metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4-Phenyl-1-[1-(1,3-thia­zol-2-yl)ethyl­­idene]­thio­semicarbazidato}{4-phenyl-1-[1-(1,3-thia­zol-2-yl)ethyl­idene]­thio­semi­carbazide}nickel(II) chloride mono­hydrate

aDepartment of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: ramaiyer.venkatraman@jsums.edu

(Received 24 March 2010; accepted 10 April 2010; online 21 April 2010)

In the title compound, [Ni(C12H11N4S2)(C12H12N4S2)]Cl·H2O, the NiII ion is chelated by two 2-acetyl­thia­zole-3-phenyl­thio­semicarbazone ligands, forming a distorted octa­hedral complex. The metal ion is coordinated via the thia­zole nitro­gen, imine nitro­gen and thione sulfur atoms from each thio­semicarbazone ligand, and two coordinating units lie almost perpendicular to each other give dihedral angle = 81.89 (1)°]. One thio­semicarbazone unit is found to bind a chloride anion through two hydrogen bonds, while the other is linked with the disordered crystal water molecule. Two mol­ecules are connected to each other through an inter­molecular N—H⋯S inter­action, forming a centrosymmetric dimer. Dimers are linked into sheets by ππ stacking of two phenyl rings [shortest C⋯C distance = 4.041 (3) Å].

Related literature

For general background to thio­semicarbazones and their metal complexes, see: Haiduc & Silverstru (1990[Haiduc, I. & Silverstru, C. (1990). Coord. Chem. Rev. 99, 253-256.]); Nath et al. (2001[Nath, M., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99-149.]); Padhye & Kauffman (1985[Padhye, S. & Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127-160.]); Pellerito & Nagy (2002[Pellerito, L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111-150.]); Ali & Livingstone (1974[Ali, A. M. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101-132.]); Barros-García et al. (2005[Barros-García, F. J., Luna-Giles, F., Maldonado-Rogado, M. A. & Viñuelas-Zahínos, E. (2005). Polyhedron, 24, 2972-2980.]); Campbell (1975[Campbell, M. J. M. (1975). Coord. Chem. Rev. 15, 279-319.]). For related structures, see: Ketcham et al. (2002[Ketcham, K. A., Garcia, I., Swearingen, J. K., El-Sawaf, A. K., Bermejo, E., Castineiras, A. & West, D. X. (2002). Polyhedron, 21, 859-865.]); Lima et al. (1999[Lima, R. L. de, Teixeira, L. R. de S., Carneiro, T. M. G. & Beraldo, H. (1999). J. Braz. Chem. Soc. 10, 184-188.]); Viñuelas-Zahínos et al. (2008[Viñuelas-Zahínos, E., Luna-Giles, F., Torres-García, P. & Bernalte-García, A. (2008). Polyhedron, 28, 1362-1368.]); Saeed et al. (2009[Saeed, M. A., Fronczek, F. R. & Hossain, M. A. (2009). Chem. Commun. pp. 6409-6411.]); Venkatraman et al. (2009[Venkatraman, R., Sitole, L. & Fronczek, F. R. (2009). Acta Cryst. E65, m1653-m1654.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H11N4S2)(C12H12N4S2)]Cl·H2O

  • Mr = 663.92

  • Triclinic, [P \overline 1]

  • a = 8.5983 (15) Å

  • b = 12.929 (2) Å

  • c = 13.492 (2) Å

  • α = 101.710 (8)°

  • β = 90.168 (8)°

  • γ = 98.946 (7)°

  • V = 1449.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 90 K

  • 0.33 × 0.27 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.716, Tmax = 0.918

  • 31053 measured reflections

  • 8823 independent reflections

  • 7120 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.081

  • S = 1.03

  • 8823 reflections

  • 374 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯S2i 0.80 (2) 2.54 (2) 3.2595 (15) 150.7 (19)
N7—H7N⋯Cl1 0.82 (2) 2.45 (2) 3.2050 (15) 153.9 (19)
N8—H8N⋯Cl1 0.89 (2) 2.23 (2) 3.1051 (16) 168.5 (19)
O1—H01⋯Cl1ii 0.84 (2) 2.33 (2) 3.1653 (19) 178 (3)
O1—H02⋯N3 0.82 (2) 2.40 (2) 3.112 (2) 146 (3)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y+1, z.

Data collection: COLLECT (Nonius 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Studies on thiosemicarbazones and their metal complexes remain an active field of research for more than three decades due to their significant impacts in biology and chemistry (Ali & Livingstone, 1974; Campbell, 1975; Haiduc & Silverstru, 1990; Nath et al., 2001; Padhye & Kauffman, 1985; Pellerito & Nagy, 2002). Thiosemicarbazones are also known to stabilize uncommon oxidation states of metals upon complexation. The variation of coordination numbers exhibited by transition metals in these complexes is utilized in various redox reactions and found to inhibit the activity of metalloenzymes. In particular, the characterization of the coordination aspects of metal complexes with thiosemicarbazone ligands are important in order to model the physical and chemical behaviour of metalloenzymes (Viñuelas-Zahínos et al. 2008). Nickel(II) complexes of heterocyclic thiosemicarbazones were previously reported by Ketcham et al. (2002) and de Lima et al. (1999). Recently, Barros-Garcia et al. (2005) studied the structural and ligation properties of 2-acetyl thiazole semicarbazone of nickel(II). In the present study, we report the synthesis and structure of nickel(II) complex of the phenyl derivative of 2-acetylthiazole-3-thiosemicarbazone.

The title complex is a result of interaction between the neutral ligand molecules and nickel (II) ions in aqueous solution. In the complex, nickel(II) is chelated by two 2-acetylthiazole-3-phenylthiosemicarbazone ligands forming an octahedral complex (Fig. 1). The central metal ion binds via thiazole nitrogen, imine nitrogen and thione sulfur from each thiosemicarbazone. The coordination of the two ligands is meridonal due to the strong tendency toward planarity by heterocyclic thiosemicarbazones. The nickel ion coordinates with the two imine nitrogen with the Ni···N distances of 2.0332 (13) and 2.0479 (14) Å which are shorter than the corresponding distances of ring nitrogens (2.0967 (14) and 2.1076 (14) Å ). All these four bonds are shorter than the Ni···S distances (2.3619 (5) and 2.4139 (5) Å ). The central metal ion is distorted from octahedral symmetry as indicated by the angles N1—Ni1—S2, 160.44 (4)° and N5—Ni1—S4, 159.14 (4)°.

Indeed, the participation of sulfur groups as electron pair donors in coordinating NiII ion makes the secondary amines more acidic which results the complete loss of one proton on N3 from one ligand. Interestingly, this nitrogen (N3) acts as a hydrogen bond acceptor for one water molecule (Table 1). On the other hand, the second ligand is involved in binding a chloride anion with two hydrogen bonds (NH···Cl = 3.2050 (15) and 3.1051 (16) Å, which are slightly shorter than 3.048 (3) Å observed in a cryptand based receptor binding a chloride anion in its cavity (Saeed et al., 2009). Additionally, the two neighboring molecules are found to form a centrosymmetric dimer through NH···S interactions (Fig. 2). In the packing diagram the dimers are again connected with π-π stacking of two phenyl rings (Fig. 3).

The structure contains an unreasonably short distance O1A···C17, 2.629 (18) Å. This distance involves an atom (O1A) which was treated as occupied <9%. Since the contact is to the average position of a fully-occupied atom (C17), the distance does not imply an actual contact between two atoms. After refinement of the ordered part of the structure, residual density of 1.08 eÅ-3 was located in a cavity slightly too small for occupancy by a water molecule. The site is 2.488 (17) Å from O1 (at 1-x, 1-y, 1-z), and is taken to be an alternate site for O1. Refinement with O1 and O1A having occupancies summing to unity led to occupancy of 0.087 (4) for O1A. The cavity likely expands when O1A is occupied, and the displacement parameters of the atoms surrounding the cavity, including C17, support this interpretation. The environments of water molecule O1 and site O1A are quite different, the former engaging in long hydrogen bonds with N and Cl, while the latter is in a small void with no hydrogen bonding. This accounts for the large difference in the refined occupancies of the two sites. It appears unlikely that both sites could be simultaneously occupied, because of the short distance between them.

Related literature top

For general background to thiosemicarbazones and their metal complexes, see: Haiduc & Silverstru (1990); Nath et al. (2001); Padhye & Kauffman (1985); Pellerito & Nagy (2002); Ali & Livingstone (1974); Barros-García et al. (2005); Campbell (1975). For related structures, see: Ketcham et al. (2002); Lima et al. (1999); Viñuelas-Zahínos et al. (2008); Saeed et al. (2009); Venkatraman et al. (2009).

Experimental top

The cationic nickel complex was prepared by adding an aqueous solution of nickel (II) chloride to a boiling methanolic solution of thiosemicarbazone (Venkatraman et al. 2009) in 1:2 mol ratio. Heating was continued for about 2 hours. Light brown colored crystals were obtained by evaporation of the solvent at room temperature (yield = 60%).

Refinement top

H atoms on C were placed in idealized positions with C—H distances 0.95 - 0.98 Å and thereafter treated as riding. The coordinates of those on N and O were refined. Uiso for H was assigned as 1.2 times Ueq of the attached atom (1.5 for methyl). A torsional parameter was refined for each methyl group. A residual peak of density 1.08 eÅ-3, with nearest distance 2.5 Å to the water position was interpreted as a disordered water site. The partially-occupied water site O1A was treated as isotropic, and its H atoms were not located. The largest residual density peak was 0.84 Å from S3.

Structure description top

Studies on thiosemicarbazones and their metal complexes remain an active field of research for more than three decades due to their significant impacts in biology and chemistry (Ali & Livingstone, 1974; Campbell, 1975; Haiduc & Silverstru, 1990; Nath et al., 2001; Padhye & Kauffman, 1985; Pellerito & Nagy, 2002). Thiosemicarbazones are also known to stabilize uncommon oxidation states of metals upon complexation. The variation of coordination numbers exhibited by transition metals in these complexes is utilized in various redox reactions and found to inhibit the activity of metalloenzymes. In particular, the characterization of the coordination aspects of metal complexes with thiosemicarbazone ligands are important in order to model the physical and chemical behaviour of metalloenzymes (Viñuelas-Zahínos et al. 2008). Nickel(II) complexes of heterocyclic thiosemicarbazones were previously reported by Ketcham et al. (2002) and de Lima et al. (1999). Recently, Barros-Garcia et al. (2005) studied the structural and ligation properties of 2-acetyl thiazole semicarbazone of nickel(II). In the present study, we report the synthesis and structure of nickel(II) complex of the phenyl derivative of 2-acetylthiazole-3-thiosemicarbazone.

The title complex is a result of interaction between the neutral ligand molecules and nickel (II) ions in aqueous solution. In the complex, nickel(II) is chelated by two 2-acetylthiazole-3-phenylthiosemicarbazone ligands forming an octahedral complex (Fig. 1). The central metal ion binds via thiazole nitrogen, imine nitrogen and thione sulfur from each thiosemicarbazone. The coordination of the two ligands is meridonal due to the strong tendency toward planarity by heterocyclic thiosemicarbazones. The nickel ion coordinates with the two imine nitrogen with the Ni···N distances of 2.0332 (13) and 2.0479 (14) Å which are shorter than the corresponding distances of ring nitrogens (2.0967 (14) and 2.1076 (14) Å ). All these four bonds are shorter than the Ni···S distances (2.3619 (5) and 2.4139 (5) Å ). The central metal ion is distorted from octahedral symmetry as indicated by the angles N1—Ni1—S2, 160.44 (4)° and N5—Ni1—S4, 159.14 (4)°.

Indeed, the participation of sulfur groups as electron pair donors in coordinating NiII ion makes the secondary amines more acidic which results the complete loss of one proton on N3 from one ligand. Interestingly, this nitrogen (N3) acts as a hydrogen bond acceptor for one water molecule (Table 1). On the other hand, the second ligand is involved in binding a chloride anion with two hydrogen bonds (NH···Cl = 3.2050 (15) and 3.1051 (16) Å, which are slightly shorter than 3.048 (3) Å observed in a cryptand based receptor binding a chloride anion in its cavity (Saeed et al., 2009). Additionally, the two neighboring molecules are found to form a centrosymmetric dimer through NH···S interactions (Fig. 2). In the packing diagram the dimers are again connected with π-π stacking of two phenyl rings (Fig. 3).

The structure contains an unreasonably short distance O1A···C17, 2.629 (18) Å. This distance involves an atom (O1A) which was treated as occupied <9%. Since the contact is to the average position of a fully-occupied atom (C17), the distance does not imply an actual contact between two atoms. After refinement of the ordered part of the structure, residual density of 1.08 eÅ-3 was located in a cavity slightly too small for occupancy by a water molecule. The site is 2.488 (17) Å from O1 (at 1-x, 1-y, 1-z), and is taken to be an alternate site for O1. Refinement with O1 and O1A having occupancies summing to unity led to occupancy of 0.087 (4) for O1A. The cavity likely expands when O1A is occupied, and the displacement parameters of the atoms surrounding the cavity, including C17, support this interpretation. The environments of water molecule O1 and site O1A are quite different, the former engaging in long hydrogen bonds with N and Cl, while the latter is in a small void with no hydrogen bonding. This accounts for the large difference in the refined occupancies of the two sites. It appears unlikely that both sites could be simultaneously occupied, because of the short distance between them.

For general background to thiosemicarbazones and their metal complexes, see: Haiduc & Silverstru (1990); Nath et al. (2001); Padhye & Kauffman (1985); Pellerito & Nagy (2002); Ali & Livingstone (1974); Barros-García et al. (2005); Campbell (1975). For related structures, see: Ketcham et al. (2002); Lima et al. (1999); Viñuelas-Zahínos et al. (2008); Saeed et al. (2009); Venkatraman et al. (2009).

Computing details top

Data collection: COLLECT (Nonius 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Packing diagram of the title compound showing a molecular chain viewed along a axis.
{4-Phenyl-1-[1-(1,3-thiazol-2-yl)ethylidene]thiosemicarbazidato}{4-phenyl-1-[1- (1,3-thiazol-2-yl)ethylidene]thiosemicarbazide}nickel(II) chloride monohydrate top
Crystal data top
[Ni(C12H11N4S2)(C12H12N4S2)]Cl·H2OZ = 2
Mr = 663.92F(000) = 684
Triclinic, P1Dx = 1.521 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5983 (15) ÅCell parameters from 8157 reflections
b = 12.929 (2) Åθ = 2.5–30.5°
c = 13.492 (2) ŵ = 1.08 mm1
α = 101.710 (8)°T = 90 K
β = 90.168 (8)°Fragment, dark orange-red
γ = 98.946 (7)°0.33 × 0.27 × 0.08 mm
V = 1449.9 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
8823 independent reflections
Radiation source: fine-focus sealed tube7120 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scansθmax = 30.5°, θmin = 2.6°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1112
Tmin = 0.716, Tmax = 0.918k = 1818
31053 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0317P)2 + 0.7508P]
where P = (Fo2 + 2Fc2)/3
8823 reflections(Δ/σ)max = 0.001
374 parametersΔρmax = 0.46 e Å3
3 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Ni(C12H11N4S2)(C12H12N4S2)]Cl·H2Oγ = 98.946 (7)°
Mr = 663.92V = 1449.9 (4) Å3
Triclinic, P1Z = 2
a = 8.5983 (15) ÅMo Kα radiation
b = 12.929 (2) ŵ = 1.08 mm1
c = 13.492 (2) ÅT = 90 K
α = 101.710 (8)°0.33 × 0.27 × 0.08 mm
β = 90.168 (8)°
Data collection top
Nonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
8823 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
7120 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.918Rint = 0.027
31053 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.46 e Å3
8823 reflectionsΔρmin = 0.62 e Å3
374 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.73755 (2)0.394293 (16)0.219421 (15)0.01278 (5)
S10.69340 (6)0.47956 (4)0.08422 (3)0.02390 (10)
S20.85983 (5)0.45716 (3)0.38207 (3)0.01606 (8)
S30.28921 (6)0.38933 (4)0.38582 (5)0.03629 (13)
S40.93712 (5)0.28513 (3)0.16410 (3)0.01845 (9)
N10.66738 (17)0.38969 (11)0.06858 (10)0.0168 (3)
N20.84148 (16)0.54131 (10)0.20123 (10)0.0145 (3)
N30.92388 (16)0.61821 (11)0.27600 (10)0.0160 (3)
N41.01213 (17)0.65179 (11)0.44242 (10)0.0168 (3)
H4N1.009 (2)0.6270 (17)0.4923 (16)0.020*
N50.52775 (16)0.43701 (11)0.28172 (10)0.0160 (3)
N60.61975 (16)0.25083 (11)0.24132 (10)0.0155 (3)
N70.68555 (17)0.16005 (11)0.21622 (11)0.0189 (3)
H7N0.641 (2)0.1023 (18)0.2257 (15)0.023*
N80.89284 (18)0.07572 (12)0.17390 (12)0.0204 (3)
H8N0.823 (3)0.0229 (18)0.1878 (16)0.024*
C10.5889 (2)0.31759 (14)0.01143 (13)0.0208 (3)
H10.53750.24870.00530.025*
C20.5902 (2)0.35226 (14)0.10032 (13)0.0238 (4)
H20.54110.31180.16230.029*
C30.7296 (2)0.47931 (13)0.04134 (12)0.0175 (3)
C40.8216 (2)0.56675 (13)0.11410 (12)0.0178 (3)
C50.8832 (3)0.67237 (14)0.08888 (13)0.0272 (4)
H5A0.82060.72590.12210.041*
H5B0.87590.66630.01540.041*
H5C0.99350.69430.11260.041*
C60.93577 (18)0.58278 (12)0.36129 (12)0.0142 (3)
C71.0919 (2)0.75756 (13)0.45124 (12)0.0184 (3)
C81.1888 (3)0.78887 (16)0.37662 (15)0.0314 (4)
H81.19620.74050.31420.038*
C91.2748 (3)0.89174 (17)0.39429 (16)0.0383 (5)
H91.34320.91290.34430.046*
C101.2617 (3)0.96389 (17)0.48438 (16)0.0390 (5)
H101.31831.03470.49520.047*
C111.1656 (3)0.93179 (18)0.55803 (16)0.0430 (6)
H111.15610.98060.61980.052*
C121.0830 (3)0.82842 (16)0.54207 (14)0.0334 (5)
H121.01990.80610.59390.040*
C130.4732 (2)0.53104 (14)0.32056 (13)0.0203 (3)
H130.52210.59840.30880.024*
C140.3436 (2)0.51963 (16)0.37710 (15)0.0288 (4)
H140.29050.57650.40770.035*
C150.44159 (19)0.35541 (14)0.31114 (13)0.0188 (3)
C160.4887 (2)0.24947 (13)0.28841 (13)0.0195 (3)
C170.3995 (2)0.15581 (15)0.32400 (18)0.0336 (5)
H17A0.34410.10500.26610.050*
H17B0.32280.18040.37330.050*
H17C0.47310.12060.35590.050*
C180.83731 (19)0.16880 (13)0.18405 (12)0.0167 (3)
C191.0377 (2)0.04743 (14)0.13910 (13)0.0198 (3)
C201.1345 (2)0.09939 (15)0.07580 (14)0.0236 (4)
H201.10790.16130.05640.028*
C211.2697 (2)0.06037 (15)0.04129 (15)0.0265 (4)
H211.33590.09610.00170.032*
C221.3101 (2)0.03042 (15)0.06854 (15)0.0274 (4)
H221.40350.05640.04470.033*
C231.2126 (2)0.08261 (15)0.13097 (15)0.0263 (4)
H231.23890.14500.14950.032*
C241.0774 (2)0.04432 (14)0.16631 (14)0.0226 (4)
H241.01130.08030.20910.027*
Cl10.61127 (5)0.09146 (3)0.21252 (3)0.02521 (9)
O10.6845 (2)0.76617 (14)0.36670 (17)0.0455 (6)0.913 (4)
H010.662 (3)0.804 (2)0.326 (2)0.068*
H020.768 (3)0.754 (2)0.342 (2)0.068*
O1A0.524 (2)0.2403 (15)0.5062 (14)0.041 (6)*0.087 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01436 (10)0.01070 (9)0.01427 (10)0.00209 (7)0.00101 (7)0.00476 (7)
S10.0373 (3)0.0193 (2)0.01466 (19)0.00106 (18)0.00456 (17)0.00520 (15)
S20.01935 (19)0.01415 (18)0.01562 (18)0.00036 (14)0.00207 (14)0.00703 (14)
S30.0315 (3)0.0256 (2)0.0568 (3)0.0120 (2)0.0271 (2)0.0142 (2)
S40.01769 (19)0.01322 (18)0.0258 (2)0.00322 (14)0.00702 (16)0.00654 (15)
N10.0201 (7)0.0132 (6)0.0174 (6)0.0027 (5)0.0008 (5)0.0038 (5)
N20.0172 (6)0.0116 (6)0.0148 (6)0.0013 (5)0.0011 (5)0.0036 (5)
N30.0205 (7)0.0120 (6)0.0152 (6)0.0004 (5)0.0020 (5)0.0041 (5)
N40.0221 (7)0.0147 (6)0.0137 (6)0.0005 (5)0.0008 (5)0.0057 (5)
N50.0164 (6)0.0161 (6)0.0164 (6)0.0045 (5)0.0003 (5)0.0037 (5)
N60.0161 (6)0.0122 (6)0.0185 (6)0.0030 (5)0.0004 (5)0.0034 (5)
N70.0192 (7)0.0099 (6)0.0288 (8)0.0025 (5)0.0060 (6)0.0066 (6)
N80.0206 (7)0.0138 (7)0.0296 (8)0.0055 (5)0.0081 (6)0.0089 (6)
C10.0238 (8)0.0153 (8)0.0220 (8)0.0027 (6)0.0033 (7)0.0013 (6)
C20.0317 (10)0.0181 (8)0.0196 (8)0.0028 (7)0.0055 (7)0.0004 (6)
C30.0230 (8)0.0164 (8)0.0141 (7)0.0035 (6)0.0002 (6)0.0052 (6)
C40.0238 (8)0.0146 (7)0.0157 (7)0.0006 (6)0.0000 (6)0.0069 (6)
C50.0435 (11)0.0185 (8)0.0185 (8)0.0065 (8)0.0041 (8)0.0098 (7)
C60.0140 (7)0.0135 (7)0.0163 (7)0.0035 (6)0.0009 (6)0.0045 (6)
C70.0214 (8)0.0161 (8)0.0170 (7)0.0011 (6)0.0034 (6)0.0049 (6)
C80.0393 (11)0.0248 (10)0.0256 (9)0.0047 (8)0.0090 (8)0.0024 (8)
C90.0487 (13)0.0307 (11)0.0298 (10)0.0144 (10)0.0076 (9)0.0085 (8)
C100.0541 (14)0.0257 (10)0.0294 (10)0.0187 (10)0.0043 (10)0.0067 (8)
C110.0641 (16)0.0277 (11)0.0253 (10)0.0162 (10)0.0042 (10)0.0047 (8)
C120.0462 (12)0.0261 (10)0.0209 (9)0.0108 (9)0.0075 (8)0.0013 (7)
C130.0239 (8)0.0179 (8)0.0212 (8)0.0076 (7)0.0003 (7)0.0056 (6)
C140.0314 (10)0.0230 (9)0.0362 (10)0.0145 (8)0.0110 (8)0.0083 (8)
C150.0155 (7)0.0190 (8)0.0227 (8)0.0042 (6)0.0041 (6)0.0052 (6)
C160.0164 (8)0.0166 (8)0.0262 (8)0.0020 (6)0.0045 (6)0.0066 (6)
C170.0293 (10)0.0198 (9)0.0539 (13)0.0035 (8)0.0218 (9)0.0127 (9)
C180.0183 (8)0.0149 (7)0.0176 (7)0.0033 (6)0.0026 (6)0.0045 (6)
C190.0184 (8)0.0161 (8)0.0256 (8)0.0051 (6)0.0042 (6)0.0043 (6)
C200.0269 (9)0.0202 (8)0.0267 (9)0.0087 (7)0.0084 (7)0.0082 (7)
C210.0252 (9)0.0227 (9)0.0339 (10)0.0067 (7)0.0112 (8)0.0088 (8)
C220.0223 (9)0.0245 (9)0.0370 (10)0.0095 (7)0.0090 (8)0.0054 (8)
C230.0228 (9)0.0195 (8)0.0395 (11)0.0076 (7)0.0047 (8)0.0099 (8)
C240.0227 (8)0.0155 (8)0.0316 (9)0.0039 (6)0.0059 (7)0.0086 (7)
Cl10.0259 (2)0.0181 (2)0.0311 (2)0.00051 (16)0.00502 (17)0.00675 (16)
O10.0389 (11)0.0279 (9)0.0777 (15)0.0110 (8)0.0042 (10)0.0253 (9)
Geometric parameters (Å, º) top
Ni1—N22.0332 (13)C5—H5B0.9800
Ni1—N62.0479 (14)C5—H5C0.9800
Ni1—N52.0967 (14)C7—C121.383 (3)
Ni1—N12.1076 (14)C7—C81.392 (3)
Ni1—S22.3619 (5)C8—C91.392 (3)
Ni1—S42.4139 (5)C8—H80.9500
S1—C21.7155 (19)C9—C101.391 (3)
S1—C31.7223 (16)C9—H90.9500
S2—C61.7317 (16)C10—C111.381 (3)
S3—C141.705 (2)C10—H100.9500
S3—C151.7121 (17)C11—C121.387 (3)
S4—C181.6837 (17)C11—H110.9500
N1—C31.321 (2)C12—H120.9500
N1—C11.372 (2)C13—C141.358 (3)
N2—C41.301 (2)C13—H130.9500
N2—N31.3703 (18)C14—H140.9500
N3—C61.331 (2)C15—C161.462 (2)
N4—C61.357 (2)C16—C171.495 (2)
N4—C71.413 (2)C17—H17A0.9800
N4—H4N0.80 (2)C17—H17B0.9800
N5—C151.322 (2)C17—H17C0.9800
N5—C131.376 (2)C19—C201.391 (2)
N6—C161.294 (2)C19—C241.400 (2)
N6—N71.3633 (19)C20—C211.383 (2)
N7—C181.372 (2)C20—H200.9500
N7—H7N0.82 (2)C21—C221.391 (3)
N8—C181.344 (2)C21—H210.9500
N8—C191.408 (2)C22—C231.388 (3)
N8—H8N0.89 (2)C22—H220.9500
C1—C21.362 (2)C23—C241.382 (2)
C1—H10.9500C23—H230.9500
C2—H20.9500C24—H240.9500
C3—C41.461 (2)O1—H010.837 (17)
C4—C51.492 (2)O1—H020.819 (17)
C5—H5A0.9800
N2—Ni1—N6176.08 (5)N3—C6—S2126.98 (12)
N2—Ni1—N598.26 (5)N4—C6—S2115.26 (11)
N6—Ni1—N577.83 (5)C12—C7—C8119.82 (17)
N2—Ni1—N178.96 (5)C12—C7—N4117.41 (15)
N6—Ni1—N1101.11 (5)C8—C7—N4122.49 (16)
N5—Ni1—N195.07 (5)C7—C8—C9119.35 (18)
N2—Ni1—S281.48 (4)C7—C8—H8120.3
N6—Ni1—S298.44 (4)C9—C8—H8120.3
N5—Ni1—S288.16 (4)C10—C9—C8120.67 (19)
N1—Ni1—S2160.44 (4)C10—C9—H9119.7
N2—Ni1—S4102.43 (4)C8—C9—H9119.7
N6—Ni1—S481.48 (4)C11—C10—C9119.44 (19)
N5—Ni1—S4159.14 (4)C11—C10—H10120.3
N1—Ni1—S491.49 (4)C9—C10—H10120.3
S2—Ni1—S492.252 (19)C10—C11—C12120.2 (2)
C2—S1—C389.79 (8)C10—C11—H11119.9
C6—S2—Ni195.09 (5)C12—C11—H11119.9
C14—S3—C1589.67 (9)C7—C12—C11120.49 (18)
C18—S4—Ni197.18 (6)C7—C12—H12119.8
C3—N1—C1111.36 (14)C11—C12—H12119.8
C3—N1—Ni1109.88 (11)C14—C13—N5114.44 (16)
C1—N1—Ni1138.41 (12)C14—C13—H13122.8
C4—N2—N3117.28 (13)N5—C13—H13122.8
C4—N2—Ni1117.92 (11)C13—C14—S3110.81 (14)
N3—N2—Ni1124.70 (10)C13—C14—H14124.6
C6—N3—N2111.60 (13)S3—C14—H14124.6
C6—N4—C7130.21 (14)N5—C15—C16120.30 (15)
C6—N4—H4N112.7 (15)N5—C15—S3114.19 (13)
C7—N4—H4N117.1 (15)C16—C15—S3125.19 (13)
C15—N5—C13110.87 (15)N6—C16—C15111.47 (15)
C15—N5—Ni1111.02 (11)N6—C16—C17125.99 (16)
C13—N5—Ni1136.07 (12)C15—C16—C17122.37 (15)
C16—N6—N7120.21 (14)C16—C17—H17A109.5
C16—N6—Ni1118.79 (11)C16—C17—H17B109.5
N7—N6—Ni1120.66 (11)H17A—C17—H17B109.5
N6—N7—C18118.32 (14)C16—C17—H17C109.5
N6—N7—H7N121.7 (15)H17A—C17—H17C109.5
C18—N7—H7N119.6 (15)H17B—C17—H17C109.5
C18—N8—C19130.77 (15)N8—C18—N7111.65 (14)
C18—N8—H8N113.2 (14)N8—C18—S4126.23 (13)
C19—N8—H8N115.9 (14)N7—C18—S4122.10 (12)
C2—C1—N1114.90 (16)C20—C19—C24119.69 (16)
C2—C1—H1122.5C20—C19—N8124.65 (15)
N1—C1—H1122.5C24—C19—N8115.51 (15)
C1—C2—S1110.19 (13)C21—C20—C19119.57 (16)
C1—C2—H2124.9C21—C20—H20120.2
S1—C2—H2124.9C19—C20—H20120.2
N1—C3—C4120.81 (14)C20—C21—C22120.99 (17)
N1—C3—S1113.76 (12)C20—C21—H21119.5
C4—C3—S1125.42 (12)C22—C21—H21119.5
N2—C4—C3112.28 (14)C23—C22—C21119.28 (17)
N2—C4—C5125.17 (15)C23—C22—H22120.4
C3—C4—C5122.55 (14)C21—C22—H22120.4
C4—C5—H5A109.5C24—C23—C22120.36 (17)
C4—C5—H5B109.5C24—C23—H23119.8
H5A—C5—H5B109.5C22—C23—H23119.8
C4—C5—H5C109.5C23—C24—C19120.11 (17)
H5A—C5—H5C109.5C23—C24—H24119.9
H5B—C5—H5C109.5C19—C24—H24119.9
N3—C6—N4117.75 (14)H01—O1—H0296 (2)
N6—Ni1—N1—C19.68 (18)C6—N4—C7—C841.3 (3)
N2—Ni1—N5—C1312.01 (16)Ni1—N5—C15—C166.61 (19)
Ni1—N1—C3—C44.3 (2)Ni1—N6—C16—C154.66 (19)
Ni1—N2—C4—C32.43 (19)Ni1—N6—N7—C185.4 (2)
Ni1—N2—N3—C63.64 (18)N5—C15—C16—N61.6 (2)
N1—C3—C4—N24.6 (2)C19—N8—C18—S44.7 (3)
N2—N3—C6—S20.3 (2)N6—N7—C18—S46.0 (2)
C7—N4—C6—N33.9 (3)Ni1—S4—C18—N73.48 (14)
Ni1—S2—C6—N32.24 (15)C18—N8—C19—C2023.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···S2i0.80 (2)2.54 (2)3.2595 (15)150.7 (19)
N7—H7N···Cl10.82 (2)2.45 (2)3.2050 (15)153.9 (19)
N8—H8N···Cl10.89 (2)2.23 (2)3.1051 (16)168.5 (19)
O1—H01···Cl1ii0.84 (2)2.33 (2)3.1653 (19)178 (3)
O1—H02···N30.82 (2)2.40 (2)3.112 (2)146 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C12H11N4S2)(C12H12N4S2)]Cl·H2O
Mr663.92
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)8.5983 (15), 12.929 (2), 13.492 (2)
α, β, γ (°)101.710 (8), 90.168 (8), 98.946 (7)
V3)1449.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.33 × 0.27 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.716, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
31053, 8823, 7120
Rint0.027
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.081, 1.03
No. of reflections8823
No. of parameters374
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.62

Computer programs: COLLECT (Nonius 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···S2i0.80 (2)2.54 (2)3.2595 (15)150.7 (19)
N7—H7N···Cl10.82 (2)2.45 (2)3.2050 (15)153.9 (19)
N8—H8N···Cl10.89 (2)2.23 (2)3.1051 (16)168.5 (19)
O1—H01···Cl1ii0.837 (17)2.329 (17)3.1653 (19)178 (3)
O1—H02···N30.819 (17)2.40 (2)3.112 (2)146 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the National Institutes of Health, Division of National Center for Research Resources, under grant No. G12RR013459. Purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAli, A. M. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101–132.  CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBarros-García, F. J., Luna-Giles, F., Maldonado-Rogado, M. A. & Viñuelas-Zahínos, E. (2005). Polyhedron, 24, 2972–2980.  Google Scholar
First citationCampbell, M. J. M. (1975). Coord. Chem. Rev. 15, 279–319.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHaiduc, I. & Silverstru, C. (1990). Coord. Chem. Rev. 99, 253–256.  CrossRef CAS Web of Science Google Scholar
First citationKetcham, K. A., Garcia, I., Swearingen, J. K., El-Sawaf, A. K., Bermejo, E., Castineiras, A. & West, D. X. (2002). Polyhedron, 21, 859–865.  Web of Science CSD CrossRef CAS Google Scholar
First citationLima, R. L. de, Teixeira, L. R. de S., Carneiro, T. M. G. & Beraldo, H. (1999). J. Braz. Chem. Soc. 10, 184–188.  CrossRef Google Scholar
First citationNath, M., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99–149.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPadhye, S. & Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127–160.  CrossRef CAS Web of Science Google Scholar
First citationPellerito, L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111–150.  Web of Science CrossRef CAS Google Scholar
First citationSaeed, M. A., Fronczek, F. R. & Hossain, M. A. (2009). Chem. Commun. pp. 6409–6411.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatraman, R., Sitole, L. & Fronczek, F. R. (2009). Acta Cryst. E65, m1653–m1654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViñuelas-Zahínos, E., Luna-Giles, F., Torres-García, P. & Bernalte-García, A. (2008). Polyhedron, 28, 1362–1368.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds