organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzoyl-4-methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 29 March 2010; accepted 30 March 2010; online 10 April 2010)

In the title compound, C14H13NO3S, the N—H bond in is anti to the C=O bond. The dihedral angle between the two aromatic rings is 79.4 (1)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, generating C(4) chains.

Related literature

For related structures, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.]); Suchetan et al. (2010a[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o327.],b[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o766.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO3S

  • Mr = 275.31

  • Orthorhombic, P 21 21 21

  • a = 5.1723 (5) Å

  • b = 14.785 (1) Å

  • c = 17.431 (1) Å

  • V = 1332.99 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 299 K

  • 0.40 × 0.20 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.908, Tmax = 0.966

  • 5515 measured reflections

  • 2644 independent reflections

  • 2388 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.12

  • 2644 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1025 Friedel pairs

  • Flack parameter: 0.18 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.83 (2) 2.08 (2) 2.905 (2) 175 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009; Suchetan et al., 2010a,b), the structure of N-(benzoyl)4-methylbenzenesulfonamide (I) has been determined. The conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond (Fig.1), similar to those observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009), N-(benzoyl)4-chlorobenzenesulfonamide (III)(Suchetan et al., 2010b) and N-(4-chlorobenzoyl)4-methylbenzenesulfonamide (IV)(Suchetan et al., 2010a).

The dihedral angles between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 76.5 (1)°, compared to the values of 86.5(0.1) in (II), 72.0 (1)° (molecule 1) and 77.3 (1)° (molecule 2) in (III), and 83.6 (1)° and 81.0 (1)° in the two independent molecules of (IV). Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 79.4 (1)°, compared to the vlues of 80.3(0.1) in (II), 62.8 (1)° (molecule 1) and 78.6 (1)° (molecule 2) in (III), and 81.0 (1)° and 76.3 (1)° in the two molecules of (IV).

The packing of molecules linked by of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For related structures, see: Gowda et al. (2009); Suchetan et al. (2010a,b).

Experimental top

The title compound was prepared by refluxing a mixture of benzoic acid, 4-methylbenzenesulfonamide and phosphorous oxy chloride for 5 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid, N-(benzoyl)4-methylbenzenesulfonamide obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried compound was recrystallized to the constant melting point.

Thick needle like colourless single crystals were grown from a slow evaporation of its toluene solution at room temperature.

Refinement top

The H atoms of the NH group was located in a difference map its coordinates were refined with a distance restraint of N—H = 0.86 (2)Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Structure description top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009; Suchetan et al., 2010a,b), the structure of N-(benzoyl)4-methylbenzenesulfonamide (I) has been determined. The conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond (Fig.1), similar to those observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009), N-(benzoyl)4-chlorobenzenesulfonamide (III)(Suchetan et al., 2010b) and N-(4-chlorobenzoyl)4-methylbenzenesulfonamide (IV)(Suchetan et al., 2010a).

The dihedral angles between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 76.5 (1)°, compared to the values of 86.5(0.1) in (II), 72.0 (1)° (molecule 1) and 77.3 (1)° (molecule 2) in (III), and 83.6 (1)° and 81.0 (1)° in the two independent molecules of (IV). Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 79.4 (1)°, compared to the vlues of 80.3(0.1) in (II), 62.8 (1)° (molecule 1) and 78.6 (1)° (molecule 2) in (III), and 81.0 (1)° and 76.3 (1)° in the two molecules of (IV).

The packing of molecules linked by of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

For related structures, see: Gowda et al. (2009); Suchetan et al. (2010a,b).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
N-Benzoyl-4-methylbenzenesulfonamide top
Crystal data top
C14H13NO3SF(000) = 576
Mr = 275.31Dx = 1.372 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3284 reflections
a = 5.1723 (5) Åθ = 2.7–27.9°
b = 14.785 (1) ŵ = 0.25 mm1
c = 17.431 (1) ÅT = 299 K
V = 1332.99 (17) Å3Thick needle, colourless
Z = 40.40 × 0.20 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2644 independent reflections
Radiation source: fine-focus sealed tube2388 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Rotation method data acquisition using ω and phi scans.θmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 36
Tmin = 0.908, Tmax = 0.966k = 1814
5515 measured reflectionsl = 2119
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.2729P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.009
2644 reflectionsΔρmax = 0.16 e Å3
176 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 1025 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.18 (8)
Crystal data top
C14H13NO3SV = 1332.99 (17) Å3
Mr = 275.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1723 (5) ŵ = 0.25 mm1
b = 14.785 (1) ÅT = 299 K
c = 17.431 (1) Å0.40 × 0.20 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2644 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2388 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.966Rint = 0.013
5515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084Δρmax = 0.16 e Å3
S = 1.12Δρmin = 0.21 e Å3
2644 reflectionsAbsolute structure: Flack (1983), 1025 Friedel pairs
176 parametersAbsolute structure parameter: 0.18 (8)
1 restraint
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4594 (4)0.46253 (13)0.51327 (11)0.0386 (4)
C20.5259 (5)0.54024 (14)0.55288 (13)0.0515 (5)
H20.45560.55200.60100.062*
C30.6980 (5)0.59989 (14)0.52001 (14)0.0594 (7)
H30.74440.65180.54680.071*
C40.8039 (4)0.58456 (16)0.44803 (14)0.0538 (6)
C50.7308 (6)0.50747 (16)0.40883 (15)0.0622 (6)
H50.79700.49650.36010.075*
C60.5603 (5)0.44644 (15)0.44130 (14)0.0530 (5)
H60.51360.39450.41460.064*
C70.5646 (4)0.33550 (13)0.67278 (11)0.0385 (4)
C80.7127 (4)0.25923 (12)0.70866 (10)0.0372 (4)
C90.9251 (5)0.27975 (16)0.75383 (12)0.0493 (5)
H90.97900.33940.75910.059*
C101.0568 (5)0.21114 (17)0.79106 (14)0.0611 (6)
H101.20090.22500.82070.073*
C110.9772 (5)0.12268 (17)0.78471 (13)0.0573 (6)
H111.06640.07700.81010.069*
C120.7650 (5)0.10229 (14)0.74057 (13)0.0557 (5)
H120.70840.04280.73690.067*
C130.6355 (5)0.16987 (14)0.70163 (12)0.0479 (5)
H130.49560.15530.67050.057*
C140.9988 (6)0.64902 (19)0.41356 (17)0.0819 (9)
H14A1.16590.63780.43550.098*
H14B0.94770.71020.42420.098*
H14C1.00650.64000.35910.098*
N10.4428 (4)0.31347 (11)0.60414 (9)0.0412 (4)
H1N0.496 (5)0.2715 (12)0.5770 (11)0.049*
O10.0820 (3)0.42621 (11)0.60730 (9)0.0558 (4)
O20.1517 (3)0.32651 (11)0.49499 (9)0.0572 (4)
O30.5488 (3)0.40946 (10)0.70188 (9)0.0540 (4)
S10.25282 (10)0.38263 (3)0.55513 (3)0.04071 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0395 (10)0.0353 (9)0.0411 (10)0.0041 (9)0.0048 (9)0.0016 (8)
C20.0721 (15)0.0428 (11)0.0396 (10)0.0038 (10)0.0006 (12)0.0037 (10)
C30.0835 (19)0.0406 (12)0.0540 (13)0.0141 (12)0.0158 (13)0.0000 (10)
C40.0552 (14)0.0489 (12)0.0573 (13)0.0039 (10)0.0093 (11)0.0136 (11)
C50.0709 (15)0.0597 (13)0.0559 (13)0.0026 (14)0.0155 (14)0.0035 (11)
C60.0641 (13)0.0448 (11)0.0499 (12)0.0061 (11)0.0065 (12)0.0104 (10)
C70.0408 (10)0.0368 (10)0.0380 (10)0.0010 (9)0.0040 (9)0.0001 (8)
C80.0409 (11)0.0380 (9)0.0328 (8)0.0007 (8)0.0044 (9)0.0026 (7)
C90.0539 (13)0.0453 (11)0.0488 (12)0.0076 (11)0.0059 (11)0.0037 (10)
C100.0593 (14)0.0673 (16)0.0568 (14)0.0063 (13)0.0160 (13)0.0132 (12)
C110.0621 (14)0.0585 (13)0.0514 (12)0.0065 (12)0.0053 (12)0.0184 (11)
C120.0689 (14)0.0400 (11)0.0583 (13)0.0013 (13)0.0011 (13)0.0110 (9)
C130.0544 (12)0.0422 (11)0.0469 (11)0.0034 (10)0.0060 (10)0.0047 (10)
C140.080 (2)0.0802 (19)0.0857 (19)0.0277 (16)0.0060 (17)0.0271 (17)
N10.0501 (9)0.0343 (8)0.0392 (9)0.0084 (8)0.0036 (8)0.0027 (7)
O10.0470 (8)0.0542 (9)0.0663 (10)0.0119 (7)0.0092 (8)0.0055 (8)
O20.0612 (9)0.0488 (8)0.0615 (9)0.0100 (7)0.0204 (8)0.0014 (8)
O30.0706 (10)0.0400 (8)0.0515 (9)0.0103 (8)0.0041 (8)0.0096 (7)
S10.0389 (2)0.0368 (2)0.0464 (3)0.0022 (2)0.0042 (3)0.0014 (2)
Geometric parameters (Å, º) top
C1—C61.379 (3)C9—C101.384 (3)
C1—C21.384 (3)C9—H90.9300
C1—S11.752 (2)C10—C111.376 (3)
C2—C31.378 (3)C10—H100.9300
C2—H20.9300C11—C121.374 (4)
C3—C41.388 (3)C11—H110.9300
C3—H30.9300C12—C131.381 (3)
C4—C51.382 (3)C12—H120.9300
C4—C141.512 (3)C13—H130.9300
C5—C61.383 (3)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—O31.208 (2)N1—S11.6556 (17)
C7—N11.391 (3)N1—H1N0.826 (15)
C7—C81.500 (3)O1—S11.4224 (16)
C8—C91.385 (3)O2—S11.4356 (16)
C8—C131.386 (3)
C6—C1—C2120.2 (2)C11—C10—C9120.8 (2)
C6—C1—S1119.54 (16)C11—C10—H10119.6
C2—C1—S1120.24 (16)C9—C10—H10119.6
C3—C2—C1119.0 (2)C12—C11—C10119.5 (2)
C3—C2—H2120.5C12—C11—H11120.2
C1—C2—H2120.5C10—C11—H11120.2
C2—C3—C4121.8 (2)C11—C12—C13120.3 (2)
C2—C3—H3119.1C11—C12—H12119.9
C4—C3—H3119.1C13—C12—H12119.9
C5—C4—C3118.3 (2)C12—C13—C8120.4 (2)
C5—C4—C14120.4 (2)C12—C13—H13119.8
C3—C4—C14121.3 (2)C8—C13—H13119.8
C4—C5—C6120.7 (2)C4—C14—H14A109.5
C4—C5—H5119.7C4—C14—H14B109.5
C6—C5—H5119.7H14A—C14—H14B109.5
C1—C6—C5120.1 (2)C4—C14—H14C109.5
C1—C6—H6120.0H14A—C14—H14C109.5
C5—C6—H6120.0H14B—C14—H14C109.5
O3—C7—N1122.85 (19)C7—N1—S1124.62 (14)
O3—C7—C8122.68 (18)C7—N1—H1N121.2 (17)
N1—C7—C8114.46 (16)S1—N1—H1N111.4 (16)
C9—C8—C13119.17 (19)O1—S1—O2120.16 (11)
C9—C8—C7118.51 (18)O1—S1—N1108.58 (9)
C13—C8—C7122.21 (19)O2—S1—N1103.66 (9)
C10—C9—C8119.8 (2)O1—S1—C1109.86 (9)
C10—C9—H9120.1O2—S1—C1107.93 (10)
C8—C9—H9120.1N1—S1—C1105.62 (10)
C6—C1—C2—C31.4 (3)C9—C10—C11—C120.3 (4)
S1—C1—C2—C3177.07 (18)C10—C11—C12—C131.3 (4)
C1—C2—C3—C40.7 (4)C11—C12—C13—C82.2 (4)
C2—C3—C4—C50.6 (4)C9—C8—C13—C121.5 (3)
C2—C3—C4—C14178.1 (2)C7—C8—C13—C12174.8 (2)
C3—C4—C5—C61.2 (4)O3—C7—N1—S12.5 (3)
C14—C4—C5—C6177.5 (3)C8—C7—N1—S1176.18 (15)
C2—C1—C6—C50.8 (4)C7—N1—S1—O144.6 (2)
S1—C1—C6—C5177.7 (2)C7—N1—S1—O2173.41 (17)
C4—C5—C6—C10.6 (4)C7—N1—S1—C173.21 (19)
O3—C7—C8—C929.9 (3)C6—C1—S1—O1152.71 (18)
N1—C7—C8—C9151.34 (18)C2—C1—S1—O128.8 (2)
O3—C7—C8—C13146.3 (2)C6—C1—S1—O220.0 (2)
N1—C7—C8—C1332.4 (3)C2—C1—S1—O2161.54 (17)
C13—C8—C9—C100.1 (3)C6—C1—S1—N190.38 (19)
C7—C8—C9—C10176.5 (2)C2—C1—S1—N188.08 (18)
C8—C9—C10—C111.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.83 (2)2.08 (2)2.905 (2)175 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H13NO3S
Mr275.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)299
a, b, c (Å)5.1723 (5), 14.785 (1), 17.431 (1)
V3)1332.99 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.40 × 0.20 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.908, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
5515, 2644, 2388
Rint0.013
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.12
No. of reflections2644
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.21
Absolute structureFlack (1983), 1025 Friedel pairs
Absolute structure parameter0.18 (8)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.826 (15)2.081 (16)2.905 (2)175 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o766.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds