metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Tetra­aqua­bis­{(E)-2-cyano-1-[(eth­oxy­carbon­yl)methyl­sulfan­yl]-2-(1-naphthyl­amino­carbon­yl)ethene-1-thiol­ato}calcium(II) di­ethyl ether disolvate

aChemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Helwan, Egypt, bNational Research Centre, Dokki, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: elgemeie@yahoo.com

(Received 22 March 2010; accepted 7 April 2010; online 21 April 2010)

In the title compound, [Ca(C18H15N2O3S2)(H2O)4]·2C4H10O, the Ca atom, which lies on an inversion centre, is coordinated octa­hedrally by four water mol­ecules and two anions of the ketene dithio­acetal, the donor atoms of which are the amidic carbonyl O atoms. The central backbone of the ligands (excluding the naphthalene and oxoethyl groups) is essentially planar (r.m.s. deviation 0.035 Å). Intra­molecular hydrogen bonds are observed from the NH group to the formally `thiol­ate' S atom and from one coordinated water to the nitrile group and to the ether O atom. Inter­molecular hydrogen bonds from the second independent water mol­ecule to the thiol­ate S atom and the side-chain oxo group connect the mol­ecules in chains parallel to the a axis.

Related literature

For our studies exploring the synthetic potential of ketene dithioacetals for synthesizing new classes of novel antimetabolic agents, see: Elgemeie & Sood (2006[Elgemeie, G. H. & Sood, S. A. (2006). Synth. Commun. 36, 743-753.]); Elgemeie et al. (2008[Elgemeie, G. H., Zaghary, W. A., Amin, K. M. & Nasr, T. M. (2008). J. Carbohydr. Chem. 27, 345-361.], 2009[Elgemeie, G. H., Zaghary, W. A., Amin, K. M. & Nasr, T. M. (2009). J. Carbohydr. Chem. 28, 161-180.]). For our reports of successful approaches for the synthesis of mercaptopurine and pyrimidine analogues by the reaction of ketene dithioacetals with active methylene functions, see: Elgemeie (2003[Elgemeie, G. H. (2003). Curr. Pharm. Des. 9, 2627-2642.]); Elgemeie et al. (2004[Elgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2004). Synth. Commun. 34, 3281-3291.], 2007[Elgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2007). Synth. Commun. 37, 2827-2834.]).

[Scheme 1]

Experimental

Crystal data
  • [Ca(C18H15N2O3S2)(H2O)4]·2C4H10O

  • Mr = 1003.26

  • Triclinic, [P \overline 1]

  • a = 7.8665 (3) Å

  • b = 12.4361 (5) Å

  • c = 13.8045 (6) Å

  • α = 103.692 (4)°

  • β = 99.963 (4)°

  • γ = 101.609 (3)°

  • V = 1250.24 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 K

  • 0.4 × 0.3 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.970, Tmax = 1.000

  • 26853 measured reflections

  • 6443 independent reflections

  • 4941 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.070

  • S = 0.96

  • 6443 reflections

  • 326 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

Ca—O1 2.2696 (9)
Ca—O2W 2.3265 (10)
Ca—O1W 2.3434 (10)
S1—C13 1.7686 (12)
S1—C14 1.7891 (12)
S2—C13 1.7037 (12)
O1—C11 1.2494 (14)
N1—C11 1.3448 (15)
N1—C1 1.4184 (15)
N2—C18 1.1518 (16)
C11—C12 1.4684 (16)
C12—C13 1.3996 (17)
C12—C18 1.4325 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯S2 0.855 (16) 2.279 (16) 3.0274 (11) 146.2 (14)
O1W—H1W⋯O93 0.82 (1) 1.94 (1) 2.7531 (14) 171 (2)
O1W—H2W⋯N2i 0.82 (1) 2.22 (1) 2.9902 (15) 157 (2)
O2W—H3W⋯O3ii 0.82 (1) 2.03 (1) 2.7797 (13) 151 (2)
O2W—H4W⋯S2ii 0.81 (1) 2.51 (1) 3.2666 (11) 157 (2)
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During the course of our studies directed toward exploring the synthetic potential of ketene dithioacetals for synthesizing new classes of novel antimetabolic agents (Elgemeie & Sood, 2006; Elgemeie et al., 2008, 2009), we have recently reported various successful approaches for synthesis of mercaptopurine and pyrimidine analogues by the reaction of ketene dithioacetals with active methylene functions (Elgemeie, 2003; Elgemeie et al., 2004, 2007). In conjunction of this work, we report here a novel calcium salt (I) of a ketene dithioacetal. The structure of (I) was established on the basis of its elemental analysis and spectral data (see Experimental). In order to establish unambiguously the structure of the product, the crystal structure was determined. The X-ray analysis confirms the exclusive presence of the form (I) in the solid state (Figure 1).

The structure consists of a calcium ion on an inversion centre, coordinated octahedrally by four water molecules and two anions of the ketene dithioacetal; the latter coordinate via the amidic carbonyl oxygen O1, with Ca—O1 2.2696 (9) Å. The asymmetric unit also contains one molecule of diethyl ether.

Within the ligand, there is presumably extensive delocalization of the negative charge from its formal position at the "thiolate" sulfur S2 through the ligand backbone (see dimensions in Table 1), in which the ten atoms C1, C11–14, C18, N1, O1, S1 and S2 are approximately coplanar (r.m.s. deviation 0.035 Å). The backbone angles C11—C12—C13 and C12—C13—S2 are noticeably wide at 126.43 (9) and 129.48 (11)° respectively. The Ca atom lies 0.862 (1) Å out of the backbone plane,and the naphthalene plane subtends an interplanar angle to this plane of 29.03 (2)°.

Intramolecular hydrogen bonds (Table 2) are observed from the NH function to the formally thiolate sulfur and from a hydrogen of the coordinated water O1W to the nitrile N. Additionally, the ether molecules are connected by a hydrogen bond from the same water to the ether oxygen. Intramolecular H bonds from the second water to the thiolate sulfur and the 2-oxo function connect the molecules to form chains parallel to the a axis (Fig. 2).

Related literature top

For related literature, see: Elgemeie (2003); Elgemeie & Sood (2006); Elgemeie et al. (2004, 2007, 2008, 2009).

Experimental top

The IR spectrum revealed the presence of cyano group at 2190 cm-1. The 1H NMR spectrum revealed signals at δ 1.06–1.24 ppm (t, CH3), 2.51 (s, SCH2), 4.08–4.15 (qua, ester CH2) 7.43–8.37 (m, aromatic protons) and 8.40 (br s, NH).

Refinement top

NH and OH hydrogens were identified in difference syntheses. The NH hydrogen was refined freely, water H freely but with distance restraints (SADI) to O—H and H···H. Methyl protons were identified in difference syntheses, idealised and allowed to refine as rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip. Other H were included starting from calculated, idealised positions using a riding model with C—H 0.99 Å for methylene groups and 0.95 Å for sp2 carbons. The ethyl group C16/17 is disordered over two positions with occupancies 0.738, 0.262 (4). Similarity restraints to this group were used to improve stability of refinement.

Structure description top

During the course of our studies directed toward exploring the synthetic potential of ketene dithioacetals for synthesizing new classes of novel antimetabolic agents (Elgemeie & Sood, 2006; Elgemeie et al., 2008, 2009), we have recently reported various successful approaches for synthesis of mercaptopurine and pyrimidine analogues by the reaction of ketene dithioacetals with active methylene functions (Elgemeie, 2003; Elgemeie et al., 2004, 2007). In conjunction of this work, we report here a novel calcium salt (I) of a ketene dithioacetal. The structure of (I) was established on the basis of its elemental analysis and spectral data (see Experimental). In order to establish unambiguously the structure of the product, the crystal structure was determined. The X-ray analysis confirms the exclusive presence of the form (I) in the solid state (Figure 1).

The structure consists of a calcium ion on an inversion centre, coordinated octahedrally by four water molecules and two anions of the ketene dithioacetal; the latter coordinate via the amidic carbonyl oxygen O1, with Ca—O1 2.2696 (9) Å. The asymmetric unit also contains one molecule of diethyl ether.

Within the ligand, there is presumably extensive delocalization of the negative charge from its formal position at the "thiolate" sulfur S2 through the ligand backbone (see dimensions in Table 1), in which the ten atoms C1, C11–14, C18, N1, O1, S1 and S2 are approximately coplanar (r.m.s. deviation 0.035 Å). The backbone angles C11—C12—C13 and C12—C13—S2 are noticeably wide at 126.43 (9) and 129.48 (11)° respectively. The Ca atom lies 0.862 (1) Å out of the backbone plane,and the naphthalene plane subtends an interplanar angle to this plane of 29.03 (2)°.

Intramolecular hydrogen bonds (Table 2) are observed from the NH function to the formally thiolate sulfur and from a hydrogen of the coordinated water O1W to the nitrile N. Additionally, the ether molecules are connected by a hydrogen bond from the same water to the ether oxygen. Intramolecular H bonds from the second water to the thiolate sulfur and the 2-oxo function connect the molecules to form chains parallel to the a axis (Fig. 2).

For related literature, see: Elgemeie (2003); Elgemeie & Sood (2006); Elgemeie et al. (2004, 2007, 2008, 2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing ellipsoids at the 50% probability level. Intramolecular hydrogen bonds are indicated by thin dashed lines.
[Figure 2] Fig. 2. Packing diagram of the title compound showing two molecules connected by intermolecular hydrogen bonds (thick dashed lines).
trans-tetraaquabis{(E)-2-cyano-1- [(ethoxycarbonyl)methylsulfanyl]-2-(1-naphthylaminocarbonyl)ethene-1- thiolato}calcium(II) diethyl ether disolvate top
Crystal data top
[Ca(C18H15N2O3S2)(H2O)4]·2C4H10OF(000) = 530
Mr = 1003.26Dx = 1.333 Mg m3
Triclinic, P1Melting point = 479–481 K
a = 7.8665 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4361 (5) ÅCell parameters from 11577 reflections
c = 13.8045 (6) Åθ = 2.6–30.8°
α = 103.692 (4)°µ = 0.35 mm1
β = 99.963 (4)°T = 100 K
γ = 101.609 (3)°Irregular tablet, pale yellow
V = 1250.24 (9) Å30.4 × 0.3 × 0.1 mm
Z = 1
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
6443 independent reflections
Radiation source: Enhance (Mo) X-ray Source4941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.1419 pixels mm-1θmax = 28.7°, θmin = 2.7°
ω–scanh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1616
Tmin = 0.970, Tmax = 1.000l = 1818
26853 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0363P)2]
where P = (Fo2 + 2Fc2)/3
6443 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 0.30 e Å3
18 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Ca(C18H15N2O3S2)(H2O)4]·2C4H10Oγ = 101.609 (3)°
Mr = 1003.26V = 1250.24 (9) Å3
Triclinic, P1Z = 1
a = 7.8665 (3) ÅMo Kα radiation
b = 12.4361 (5) ŵ = 0.35 mm1
c = 13.8045 (6) ÅT = 100 K
α = 103.692 (4)°0.4 × 0.3 × 0.1 mm
β = 99.963 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
6443 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4941 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 1.000Rint = 0.031
26853 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02918 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.30 e Å3
6443 reflectionsΔρmin = 0.28 e Å3
326 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

5.7234 (0.0013) x - 5.6563 (0.0020) y + 7.4193 (0.0030) z = 5.4532 (0.0027)

* 0.0098 (0.0008) C1 * 0.0042 (0.0011) C11 * 0.0033 (0.0011) C12 * -0.0107 (0.0010) C13 * 0.0215 (0.0007) C14 * 0.0075 (0.0008) C18 * 0.0664 (0.0009) N1 * -0.0508 (0.0008) O1 * 0.0150 (0.0006) S1 * -0.0662 (0.0006) S2 -0.8620 (0.0010) Ca

Rms deviation of fitted atoms = 0.0351

7.5293 (0.0008) x - 5.2398 (0.0041) y + 0.8431 (0.0033) z = 1.0859 (0.0024)

Angle to previous plane (with approximate esd) = 29.03 ( 0.02 )

* -0.0015 (0.0010) C1 * 0.0157 (0.0010) C2 * 0.0006 (0.0010) C3 * -0.0152 (0.0011) C4 * 0.0063 (0.0011) C5 * 0.0109 (0.0011) C6 * -0.0015 (0.0011) C7 * -0.0092 (0.0010) C8 * -0.0036 (0.0011) C9 * -0.0025 (0.0011) C10

Rms deviation of fitted atoms = 0.0086

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca0.00000.50001.00000.01453 (8)
S10.64002 (4)0.90145 (3)0.93054 (2)0.01677 (8)
S20.63380 (4)0.69288 (3)0.76538 (2)0.01590 (8)
O10.25364 (11)0.53927 (7)0.94360 (7)0.0198 (2)
O31.01513 (11)0.87570 (7)0.93853 (7)0.0201 (2)
N10.39935 (14)0.49923 (9)0.81647 (8)0.0156 (2)
H010.471 (2)0.5286 (13)0.7844 (11)0.032 (4)*
N20.36142 (15)0.81149 (9)1.07579 (8)0.0225 (2)
C10.32121 (15)0.37980 (10)0.77809 (9)0.0152 (3)
C20.27106 (16)0.31450 (10)0.84051 (10)0.0173 (3)
H20.29010.34910.91200.021*
C30.19158 (17)0.19658 (11)0.79947 (10)0.0211 (3)
H30.15600.15230.84330.025*
C40.16515 (17)0.14516 (11)0.69724 (10)0.0210 (3)
H40.11020.06560.67060.025*
C50.19573 (17)0.15718 (11)0.52430 (10)0.0236 (3)
H50.14370.07730.49690.028*
C60.24685 (18)0.21949 (12)0.46050 (10)0.0256 (3)
H60.23090.18300.38970.031*
C70.32322 (17)0.33790 (12)0.49968 (10)0.0240 (3)
H70.35800.38130.45500.029*
C80.34779 (17)0.39113 (11)0.60195 (9)0.0193 (3)
H80.39940.47120.62720.023*
C90.21843 (16)0.20880 (10)0.63064 (10)0.0178 (3)
C100.29770 (15)0.32891 (10)0.67054 (9)0.0153 (3)
C110.36103 (16)0.57231 (10)0.89338 (9)0.0143 (2)
C120.44847 (15)0.69477 (10)0.91915 (9)0.0139 (2)
C130.56499 (15)0.75240 (10)0.87132 (9)0.0137 (2)
C140.78632 (16)0.94911 (10)0.85488 (9)0.0147 (2)
H14A0.72230.92130.78180.018*
H14B0.81871.03380.87440.018*
C150.95496 (16)0.90825 (10)0.86744 (9)0.0152 (3)
O21.03244 (11)0.91600 (8)0.78997 (7)0.0246 (2)
C161.1903 (3)0.8657 (3)0.7942 (2)0.0354 (7)0.738 (4)
H16A1.28780.91410.85330.042*0.738 (4)
H16B1.15710.78830.80360.042*0.738 (4)
C171.2505 (3)0.8589 (2)0.69962 (17)0.0436 (8)0.738 (4)
H17A1.35270.82500.70210.065*0.738 (4)
H17B1.28590.93590.69160.065*0.738 (4)
H17C1.15330.81130.64140.065*0.738 (4)
C16'1.2112 (11)0.9059 (6)0.7918 (7)0.029 (2)*0.262 (4)
H16C1.27800.91280.86160.034*0.262 (4)
H16D1.27800.96250.76330.034*0.262 (4)
C17'1.1676 (9)0.7828 (6)0.7206 (5)0.044 (2)*0.262 (4)
H17D1.27880.76090.71390.066*0.262 (4)
H17E1.09960.77940.65290.066*0.262 (4)
H17F1.09670.73010.74990.066*0.262 (4)
C180.40096 (16)0.75993 (10)1.00605 (9)0.0152 (2)
C910.0616 (2)0.49289 (14)0.64737 (12)0.0380 (4)
H91A0.03920.49250.70000.057*
H91B0.15160.52040.68030.057*
H91C0.01980.54360.60710.057*
C920.1421 (2)0.37394 (14)0.57815 (11)0.0314 (3)
H92A0.24400.37370.52470.038*
H92B0.05230.34600.54390.038*
O930.20128 (13)0.30117 (9)0.63788 (7)0.0283 (2)
C940.2807 (2)0.18547 (13)0.57820 (11)0.0332 (4)
H94A0.19310.15390.54440.040*
H94B0.38420.18230.52440.040*
C950.3405 (2)0.11591 (14)0.64723 (12)0.0375 (4)
H95A0.42740.14740.68030.056*
H95B0.23730.11850.69970.056*
H95C0.39590.03640.60670.056*
O1W0.17859 (14)0.37346 (9)0.84531 (8)0.0318 (3)
H1W0.173 (2)0.3536 (15)0.7848 (10)0.051 (6)*
H2W0.252 (2)0.3209 (14)0.8526 (14)0.064 (7)*
O2W0.07611 (14)0.64913 (9)0.94233 (8)0.0277 (2)
H3W0.023 (2)0.7169 (11)0.9595 (12)0.044 (5)*
H4W0.155 (2)0.6389 (15)0.8925 (11)0.048 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca0.01563 (18)0.01361 (17)0.01734 (18)0.00374 (13)0.00750 (14)0.00726 (13)
S10.01826 (16)0.01288 (15)0.01747 (16)0.00078 (12)0.00818 (12)0.00085 (12)
S20.01890 (16)0.01387 (15)0.01454 (15)0.00153 (12)0.00815 (12)0.00241 (11)
O10.0199 (5)0.0174 (4)0.0240 (5)0.0023 (4)0.0127 (4)0.0061 (4)
O30.0200 (5)0.0161 (4)0.0215 (5)0.0033 (4)0.0013 (4)0.0058 (4)
N10.0165 (5)0.0134 (5)0.0162 (5)0.0004 (4)0.0076 (4)0.0032 (4)
N20.0280 (6)0.0196 (6)0.0241 (6)0.0076 (5)0.0136 (5)0.0074 (5)
C10.0118 (6)0.0143 (6)0.0184 (6)0.0025 (5)0.0029 (5)0.0036 (5)
C20.0182 (6)0.0168 (6)0.0167 (6)0.0039 (5)0.0037 (5)0.0050 (5)
C30.0216 (7)0.0176 (6)0.0262 (7)0.0036 (5)0.0064 (6)0.0107 (5)
C40.0184 (7)0.0131 (6)0.0277 (7)0.0004 (5)0.0020 (5)0.0038 (5)
C50.0192 (7)0.0198 (7)0.0242 (7)0.0025 (5)0.0018 (6)0.0037 (5)
C60.0244 (7)0.0304 (8)0.0165 (7)0.0049 (6)0.0045 (6)0.0017 (6)
C70.0243 (7)0.0288 (7)0.0189 (7)0.0048 (6)0.0079 (6)0.0063 (6)
C80.0201 (7)0.0181 (6)0.0179 (6)0.0017 (5)0.0056 (5)0.0032 (5)
C90.0133 (6)0.0166 (6)0.0211 (7)0.0035 (5)0.0022 (5)0.0022 (5)
C100.0111 (6)0.0168 (6)0.0166 (6)0.0032 (5)0.0024 (5)0.0031 (5)
C110.0129 (6)0.0166 (6)0.0142 (6)0.0043 (5)0.0035 (5)0.0050 (5)
C120.0128 (6)0.0154 (6)0.0135 (6)0.0036 (5)0.0041 (5)0.0030 (5)
C130.0121 (6)0.0143 (6)0.0135 (6)0.0034 (5)0.0013 (5)0.0029 (5)
C140.0165 (6)0.0130 (6)0.0155 (6)0.0029 (5)0.0051 (5)0.0050 (5)
C150.0152 (6)0.0091 (5)0.0174 (6)0.0010 (5)0.0025 (5)0.0008 (5)
O20.0161 (5)0.0383 (6)0.0213 (5)0.0076 (4)0.0079 (4)0.0089 (4)
C160.0198 (12)0.055 (2)0.0368 (14)0.0198 (14)0.0121 (10)0.0105 (15)
C170.0438 (15)0.0669 (19)0.0368 (13)0.0383 (13)0.0182 (11)0.0195 (12)
C180.0151 (6)0.0138 (6)0.0184 (6)0.0032 (5)0.0056 (5)0.0072 (5)
C910.0465 (10)0.0441 (10)0.0394 (9)0.0246 (8)0.0220 (8)0.0223 (8)
C920.0300 (8)0.0499 (10)0.0230 (7)0.0173 (7)0.0103 (6)0.0173 (7)
O930.0310 (6)0.0366 (6)0.0186 (5)0.0095 (4)0.0078 (4)0.0078 (4)
C940.0259 (8)0.0439 (9)0.0240 (8)0.0094 (7)0.0017 (6)0.0011 (7)
C950.0320 (9)0.0389 (9)0.0366 (9)0.0044 (7)0.0073 (7)0.0056 (7)
O1W0.0370 (6)0.0330 (6)0.0181 (5)0.0079 (5)0.0103 (5)0.0050 (5)
O2W0.0291 (6)0.0183 (5)0.0353 (6)0.0044 (4)0.0007 (5)0.0133 (5)
Geometric parameters (Å, º) top
Ca—O12.2696 (9)N1—H010.855 (16)
Ca—O2W2.3265 (10)C2—H20.9500
Ca—O1W2.3434 (10)C3—H30.9500
S1—C131.7686 (12)C4—H40.9500
S1—C141.7891 (12)C5—H50.9500
S2—C131.7037 (12)C6—H60.9500
O1—C111.2494 (14)C7—H70.9500
O3—C151.2064 (15)C8—H80.9500
N1—C111.3448 (15)C14—H14A0.9900
N1—C11.4184 (15)C14—H14B0.9900
N2—C181.1518 (16)C16—H16A0.9900
C1—C21.3702 (17)C16—H16B0.9900
C1—C101.4325 (17)C17—H17A0.9800
C2—C31.4063 (17)C17—H17B0.9800
C3—C41.3643 (18)C17—H17C0.9800
C4—C91.4113 (18)C16'—H16C0.9900
C5—C61.3631 (19)C16'—H16D0.9900
C5—C91.4199 (18)C17'—H17D0.9800
C6—C71.4059 (19)C17'—H17E0.9800
C7—C81.3713 (17)C17'—H17F0.9800
C8—C101.4156 (17)C91—H91A0.9800
C9—C101.4284 (16)C91—H91B0.9800
C11—C121.4684 (16)C91—H91C0.9800
C12—C131.3996 (17)C92—H92A0.9900
C12—C181.4325 (17)C92—H92B0.9900
C14—C151.5105 (17)C94—H94A0.9900
C15—O21.3323 (15)C94—H94B0.9900
O2—C16'1.433 (9)C95—H95A0.9800
O2—C161.497 (3)C95—H95B0.9800
C16—C171.455 (3)C95—H95C0.9800
C16'—C17'1.545 (8)O1W—H1W0.824 (13)
C91—C921.499 (2)O1W—H2W0.820 (13)
C92—O931.4255 (17)O2W—H3W0.819 (13)
O93—C941.4277 (17)O2W—H4W0.810 (13)
C94—C951.503 (2)
O1i—Ca—O1180.0C9—C5—H5119.2
O1—Ca—O2Wi92.96 (4)C5—C6—H6120.1
O1i—Ca—O2W92.96 (4)C7—C6—H6120.1
O1—Ca—O2W87.04 (4)C8—C7—H7119.8
O2Wi—Ca—O2W180.0C6—C7—H7119.8
O1—Ca—O1Wi83.15 (3)C7—C8—H8119.4
O2W—Ca—O1Wi91.93 (4)C10—C8—H8119.4
O1i—Ca—O1W83.15 (4)C15—C14—H14A109.0
O1—Ca—O1W96.85 (3)S1—C14—H14A109.0
O2Wi—Ca—O1W91.93 (4)C15—C14—H14B109.0
O2W—Ca—O1W88.07 (4)S1—C14—H14B109.0
O1Wi—Ca—O1W180.0H14A—C14—H14B107.8
C13—S1—C14103.00 (6)C17—C16—H16A109.8
C11—O1—Ca161.36 (9)O2—C16—H16A109.8
C11—N1—C1126.41 (11)C17—C16—H16B109.8
C2—C1—N1122.01 (11)O2—C16—H16B109.8
C2—C1—C10120.73 (11)H16A—C16—H16B108.2
N1—C1—C10117.26 (11)C16—C17—H17A109.5
C1—C2—C3120.42 (12)C16—C17—H17B109.5
C4—C3—C2120.61 (12)H17A—C17—H17B109.5
C3—C4—C9120.80 (12)C16—C17—H17C109.5
C6—C5—C9121.59 (12)H17A—C17—H17C109.5
C5—C6—C7119.90 (12)H17B—C17—H17C109.5
C8—C7—C6120.40 (13)O2—C16'—H16C112.1
C7—C8—C10121.21 (12)C17'—C16'—H16C112.1
C4—C9—C5122.03 (12)O2—C16'—H16D112.1
C4—C9—C10119.51 (11)C17'—C16'—H16D112.1
C5—C9—C10118.46 (12)H16C—C16'—H16D109.7
C8—C10—C9118.44 (11)C16'—C17'—H17D109.5
C8—C10—C1123.63 (11)C16'—C17'—H17E109.5
C9—C10—C1117.93 (11)H17D—C17'—H17E109.5
O1—C11—N1122.08 (11)C16'—C17'—H17F109.5
O1—C11—C12119.03 (11)H17D—C17'—H17F109.5
N1—C11—C12118.89 (11)H17E—C17'—H17F109.5
C13—C12—C18118.58 (11)C92—C91—H91A109.5
C13—C12—C11129.48 (11)C92—C91—H91B109.5
C18—C12—C11111.94 (10)H91A—C91—H91B109.5
C12—C13—S2126.43 (9)C92—C91—H91C109.5
C12—C13—S1113.61 (9)H91A—C91—H91C109.5
S2—C13—S1119.95 (7)H91B—C91—H91C109.5
C15—C14—S1113.08 (9)O93—C92—H92A109.9
O3—C15—O2124.07 (12)C91—C92—H92A109.9
O3—C15—C14125.39 (12)O93—C92—H92B109.9
O2—C15—C14110.52 (10)C91—C92—H92B109.9
C15—O2—C16'122.7 (4)H92A—C92—H92B108.3
C15—O2—C16112.09 (14)O93—C94—H94A109.9
C16'—O2—C1619.7 (3)C95—C94—H94A109.9
C17—C16—O2109.5 (2)O93—C94—H94B109.9
O2—C16'—C17'98.6 (5)C95—C94—H94B109.9
N2—C18—C12179.36 (14)H94A—C94—H94B108.3
O93—C92—C91108.82 (12)C94—C95—H95A109.5
C92—O93—C94112.91 (11)C94—C95—H95B109.5
O93—C94—C95109.05 (12)H95A—C95—H95B109.5
C11—N1—H01116.6 (10)C94—C95—H95C109.5
C1—N1—H01116.8 (10)H95A—C95—H95C109.5
C1—C2—H2119.8H95B—C95—H95C109.5
C3—C2—H2119.8Ca—O1W—H1W138.0 (12)
C4—C3—H3119.7Ca—O1W—H2W113.9 (13)
C2—C3—H3119.7H1W—O1W—H2W105.2 (16)
C3—C4—H4119.6Ca—O2W—H3W129.2 (12)
C9—C4—H4119.6Ca—O2W—H4W122.9 (13)
C6—C5—H5119.2H3W—O2W—H4W107.1 (16)
O1i—Ca—O1—C1171 (6)Ca—O1—C11—C1279.9 (3)
O2Wi—Ca—O1—C11153.0 (3)C1—N1—C11—O13.5 (2)
O2W—Ca—O1—C1127.0 (3)C1—N1—C11—C12176.62 (11)
O1Wi—Ca—O1—C11119.3 (3)O1—C11—C12—C13176.38 (12)
O1W—Ca—O1—C1160.7 (3)N1—C11—C12—C133.71 (19)
C11—N1—C1—C234.63 (18)O1—C11—C12—C183.10 (16)
C11—N1—C1—C10145.94 (12)N1—C11—C12—C18176.80 (11)
N1—C1—C2—C3179.07 (11)C18—C12—C13—S2177.98 (9)
C10—C1—C2—C31.52 (19)C11—C12—C13—S21.48 (19)
C1—C2—C3—C40.79 (19)C18—C12—C13—S11.28 (15)
C2—C3—C4—C90.62 (19)C11—C12—C13—S1179.27 (10)
C9—C5—C6—C70.3 (2)C14—S1—C13—C12178.99 (9)
C5—C6—C7—C80.4 (2)C14—S1—C13—S21.70 (9)
C6—C7—C8—C100.1 (2)C13—S1—C14—C1568.69 (9)
C3—C4—C9—C5178.77 (13)S1—C14—C15—O320.07 (15)
C3—C4—C9—C101.27 (19)S1—C14—C15—O2161.69 (8)
C6—C5—C9—C4179.68 (13)O3—C15—O2—C16'11.5 (4)
C6—C5—C9—C100.29 (19)C14—C15—O2—C16'166.8 (3)
C7—C8—C10—C90.74 (19)O3—C15—O2—C167.3 (2)
C7—C8—C10—C1179.59 (12)C14—C15—O2—C16174.45 (16)
C4—C9—C10—C8179.15 (12)C15—O2—C16—C17170.4 (2)
C5—C9—C10—C80.82 (17)C16'—O2—C16—C1763.0 (12)
C4—C9—C10—C10.53 (17)C15—O2—C16'—C17'103.4 (5)
C5—C9—C10—C1179.50 (12)C16—O2—C16'—C17'41.3 (9)
C2—C1—C10—C8179.49 (12)C13—C12—C18—N2162 (14)
N1—C1—C10—C80.05 (18)C11—C12—C18—N217 (14)
C2—C1—C10—C90.84 (17)C91—C92—O93—C94179.86 (11)
N1—C1—C10—C9179.72 (10)C92—O93—C94—C95179.38 (12)
Ca—O1—C11—N1100.2 (3)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···S20.855 (16)2.279 (16)3.0274 (11)146.2 (14)
O1W—H1W···O930.82 (1)1.94 (1)2.7531 (14)171 (2)
O1W—H2W···N2i0.82 (1)2.22 (1)2.9902 (15)157 (2)
O2W—H3W···O3ii0.82 (1)2.03 (1)2.7797 (13)151 (2)
O2W—H4W···S2ii0.81 (1)2.51 (1)3.2666 (11)157 (2)
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ca(C18H15N2O3S2)(H2O)4]·2C4H10O
Mr1003.26
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8665 (3), 12.4361 (5), 13.8045 (6)
α, β, γ (°)103.692 (4), 99.963 (4), 101.609 (3)
V3)1250.24 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.4 × 0.3 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.970, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
26853, 6443, 4941
Rint0.031
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 0.96
No. of reflections6443
No. of parameters326
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.28

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Selected geometric parameters (Å, º) top
Ca—O12.2696 (9)N1—C111.3448 (15)
Ca—O2W2.3265 (10)N1—C11.4184 (15)
Ca—O1W2.3434 (10)N2—C181.1518 (16)
S1—C131.7686 (12)C11—C121.4684 (16)
S1—C141.7891 (12)C12—C131.3996 (17)
S2—C131.7037 (12)C12—C181.4325 (17)
O1—C111.2494 (14)
O1—Ca—O2Wi92.96 (4)O1—C11—N1122.08 (11)
O1—Ca—O2W87.04 (4)O1—C11—C12119.03 (11)
O1—Ca—O1Wi83.15 (3)N1—C11—C12118.89 (11)
O2W—Ca—O1Wi91.93 (4)C13—C12—C18118.58 (11)
O1—Ca—O1W96.85 (3)C13—C12—C11129.48 (11)
O2W—Ca—O1W88.07 (4)C18—C12—C11111.94 (10)
C13—S1—C14103.00 (6)C12—C13—S2126.43 (9)
C11—O1—Ca161.36 (9)C12—C13—S1113.61 (9)
C11—N1—C1126.41 (11)S2—C13—S1119.95 (7)
C11—N1—C1—C234.63 (18)C11—C12—C13—S21.48 (19)
C1—N1—C11—C12176.62 (11)C11—C12—C13—S1179.27 (10)
N1—C11—C12—C133.71 (19)C14—S1—C13—C12178.99 (9)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···S20.855 (16)2.279 (16)3.0274 (11)146.2 (14)
O1W—H1W···O930.824 (13)1.936 (13)2.7531 (14)171.1 (17)
O1W—H2W···N2i0.820 (13)2.218 (14)2.9902 (15)157.1 (18)
O2W—H3W···O3ii0.819 (13)2.034 (14)2.7797 (13)151.2 (15)
O2W—H4W···S2ii0.810 (13)2.506 (14)3.2666 (11)156.9 (16)
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y, z.
 

References

First citationElgemeie, G. H. (2003). Curr. Pharm. Des. 9, 2627–2642.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2004). Synth. Commun. 34, 3281–3291.  Web of Science CSD CrossRef CAS Google Scholar
First citationElgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2007). Synth. Commun. 37, 2827–2834.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H. & Sood, S. A. (2006). Synth. Commun. 36, 743–753.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Zaghary, W. A., Amin, K. M. & Nasr, T. M. (2008). J. Carbohydr. Chem. 27, 345–361.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Zaghary, W. A., Amin, K. M. & Nasr, T. M. (2009). J. Carbohydr. Chem. 28, 161–180.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds