)0.006 (2)0.0001 (19)0.0027 (19)
C30.026 (3)0.034 (3)0.040 (3)0.009 (2)0.005 (2)0.011 (2)
C40.027 (3)0.023 (3)0.047 (3)0.003 (2)0.012 (2)0.001 (2)
C50.032 (3)0.034 (3)0.032 (3)0.002 (2)0.000 (2)0.014 (2)
C60.028 (3)0.029 (3)0.023 (2)0.007 (2)0.005 (2)0.0020 (19)
C70.034 (3)0.026 (3)0.033 (3)0.005 (2)0.010 (2)0.007 (2)
C80.033 (3)0.030 (3)0.032 (3)0.021 (2)0.004 (2)0.000 (2)
Geometric parameters (Å, º) top
Pd1—P12.1940 (14)C3—C41.379 (7)
Pd1—Cl22.2820 (15)C3—H30.9500
Pd1—Cl1i2.3163 (15)C4—C51.379 (7)
Pd1—Cl12.4170 (14)C4—H40.9500
Cl1—Pd1i2.3163 (14)C5—C61.384 (7)
P1—O11.577 (3)C5—H50.9500
P1—O21.578 (3)C6—H60.9500
P1—C11.788 (4)C7—H7A0.9800
O1—C81.463 (5)C7—H7B0.9800
O2—C71.458 (5)C7—H7C0.9800
C1—C61.384 (6)C8—H8A0.9800
C1—C21.394 (6)C8—H8B0.9800
C2—C31.383 (7)C8—H8C0.9800
C2—H20.9500
P1—Pd1—Cl286.39 (5)C2—C3—H3120.2
P1—Pd1—Cl1i95.34 (5)C5—C4—C3120.6 (4)
Cl2—Pd1—Cl1i176.98 (4)C5—C4—H4119.7
P1—Pd1—Cl1178.39 (4)C3—C4—H4119.7
Cl2—Pd1—Cl192.45 (5)C4—C5—C6120.1 (5)
Cl1i—Pd1—Cl185.86 (5)C4—C5—H5120.0
Pd1i—Cl1—Pd194.14 (5)C6—C5—H5120.0
O1—P1—O2107.39 (18)C1—C6—C5119.9 (4)
O1—P1—C1107.02 (19)C1—C6—H6120.1
O2—P1—C1101.72 (18)C5—C6—H6120.1
O1—P1—Pd1108.39 (12)O2—C7—H7A109.5
O2—P1—Pd1116.15 (12)O2—C7—H7B109.5
C1—P1—Pd1115.53 (15)H7A—C7—H7B109.5
C8—O1—P1120.3 (3)O2—C7—H7C109.5
C7—O2—P1120.0 (3)H7A—C7—H7C109.5
C6—C1—C2119.7 (4)H7B—C7—H7C109.5
C6—C1—P1123.8 (3)O1—C8—H8A109.5
C2—C1—P1116.5 (3)O1—C8—H8B109.5
C3—C2—C1120.1 (4)H8A—C8—H8B109.5
C3—C2—H2120.0O1—C8—H8C109.5
C1—C2—H2120.0H8A—C8—H8C109.5
C4—C3—C2119.7 (5)H8B—C8—H8C109.5
C4—C3—H3120.2
Cl2—Pd1—Cl1—Pd1i177.49 (4)O1—P1—C1—C6125.2 (4)
Cl1i—Pd1—Cl1—Pd1i0.0O2—P1—C1—C612.7 (4)
Cl2—Pd1—P1—O1173.14 (13)Pd1—P1—C1—C6114.0 (4)
Cl1i—Pd1—P1—O19.34 (14)O1—P1—C1—C254.7 (4)
Cl2—Pd1—P1—O252.20 (15)O2—P1—C1—C2167.2 (3)
Cl1i—Pd1—P1—O2130.28 (15)Pd1—P1—C1—C266.1 (4)
Cl2—Pd1—P1—C166.83 (17)C6—C1—C2—C31.0 (7)
Cl1i—Pd1—P1—C1110.69 (17)P1—C1—C2—C3178.9 (4)
O2—P1—O1—C854.4 (3)C1—C2—C3—C40.7 (7)
C1—P1—O1—C854.1 (4)C2—C3—C4—C50.1 (8)
Pd1—P1—O1—C8179.4 (3)C3—C4—C5—C60.6 (8)
O1—P1—O2—C774.4 (4)C2—C1—C6—C50.5 (7)
C1—P1—O2—C7173.4 (3)P1—C1—C6—C5179.5 (4)
Pd1—P1—O2—C747.1 (4)C4—C5—C6—C10.3 (8)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Pd2Cl4(C8H11O2P)2]
Mr694.91
Crystal system, space groupTriclinic, P1
Temperature (K)125
a, b, c (Å)7.078 (3), 8.938 (3), 9.838 (5)
α, β, γ (°)87.54 (3), 89.55 (3), 69.46 (2)
V3)582.3 (4)
Z1
Radiation typeMo Kα
µ (mm1)2.16
Crystal size (mm)0.21 × 0.12 × 0.09
Data collection
DiffractometerRigaku Mercury70 CCD
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.591, 0.823
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
6130, 2087, 1993
Rint0.042
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.075, 1.10
No. of reflections2087
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.67

Computer programs: SCXMini (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2009).

Selected geometric parameters (Å, º) top
Pd1—P12.1940 (14)Pd1—Cl1i2.3163 (15)
Pd1—Cl22.2820 (15)Pd1—Cl12.4170 (14)
P1—Pd1—Cl286.39 (5)Cl2—Pd1—Cl192.45 (5)
P1—Pd1—Cl1i95.34 (5)Cl1i—Pd1—Cl185.86 (5)
Cl2—Pd1—Cl1i176.98 (4)Pd1i—Cl1—Pd194.14 (5)
P1—Pd1—Cl1178.39 (4)
Symmetry code: (i) x, y+1, z.
 

References

First citationGrigsby, W. J. & Nicholson, B. K. (1992). Acta Cryst. C48, 362–364.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (2009). Crystal Structure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlawin, A. M. Z., Waddell, P. G. & Woollins, J. D. (2010). Acta Cryst. E66, m321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSui-Seng, C., Bélanger-Gariépy, F. & Zargarian, D. (2003). Acta Cryst. E59, m618–m619.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds