organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Hy­droxy­phen­yl)benzene­sulfon­amide

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 31 March 2010; accepted 9 April 2010; online 14 April 2010)

The title compound, C12H11NO3S, synthesized by the reaction of benzene sulfonyl chloride with para-amino­phenol, is of inter­est as a precursor to biologically active sulfur-containing heterocyclic compounds. The structure is stabilized by N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the synthesis of related mol­ecules, see: Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.], 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For a related structure, see: Khan et al. (2009[Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11NO3S

  • Mr = 249.28

  • Orthorhombic, P 21 21 21

  • a = 5.1072 (2) Å

  • b = 9.3948 (4) Å

  • c = 24.0903 (10) Å

  • V = 1155.88 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.12 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 6402 measured reflections

  • 2808 independent reflections

  • 2076 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.146

  • S = 1.02

  • 2808 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1118 Friedel pairs

  • Flack parameter: 0.08 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.96 2.07 3.030 (3) 173
O3—H3⋯O1ii 0.82 2.05 2.857 (4) 166
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

In the present paper, the structure of N-(4-hydroxyphenyl) benzene sulfonamide (Fig. 1) has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Zia-ur-Rehman et al., 2006, 2009; Khan et al., 2009). Bond lengths and bond angles are almost similar to those in the related molecules (Khan et al., 2009). The molecules are linked through intermolecular N—H···O and O—H···O hydrogen bonds (Fig. 2; Table 1).

Related literature top

For the synthesis of related molecules, see: Zia-ur-Rehman et al. (2006, 2009). For a related structure, see: Khan et al. (2009).

Experimental top

A mixture of benzene sulfonyl chloride (10.0 mmoles; 1.766 g), para-aminophenol (10.0 mmoles; 1.286 g), aqueous sodium carbonate (10%; 10.0 ml) and water (25 ml) was stirred for half an hour at room temperature followed by evaporation of the solvent. The crude mixture was washed with water and dried. Product obtained was dissolved in methanol and crystallized by slow evaporation of the solvent. Yield 73%.

Refinement top

All H atoms were identified in the difference map. Nevertheless, they were fixed in ideal positions and treated as riding on their parent atoms. The following distances were used: Cmethyl—H 0.98 Å, Caromatic—H 0.95Å, O—H 0.84 Å. U(H) was set to 1.2Ueq of the parent atoms or 1.5Ueq for methyl groups.

Structure description top

In the present paper, the structure of N-(4-hydroxyphenyl) benzene sulfonamide (Fig. 1) has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Zia-ur-Rehman et al., 2006, 2009; Khan et al., 2009). Bond lengths and bond angles are almost similar to those in the related molecules (Khan et al., 2009). The molecules are linked through intermolecular N—H···O and O—H···O hydrogen bonds (Fig. 2; Table 1).

For the synthesis of related molecules, see: Zia-ur-Rehman et al. (2006, 2009). For a related structure, see: Khan et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the three-dimensional crystal packing showing hydrogen-bonded interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
N-(4-Hydroxyphenyl)benzenesulfonamide top
Crystal data top
C12H11NO3SF(000) = 520
Mr = 249.28Dx = 1.432 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6462 reflections
a = 5.1072 (2) Åθ = 2.5–27.1°
b = 9.3948 (4) ŵ = 0.28 mm1
c = 24.0903 (10) ÅT = 296 K
V = 1155.88 (8) Å3Needle, colourless
Z = 40.12 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2076 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 28.3°, θmin = 1.7°
φ and ω scansh = 46
6402 measured reflectionsk = 812
2808 independent reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0829P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2808 reflectionsΔρmax = 0.26 e Å3
155 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 1118 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (13)
Crystal data top
C12H11NO3SV = 1155.88 (8) Å3
Mr = 249.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1072 (2) ŵ = 0.28 mm1
b = 9.3948 (4) ÅT = 296 K
c = 24.0903 (10) Å0.12 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2076 reflections with I > 2σ(I)
6402 measured reflectionsRint = 0.032
2808 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.146Δρmax = 0.26 e Å3
S = 1.02Δρmin = 0.26 e Å3
2808 reflectionsAbsolute structure: Flack (1983), 1118 Friedel pairs
155 parametersAbsolute structure parameter: 0.08 (13)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63260 (16)0.61227 (9)0.12889 (3)0.0363 (2)
O10.5233 (5)0.7519 (3)0.13349 (12)0.0522 (7)
N10.4626 (5)0.5129 (3)0.17054 (11)0.0370 (7)
C10.4079 (7)0.2576 (4)0.15217 (13)0.0395 (8)
H10.26920.27830.12850.047*
O20.9034 (4)0.5892 (3)0.14085 (9)0.0485 (6)
C20.4814 (6)0.1180 (4)0.16065 (13)0.0431 (8)
H20.38930.04450.14370.052*
O30.7825 (6)0.0468 (3)0.20338 (12)0.0585 (8)
H30.68710.10390.18740.088*
C30.6923 (7)0.0881 (4)0.19449 (13)0.0396 (8)
C40.8231 (7)0.1962 (4)0.22069 (14)0.0433 (9)
H40.96470.17590.24370.052*
C50.7442 (7)0.3353 (4)0.21288 (14)0.0402 (8)
H50.83130.40870.23110.048*
C60.5380 (6)0.3661 (4)0.17841 (12)0.0321 (7)
C70.5766 (6)0.5525 (4)0.06026 (12)0.0351 (7)
C80.3782 (7)0.6111 (4)0.02947 (14)0.0493 (8)
H80.27420.68310.04420.059*
C90.3350 (8)0.5617 (5)0.02374 (15)0.0595 (11)
H90.20180.60090.04520.071*
C100.4879 (8)0.4549 (5)0.04506 (15)0.0598 (11)
H100.45840.42250.08100.072*
C110.6818 (8)0.3963 (5)0.01419 (16)0.0662 (12)
H110.78340.32330.02890.079*
C120.7288 (7)0.4448 (4)0.03900 (14)0.0507 (9)
H120.86200.40490.06020.061*
H1N0.28030.53030.16300.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0375 (4)0.0329 (4)0.0385 (4)0.0016 (4)0.0041 (3)0.0002 (4)
O10.0636 (17)0.0303 (12)0.0625 (16)0.0040 (12)0.0060 (14)0.0046 (12)
N10.0364 (15)0.0373 (15)0.0373 (13)0.0033 (12)0.0024 (11)0.0021 (13)
C10.0377 (18)0.0422 (19)0.0385 (16)0.0000 (16)0.0116 (14)0.0006 (15)
O20.0358 (13)0.0577 (16)0.0519 (13)0.0093 (12)0.0081 (11)0.0039 (12)
C20.0430 (18)0.0401 (18)0.0463 (17)0.0019 (17)0.0108 (14)0.0059 (18)
O30.072 (2)0.0341 (14)0.0689 (18)0.0048 (14)0.0216 (14)0.0013 (14)
C30.048 (2)0.0371 (19)0.0340 (16)0.0018 (16)0.0018 (13)0.0043 (15)
C40.046 (2)0.045 (2)0.0395 (17)0.0033 (17)0.0152 (16)0.0063 (16)
C50.0486 (19)0.0345 (18)0.0375 (16)0.0059 (17)0.0104 (15)0.0008 (15)
C60.0352 (15)0.0326 (17)0.0284 (13)0.0008 (14)0.0042 (12)0.0024 (13)
C70.0345 (17)0.0343 (17)0.0364 (15)0.0052 (14)0.0005 (13)0.0036 (14)
C80.0475 (19)0.050 (2)0.0504 (19)0.004 (2)0.0062 (17)0.0066 (18)
C90.060 (3)0.073 (3)0.046 (2)0.000 (2)0.0144 (19)0.012 (2)
C100.065 (3)0.078 (3)0.0364 (18)0.003 (2)0.0001 (18)0.009 (2)
C110.065 (3)0.084 (3)0.050 (2)0.017 (3)0.0014 (18)0.017 (2)
C120.045 (2)0.061 (2)0.0468 (19)0.012 (2)0.0053 (16)0.0020 (19)
Geometric parameters (Å, º) top
S1—O21.429 (2)C4—H40.9300
S1—O11.430 (3)C5—C61.372 (4)
S1—N11.622 (3)C5—H50.9300
S1—C71.769 (3)C7—C81.371 (5)
N1—C61.445 (4)C7—C121.375 (5)
N1—H1N0.9629C8—C91.381 (5)
C1—C61.371 (5)C8—H80.9300
C1—C21.380 (5)C9—C101.371 (6)
C1—H10.9300C9—H90.9300
C2—C31.380 (4)C10—C111.355 (6)
C2—H20.9300C10—H100.9300
O3—C31.365 (4)C11—C121.381 (5)
O3—H30.8200C11—H110.9300
C3—C41.370 (5)C12—H120.9300
C4—C51.381 (5)
O2—S1—O1120.06 (15)C6—C5—H5119.8
O2—S1—N1107.82 (15)C4—C5—H5119.8
O1—S1—N1105.73 (15)C1—C6—C5119.7 (3)
O2—S1—C7107.28 (15)C1—C6—N1121.3 (3)
O1—S1—C7107.48 (16)C5—C6—N1119.0 (3)
N1—S1—C7107.99 (15)C8—C7—C12120.8 (3)
C6—N1—S1119.2 (2)C8—C7—S1119.9 (3)
C6—N1—H1N116.4C12—C7—S1119.3 (3)
S1—N1—H1N107.6C7—C8—C9119.0 (4)
C6—C1—C2120.4 (3)C7—C8—H8120.5
C6—C1—H1119.8C9—C8—H8120.5
C2—C1—H1119.8C10—C9—C8120.2 (4)
C1—C2—C3119.6 (3)C10—C9—H9119.9
C1—C2—H2120.2C8—C9—H9119.9
C3—C2—H2120.2C11—C10—C9120.5 (4)
C3—O3—H3109.5C11—C10—H10119.7
O3—C3—C4116.8 (3)C9—C10—H10119.7
O3—C3—C2123.1 (3)C10—C11—C12120.2 (4)
C4—C3—C2120.1 (3)C10—C11—H11119.9
C3—C4—C5119.8 (3)C12—C11—H11119.9
C3—C4—H4120.1C7—C12—C11119.3 (3)
C5—C4—H4120.1C7—C12—H12120.3
C6—C5—C4120.4 (3)C11—C12—H12120.3
O2—S1—N1—C645.9 (3)O2—S1—C7—C8152.9 (3)
O1—S1—N1—C6175.5 (2)O1—S1—C7—C822.5 (3)
C7—S1—N1—C669.7 (3)N1—S1—C7—C891.1 (3)
C6—C1—C2—C32.0 (5)O2—S1—C7—C1228.9 (3)
C1—C2—C3—O3177.7 (3)O1—S1—C7—C12159.3 (3)
C1—C2—C3—C41.8 (5)N1—S1—C7—C1287.1 (3)
O3—C3—C4—C5179.1 (3)C12—C7—C8—C90.9 (6)
C2—C3—C4—C50.4 (5)S1—C7—C8—C9179.1 (3)
C3—C4—C5—C60.9 (5)C7—C8—C9—C100.4 (6)
C2—C1—C6—C50.7 (5)C8—C9—C10—C110.3 (6)
C2—C1—C6—N1179.4 (3)C9—C10—C11—C120.6 (7)
C4—C5—C6—C10.8 (5)C8—C7—C12—C110.6 (5)
C4—C5—C6—N1179.2 (3)S1—C7—C12—C11178.8 (3)
S1—N1—C6—C1101.5 (3)C10—C11—C12—C70.2 (6)
S1—N1—C6—C578.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.962.073.030 (3)173
O3—H3···O1ii0.822.052.857 (4)166
Symmetry codes: (i) x1, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC12H11NO3S
Mr249.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.1072 (2), 9.3948 (4), 24.0903 (10)
V3)1155.88 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.12 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6402, 2808, 2076
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.146, 1.02
No. of reflections2808
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.26
Absolute structureFlack (1983), 1118 Friedel pairs
Absolute structure parameter0.08 (13)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.962.073.030 (3)173.0
O3—H3···O1ii0.822.052.857 (4)166.0
Symmetry codes: (i) x1, y, z; (ii) x, y1, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds