organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(2-chloro­benzo­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 31 March 2010; accepted 6 April 2010; online 10 April 2010)

In the structure of the title compound, C13H9Cl2NO3S, the N—H bond is anti to the C=O bond and the dihedral angle between the two aromatic rings is 76.9 (1)°. In the crystal structure, mol­ecules are linked by N—H⋯O(S) hydrogen bonds to form inversion dimers.

Related literature

For background literature and similar structures, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.], 2010a[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, o326.],b[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, o794.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl2NO3S

  • Mr = 330.17

  • Monoclinic, P 21 /n

  • a = 6.5943 (6) Å

  • b = 10.9167 (9) Å

  • c = 20.167 (2) Å

  • β = 95.83 (1)°

  • V = 1444.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 299 K

  • 0.36 × 0.20 × 0.06 mm

Data collection
  • Oxford Xcalibur with a Sapphire CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.813, Tmax = 0.965

  • 5854 measured reflections

  • 2942 independent reflections

  • 1919 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.098

  • S = 1.01

  • 2942 reflections

  • 184 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.85 (1) 2.06 (1) 2.913 (2) 176 (2)
Symmetry code: (i) -x, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009, 2010a,b), the structure of N-(2-chlorobenzoyl)2-chlorobenzenesulfonamide (I) has been determined. The conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the CO bond (Fig.1), similar to those observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009), N-(2-chlorobenzoyl)benzenesulfonamide (III)(Gowda et al., 2010a) and N-(benzoyl)2-chlorobenzenesulfonamide (IV)(Gowda et al., 2010b).

Further, the conformation of the CO bond in the C—SO2—NH—C(O) segment of (I) is syn to the ortho-Cl in the benzoyl ring, similar to that observed in (III).

The molecules are twisted at the S atom with the torsional angle of 66.5 (2)°, compared to those of -66.9 (3)° in (II), -59.0 (2)° (molecule 1) and -67.3 (2)° (molecule 2) in (III), and 66.7 (2)° in (IV).

The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 86.9 (1)°, compared to the values of 86.5(0.1) in (II), 87.3 (1)° (molecule 1) and 73.3 (1)° (molecule 2) in (III), and 87.3 (1)° in (IV). Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 76.9 (1)°, compared to the values of 80.3(0.1) in (II), 69.8 (1)° (molecule 1) and 89.8 (1)° (molecule 2) in (III) and 73.3 (1)° in (IV).

The packing of molecules linked by of N—H···O(S) hydrogen bonds(Table 1) is shown in Fig. 2.

Related literature top

For background literature and similar structures, see: Gowda et al. (2009, 2010a,b).

Experimental top

The title compound was prepared by refluxing a mixture of 2-chlorobenzoic acid, 2-chlorobenzenesulfonamide and phosphorous oxy chloride for 3 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its toluene solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and its coordinates were refined with a distance restraint of N—H = 0.86 (1) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times the Ueq of the parent atom.

Structure description top

As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009, 2010a,b), the structure of N-(2-chlorobenzoyl)2-chlorobenzenesulfonamide (I) has been determined. The conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the CO bond (Fig.1), similar to those observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009), N-(2-chlorobenzoyl)benzenesulfonamide (III)(Gowda et al., 2010a) and N-(benzoyl)2-chlorobenzenesulfonamide (IV)(Gowda et al., 2010b).

Further, the conformation of the CO bond in the C—SO2—NH—C(O) segment of (I) is syn to the ortho-Cl in the benzoyl ring, similar to that observed in (III).

The molecules are twisted at the S atom with the torsional angle of 66.5 (2)°, compared to those of -66.9 (3)° in (II), -59.0 (2)° (molecule 1) and -67.3 (2)° (molecule 2) in (III), and 66.7 (2)° in (IV).

The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 86.9 (1)°, compared to the values of 86.5(0.1) in (II), 87.3 (1)° (molecule 1) and 73.3 (1)° (molecule 2) in (III), and 87.3 (1)° in (IV). Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 76.9 (1)°, compared to the values of 80.3(0.1) in (II), 69.8 (1)° (molecule 1) and 89.8 (1)° (molecule 2) in (III) and 73.3 (1)° in (IV).

The packing of molecules linked by of N—H···O(S) hydrogen bonds(Table 1) is shown in Fig. 2.

For background literature and similar structures, see: Gowda et al. (2009, 2010a,b).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
2-Chloro-N-(2-chlorobenzoyl)benzenesulfonamide top
Crystal data top
C13H9Cl2NO3SF(000) = 672
Mr = 330.17Dx = 1.518 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1539 reflections
a = 6.5943 (6) Åθ = 2.8–27.8°
b = 10.9167 (9) ŵ = 0.60 mm1
c = 20.167 (2) ÅT = 299 K
β = 95.83 (1)°Prism, colourless
V = 1444.3 (2) Å30.36 × 0.20 × 0.06 mm
Z = 4
Data collection top
Oxford Xcalibur with a Sapphire CCD detector
diffractometer
2942 independent reflections
Radiation source: fine-focus sealed tube1919 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Rotation method data acquisition using ω and phi scans.θmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 88
Tmin = 0.813, Tmax = 0.965k = 1013
5854 measured reflectionsl = 1025
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.4268P]
where P = (Fo2 + 2Fc2)/3
2942 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
C13H9Cl2NO3SV = 1444.3 (2) Å3
Mr = 330.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.5943 (6) ŵ = 0.60 mm1
b = 10.9167 (9) ÅT = 299 K
c = 20.167 (2) Å0.36 × 0.20 × 0.06 mm
β = 95.83 (1)°
Data collection top
Oxford Xcalibur with a Sapphire CCD detector
diffractometer
2942 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1919 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.965Rint = 0.025
5854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.23 e Å3
2942 reflectionsΔρmin = 0.31 e Å3
184 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2149 (4)0.2794 (2)0.04754 (11)0.0395 (6)
C20.3515 (4)0.2090 (3)0.07907 (13)0.0489 (7)
C30.5018 (5)0.2657 (3)0.11112 (15)0.0676 (9)
H30.59180.21940.13340.081*
C40.5167 (5)0.3920 (4)0.10965 (16)0.0733 (10)
H40.61930.43000.13050.088*
C50.3847 (5)0.4618 (3)0.07844 (15)0.0654 (9)
H50.39630.54670.07810.078*
C60.2350 (4)0.4058 (2)0.04755 (13)0.0520 (7)
H60.14470.45340.02610.062*
C70.2465 (4)0.2022 (2)0.11091 (12)0.0419 (6)
C80.3158 (4)0.1217 (2)0.16858 (11)0.0397 (6)
C90.5063 (4)0.1350 (2)0.20376 (13)0.0508 (7)
C100.5629 (5)0.0641 (3)0.25910 (15)0.0685 (9)
H100.69140.07360.28210.082*
C110.4305 (5)0.0199 (3)0.28004 (16)0.0708 (9)
H110.46850.06680.31780.085*
C120.2422 (5)0.0358 (3)0.24604 (14)0.0629 (8)
H120.15300.09370.26040.076*
C130.1849 (4)0.0343 (2)0.19040 (12)0.0492 (7)
H130.05700.02290.16720.059*
N10.1344 (3)0.14241 (17)0.05872 (10)0.0417 (5)
H1N0.122 (4)0.0648 (9)0.0568 (12)0.050*
O10.0977 (3)0.31318 (15)0.01764 (9)0.0565 (5)
O20.0841 (3)0.12191 (15)0.04562 (8)0.0492 (5)
O30.2790 (3)0.31054 (16)0.10914 (9)0.0573 (5)
Cl10.34230 (13)0.05007 (7)0.07821 (5)0.0774 (3)
Cl20.68560 (13)0.23576 (8)0.17804 (5)0.0878 (3)
S10.01817 (10)0.21602 (5)0.00569 (3)0.04066 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0459 (14)0.0355 (14)0.0351 (13)0.0001 (11)0.0054 (11)0.0001 (11)
C20.0469 (15)0.0522 (17)0.0458 (14)0.0054 (13)0.0033 (13)0.0018 (13)
C30.0485 (18)0.100 (3)0.0544 (18)0.0085 (18)0.0058 (15)0.0070 (18)
C40.061 (2)0.098 (3)0.059 (2)0.025 (2)0.0009 (17)0.032 (2)
C50.074 (2)0.059 (2)0.0605 (19)0.0170 (17)0.0039 (18)0.0159 (16)
C60.0678 (18)0.0376 (15)0.0497 (16)0.0071 (13)0.0023 (14)0.0059 (12)
C70.0524 (15)0.0349 (15)0.0394 (13)0.0018 (12)0.0102 (12)0.0042 (12)
C80.0510 (15)0.0342 (14)0.0346 (13)0.0022 (12)0.0071 (12)0.0039 (11)
C90.0538 (17)0.0483 (16)0.0498 (16)0.0002 (13)0.0034 (14)0.0035 (13)
C100.061 (2)0.080 (2)0.062 (2)0.0072 (18)0.0071 (16)0.0039 (18)
C110.080 (2)0.079 (2)0.0535 (18)0.0169 (19)0.0040 (18)0.0201 (17)
C120.080 (2)0.0596 (19)0.0517 (17)0.0006 (16)0.0184 (17)0.0157 (14)
C130.0564 (17)0.0485 (16)0.0431 (15)0.0011 (13)0.0069 (13)0.0024 (13)
N10.0602 (14)0.0242 (10)0.0394 (11)0.0032 (10)0.0020 (10)0.0021 (9)
O10.0614 (12)0.0370 (10)0.0730 (13)0.0118 (9)0.0154 (10)0.0003 (9)
O20.0528 (11)0.0335 (9)0.0577 (11)0.0052 (8)0.0111 (9)0.0007 (8)
O30.0882 (15)0.0323 (10)0.0499 (11)0.0107 (10)0.0011 (10)0.0042 (9)
Cl10.0773 (6)0.0542 (5)0.1022 (7)0.0199 (4)0.0158 (5)0.0171 (4)
Cl20.0611 (5)0.0780 (6)0.1224 (8)0.0201 (4)0.0001 (5)0.0151 (5)
S10.0464 (4)0.0281 (3)0.0469 (4)0.0016 (3)0.0015 (3)0.0005 (3)
Geometric parameters (Å, º) top
C1—C21.387 (3)C8—C91.386 (3)
C1—C61.387 (3)C8—C131.388 (3)
C1—S11.760 (2)C9—C101.378 (4)
C2—C31.383 (4)C9—Cl21.733 (3)
C2—Cl11.736 (3)C10—C111.362 (4)
C3—C41.383 (4)C10—H100.9300
C3—H30.9300C11—C121.367 (4)
C4—C51.358 (4)C11—H110.9300
C4—H40.9300C12—C131.379 (4)
C5—C61.364 (4)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—H60.9300N1—S11.649 (2)
C7—O31.203 (3)N1—H1N0.852 (10)
C7—N11.387 (3)O1—S11.4153 (17)
C7—C81.492 (3)O2—S11.4312 (17)
C2—C1—C6119.0 (2)C10—C9—C8120.8 (3)
C2—C1—S1123.2 (2)C10—C9—Cl2117.5 (2)
C6—C1—S1117.8 (2)C8—C9—Cl2121.6 (2)
C3—C2—C1119.7 (3)C11—C10—C9120.0 (3)
C3—C2—Cl1118.7 (2)C11—C10—H10120.0
C1—C2—Cl1121.6 (2)C9—C10—H10120.0
C4—C3—C2119.3 (3)C10—C11—C12120.5 (3)
C4—C3—H3120.3C10—C11—H11119.7
C2—C3—H3120.3C12—C11—H11119.7
C5—C4—C3121.5 (3)C11—C12—C13119.8 (3)
C5—C4—H4119.3C11—C12—H12120.1
C3—C4—H4119.3C13—C12—H12120.1
C4—C5—C6119.2 (3)C12—C13—C8120.8 (3)
C4—C5—H5120.4C12—C13—H13119.6
C6—C5—H5120.4C8—C13—H13119.6
C5—C6—C1121.3 (3)C7—N1—S1122.53 (17)
C5—C6—H6119.3C7—N1—H1N123.0 (17)
C1—C6—H6119.3S1—N1—H1N114.4 (17)
O3—C7—N1121.6 (2)O1—S1—O2119.05 (11)
O3—C7—C8124.1 (2)O1—S1—N1109.06 (11)
N1—C7—C8114.3 (2)O2—S1—N1104.36 (10)
C9—C8—C13118.0 (2)O1—S1—C1108.31 (11)
C9—C8—C7121.8 (2)O2—S1—C1109.92 (11)
C13—C8—C7120.1 (2)N1—S1—C1105.26 (11)
C6—C1—C2—C31.5 (4)C8—C9—C10—C110.3 (4)
S1—C1—C2—C3179.8 (2)Cl2—C9—C10—C11177.6 (2)
C6—C1—C2—Cl1177.34 (19)C9—C10—C11—C120.9 (5)
S1—C1—C2—Cl11.4 (3)C10—C11—C12—C130.5 (5)
C1—C2—C3—C41.7 (4)C11—C12—C13—C80.4 (4)
Cl1—C2—C3—C4177.1 (2)C9—C8—C13—C120.9 (4)
C2—C3—C4—C51.2 (5)C7—C8—C13—C12176.1 (2)
C3—C4—C5—C60.4 (5)O3—C7—N1—S16.3 (3)
C4—C5—C6—C10.1 (4)C8—C7—N1—S1172.07 (17)
C2—C1—C6—C50.7 (4)C7—N1—S1—O149.6 (2)
S1—C1—C6—C5179.5 (2)C7—N1—S1—O2177.81 (19)
O3—C7—C8—C940.1 (4)C7—N1—S1—C166.4 (2)
N1—C7—C8—C9141.5 (2)C2—C1—S1—O1177.1 (2)
O3—C7—C8—C13136.8 (3)C6—C1—S1—O14.1 (2)
N1—C7—C8—C1341.5 (3)C2—C1—S1—O245.5 (2)
C13—C8—C9—C100.6 (4)C6—C1—S1—O2135.70 (19)
C7—C8—C9—C10176.4 (2)C2—C1—S1—N166.3 (2)
C13—C8—C9—Cl2176.57 (19)C6—C1—S1—N1112.4 (2)
C7—C8—C9—Cl26.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (1)2.06 (1)2.913 (2)176 (2)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO3S
Mr330.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)6.5943 (6), 10.9167 (9), 20.167 (2)
β (°) 95.83 (1)
V3)1444.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.36 × 0.20 × 0.06
Data collection
DiffractometerOxford Xcalibur with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.813, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
5854, 2942, 1919
Rint0.025
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.098, 1.01
No. of reflections2942
No. of parameters184
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.852 (10)2.063 (10)2.913 (2)176 (2)
Symmetry code: (i) x, y, z.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, o326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, o794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds