organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(1,1,3-trioxo-2,3-di­hydro-1,2-benzo­thia­zol-2-yl)acetate: a monoclinic polymorph

aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and bDepartment of Chemistry, Government College University, Lahore 54000, Pakistan
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 29 March 2010; accepted 30 March 2010; online 10 April 2010)

In the title compound, C10H9NO5S, the fused ring system and the planar (r.m.s. deviation = 0.0037 Å) methoxy­carbonyl­methyl side chain form a dihedral angle of 84.67 (10)°. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds. A triclinic polymorph of the title compound is already known [Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Parvez, M. & Rashid, R. (2008). Acta Cryst. E64, o859.]). Acta Cryst. E64, o859].

Related literature

For the synthesis and biological activity of related compounds, see: Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]); Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1171-1175.], 2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.], 2007[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Ahmad, S. (2007). Acta Cryst. E63, o900-o901.]). For a related structure, see: Arshad et al. (2009[Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o2596.]). For the triclinic polymorph, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Parvez, M. & Rashid, R. (2008). Acta Cryst. E64, o859.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO5S

  • Mr = 255.24

  • Monoclinic, P 21 /n

  • a = 8.9418 (4) Å

  • b = 12.7595 (6) Å

  • c = 10.3145 (5) Å

  • β = 107.300 (1)°

  • V = 1123.57 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.43 × 0.41 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.883, Tmax = 0.962

  • 12621 measured reflections

  • 2796 independent reflections

  • 2022 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.115

  • S = 1.03

  • 2796 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O1i 0.97 2.46 3.371 (3) 156
C2—H2⋯O4ii 0.93 2.59 3.455 (3) 155
C3—H3⋯O2ii 0.93 2.50 3.331 (3) 148
C10—H10C⋯O2iii 0.96 2.52 3.419 (3) 156
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

A triclinic polymorph (Siddiqui et al., 2008) of the title compound, methyl (1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)acetate (I), has already been reported. In continuation of our work on the synthesis (Zia-ur-Rehman et al., 2006; Ahmad et al., 2010), and crystal structures (Zia-ur-Rehman et al., 2007; Arshad et al., 2009) of various 1,2-benzothiazine-1,1-dioxides, we have been able to crystallize a monoclinic polymorph of the title compound. The methoxycarbonylmethyl side chain is oriented at a dihedral angle of 84.67 (10)° with respect to the fused ring system. The molecules are connected by intermolecular C–H···O interactions giving rise to a three dimentional network.

Related literature top

For the synthesis and biological activity of related compounds, see: Ahmad et al. (2010); Zia-ur-Rehman, Choudary & Ahmad (2005); Zia-ur-Rehman, Choudary et al. (2006); Zia-ur-Rehman, Choudary, Elsegood et al. (2007). For a related structure, see: Arshad et al. (2009). For the triclinic polymorph, see: Siddiqui et al. (2008).

Experimental top

The title compound was prepared following the procedure reported earlier (Zia-ur-Rehman et al., 2005). Crystals suitable for X-ray crystallography were grown in chloroform by slow evaporation at 313 K.

Refinement top

H-atoms were included in the refinement at geometrically idealized positions with aryl, methylene and methyl C—H distances 0.95, 0.99 and 0.98 Å, respectively, and U(H) = 1.2 times Ueq(C).

Structure description top

A triclinic polymorph (Siddiqui et al., 2008) of the title compound, methyl (1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)acetate (I), has already been reported. In continuation of our work on the synthesis (Zia-ur-Rehman et al., 2006; Ahmad et al., 2010), and crystal structures (Zia-ur-Rehman et al., 2007; Arshad et al., 2009) of various 1,2-benzothiazine-1,1-dioxides, we have been able to crystallize a monoclinic polymorph of the title compound. The methoxycarbonylmethyl side chain is oriented at a dihedral angle of 84.67 (10)° with respect to the fused ring system. The molecules are connected by intermolecular C–H···O interactions giving rise to a three dimentional network.

For the synthesis and biological activity of related compounds, see: Ahmad et al. (2010); Zia-ur-Rehman, Choudary & Ahmad (2005); Zia-ur-Rehman, Choudary et al. (2006); Zia-ur-Rehman, Choudary, Elsegood et al. (2007). For a related structure, see: Arshad et al. (2009). For the triclinic polymorph, see: Siddiqui et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids plotted at 50% probability level.
methyl 2-(1,1,3-trioxo-2,3-dihydro-1,2-benzothiazol-2-yl)acetate top
Crystal data top
C10H9NO5SF(000) = 528
Mr = 255.24Dx = 1.509 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4707 reflections
a = 8.9418 (4) Åθ = 2.7–26.7°
b = 12.7595 (6) ŵ = 0.30 mm1
c = 10.3145 (5) ÅT = 296 K
β = 107.300 (1)°Needles, colourless
V = 1123.57 (9) Å30.43 × 0.41 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2796 independent reflections
Radiation source: fine-focus sealed tube2022 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.883, Tmax = 0.962k = 1617
12621 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.2836P]
where P = (Fo2 + 2Fc2)/3
2796 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C10H9NO5SV = 1123.57 (9) Å3
Mr = 255.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9418 (4) ŵ = 0.30 mm1
b = 12.7595 (6) ÅT = 296 K
c = 10.3145 (5) Å0.43 × 0.41 × 0.13 mm
β = 107.300 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2796 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2022 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.962Rint = 0.025
12621 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
2796 reflectionsΔρmin = 0.32 e Å3
155 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38220 (5)0.08616 (4)0.63435 (4)0.05841 (18)
O10.16399 (18)0.16167 (11)0.27984 (13)0.0700 (4)
O20.33381 (18)0.13244 (13)0.74048 (13)0.0744 (4)
O30.54303 (16)0.05974 (16)0.66339 (16)0.0892 (5)
O40.17124 (19)0.34008 (12)0.54605 (16)0.0776 (4)
O50.33001 (19)0.44091 (12)0.46863 (15)0.0729 (4)
N10.3269 (2)0.16078 (13)0.49608 (15)0.0602 (4)
C10.25915 (19)0.01610 (14)0.55496 (17)0.0491 (4)
C20.2399 (3)0.11272 (17)0.6095 (2)0.0649 (5)
H20.29510.13030.69840.078*
C30.1358 (3)0.18129 (17)0.5268 (2)0.0720 (6)
H30.11960.24660.56050.086*
C40.0549 (3)0.15539 (16)0.3951 (2)0.0681 (6)
H40.01440.20360.34130.082*
C50.0746 (2)0.05929 (15)0.3415 (2)0.0556 (4)
H50.02010.04230.25230.067*
C60.17697 (18)0.01082 (13)0.42324 (16)0.0449 (4)
C70.2156 (2)0.11722 (15)0.38655 (17)0.0508 (4)
C80.3914 (3)0.26501 (17)0.4912 (2)0.0697 (6)
H8A0.41430.27350.40560.084*
H8B0.48920.27140.56360.084*
C90.2822 (2)0.35100 (16)0.50537 (18)0.0603 (5)
C100.2369 (3)0.53266 (18)0.4757 (2)0.0805 (7)
H10A0.13140.52230.41890.121*
H10B0.28090.59300.44500.121*
H10C0.23680.54330.56780.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0530 (3)0.0830 (4)0.0369 (2)0.0002 (2)0.00972 (18)0.0025 (2)
O10.0958 (11)0.0643 (9)0.0439 (7)0.0047 (7)0.0117 (7)0.0109 (6)
O20.0837 (10)0.0975 (11)0.0418 (7)0.0028 (8)0.0183 (7)0.0136 (7)
O30.0478 (8)0.1463 (16)0.0655 (10)0.0058 (9)0.0046 (7)0.0070 (10)
O40.0842 (10)0.0759 (10)0.0847 (11)0.0175 (8)0.0436 (9)0.0019 (8)
O50.0924 (11)0.0655 (9)0.0701 (9)0.0261 (8)0.0383 (8)0.0062 (7)
N10.0750 (10)0.0620 (10)0.0416 (8)0.0159 (8)0.0140 (7)0.0033 (7)
C10.0490 (9)0.0595 (10)0.0414 (8)0.0098 (8)0.0176 (7)0.0036 (7)
C20.0748 (13)0.0683 (13)0.0589 (12)0.0215 (10)0.0312 (10)0.0200 (10)
C30.0869 (15)0.0536 (12)0.0892 (16)0.0044 (11)0.0471 (13)0.0101 (11)
C40.0695 (13)0.0585 (12)0.0837 (15)0.0092 (10)0.0340 (11)0.0112 (11)
C50.0519 (10)0.0594 (11)0.0543 (10)0.0007 (8)0.0139 (8)0.0039 (8)
C60.0437 (8)0.0503 (9)0.0416 (8)0.0061 (7)0.0140 (7)0.0016 (7)
C70.0589 (10)0.0548 (10)0.0387 (9)0.0022 (8)0.0146 (8)0.0011 (7)
C80.0799 (14)0.0725 (14)0.0637 (12)0.0248 (11)0.0319 (11)0.0117 (10)
C90.0734 (13)0.0662 (12)0.0434 (10)0.0248 (10)0.0203 (9)0.0088 (8)
C100.1110 (19)0.0673 (14)0.0676 (14)0.0142 (13)0.0335 (13)0.0033 (11)
Geometric parameters (Å, º) top
S1—O31.4196 (15)C3—C41.376 (3)
S1—O21.4199 (14)C3—H30.9300
S1—N11.6630 (16)C4—C51.378 (3)
S1—C11.7457 (19)C4—H40.9300
O1—C71.202 (2)C5—C61.375 (2)
O4—C91.194 (2)C5—H50.9300
O5—C91.319 (2)C6—C71.478 (3)
O5—C101.451 (3)C8—C91.505 (3)
N1—C71.381 (2)C8—H8A0.9700
N1—C81.456 (3)C8—H8B0.9700
C1—C61.382 (2)C10—H10A0.9600
C1—C21.387 (3)C10—H10B0.9600
C2—C31.374 (3)C10—H10C0.9600
C2—H20.9300
O3—S1—O2117.25 (9)C6—C5—H5120.8
O3—S1—N1109.94 (10)C4—C5—H5120.8
O2—S1—N1110.00 (10)C5—C6—C1120.23 (17)
O3—S1—C1112.28 (10)C5—C6—C7127.21 (16)
O2—S1—C1112.24 (9)C1—C6—C7112.55 (15)
N1—S1—C192.32 (8)O1—C7—N1123.13 (17)
C9—O5—C10116.58 (17)O1—C7—C6127.78 (17)
C7—N1—C8122.39 (16)N1—C7—C6109.08 (15)
C7—N1—S1115.42 (13)N1—C8—C9112.79 (16)
C8—N1—S1122.19 (14)N1—C8—H8A109.0
C6—C1—C2121.73 (18)C9—C8—H8A109.0
C6—C1—S1110.62 (13)N1—C8—H8B109.0
C2—C1—S1127.65 (15)C9—C8—H8B109.0
C3—C2—C1117.17 (19)H8A—C8—H8B107.8
C3—C2—H2121.4O4—C9—O5125.2 (2)
C1—C2—H2121.4O4—C9—C8125.44 (19)
C2—C3—C4121.4 (2)O5—C9—C8109.32 (17)
C2—C3—H3119.3O5—C10—H10A109.5
C4—C3—H3119.3O5—C10—H10B109.5
C3—C4—C5121.2 (2)H10A—C10—H10B109.5
C3—C4—H4119.4O5—C10—H10C109.5
C5—C4—H4119.4H10A—C10—H10C109.5
C6—C5—C4118.33 (19)H10B—C10—H10C109.5
O3—S1—N1—C7115.77 (16)C2—C1—C6—C51.0 (3)
O2—S1—N1—C7113.66 (15)S1—C1—C6—C5179.06 (13)
C1—S1—N1—C71.03 (15)C2—C1—C6—C7179.97 (16)
O3—S1—N1—C864.37 (18)S1—C1—C6—C70.06 (18)
O2—S1—N1—C866.20 (18)C8—N1—C7—O10.0 (3)
C1—S1—N1—C8179.10 (16)S1—N1—C7—O1179.84 (15)
O3—S1—C1—C6113.27 (13)C8—N1—C7—C6179.00 (16)
O2—S1—C1—C6112.14 (13)S1—N1—C7—C61.14 (19)
N1—S1—C1—C60.60 (13)C5—C6—C7—O10.7 (3)
O3—S1—C1—C266.84 (19)C1—C6—C7—O1179.61 (18)
O2—S1—C1—C267.76 (18)C5—C6—C7—N1178.26 (17)
N1—S1—C1—C2179.51 (17)C1—C6—C7—N10.6 (2)
C6—C1—C2—C30.3 (3)C7—N1—C8—C977.7 (2)
S1—C1—C2—C3179.82 (14)S1—N1—C8—C9102.1 (2)
C1—C2—C3—C40.4 (3)C10—O5—C9—O41.6 (3)
C2—C3—C4—C50.4 (3)C10—O5—C9—C8179.77 (17)
C3—C4—C5—C60.4 (3)N1—C8—C9—O416.0 (3)
C4—C5—C6—C11.0 (3)N1—C8—C9—O5165.36 (16)
C4—C5—C6—C7179.88 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1i0.972.463.371 (3)156
C2—H2···O4ii0.932.593.455 (3)155
C3—H3···O2ii0.932.503.331 (3)148
C10—H10C···O2iii0.962.523.419 (3)156
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H9NO5S
Mr255.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.9418 (4), 12.7595 (6), 10.3145 (5)
β (°) 107.300 (1)
V3)1123.57 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.43 × 0.41 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.883, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
12621, 2796, 2022
Rint0.025
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.03
No. of reflections2796
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1i0.972.463.371 (3)155.5
C2—H2···O4ii0.932.59003.455 (3)155
C3—H3···O2ii0.932.50003.331 (3)148
C10—H10C···O2iii0.962.52003.419 (3)156
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The authors are grateful to PCSIR Laboratories Complex, Lahore, Pakistan, for the provision of necessary chemicals and to the Higher Education Commission of Pakistan for a grant for the purchase of the diffractometer.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationArshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o2596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Parvez, M. & Rashid, R. (2008). Acta Cryst. E64, o859.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1171–1175.  Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Ahmad, S. (2007). Acta Cryst. E63, o900–o901.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds