organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-meth­­oxy-6-methyl­pyrimidin-1-ium picrate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India, and eDepartment of Studies in Physics, Mangalore University, Mangalagangotri, 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 3 April 2010; accepted 20 April 2010; online 28 April 2010)

In the title salt, C6H10N3O+·C6H2N3O7, the dihedral angle between the mean planes of the benzene and pyridine rings is 3.1 (1)°. In the cation, the meth­oxy group is almost coplanar with the pyridine ring [C—O—C—N = −0.6 (2)°]. The p-nitro [C—C—N—O = −1.17 (19)°] and one o-nitro [C—C—N—O = 1.83 (19)°] group in the anion are essentially coplanar with the benzene ring. The other disordered o-nitro group containing the major occupancy [0.868 (6)] O atom is twisted −29.0 (2)° from the mean plane of the benzene ring. A bifurcated N—H⋯(O.O) hydrogen bond and weak C—H⋯O intermolecular inter­action between the cation and anion produce a network of infinite O—H⋯O—H⋯O—H chains along the c axis in the [101] plane which helps to establish crystal packing. Comparison to a DFT computational calculation indicates that significant conformational changes occur in the free state.

Related literature

For the synthesis of imidazo[1,2-a]pyrimidines, see: Katritzky et al. (2003[Katritzky, A. R., Xu, Y.-J. & Tu, H. (2003). J. Org. Chem. 68, 4935-3937.]). For related structures, see: Ferguson et al. (1984[Ferguson, G., Kaitner, B., Lloyd, D. & Mcnab, H. (1984). J. Chem. Res (S), pp. 182-183.]); Glidewell et al. (2003[Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o9-o13.]); Narayana et al. (2008[Narayana, B., Sarojini, B. K., Prakash Kamath, K., Yathirajan, H. S. & Bolte, M. (2008). Acta Cryst. E64, o117-o118.]); Scheinbeim & Schempp, (1976[Scheinbeim, J. & Schempp, E. (1976). Acta Cryst. B32, 607-609.]); Schlueter et al. (2006[Schlueter, J. A., Funk, R. J. & Geiser, U. (2006). Acta Cryst. E62, o339-o341.]); Subashini et al. (2006[Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2006). Acta Cryst. E62, o3847-o3849.]). For density functional theory, see: Hehre et al. (1986[Hehre, W. J., Random, L., Schleyer, P. R. & Pople, J. A. (1986). In Ab Initio Molecular Orbital Theory. New York: Wiley.]); Schmidt & Polik (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC, Holland, MI, USA; available from http://www.webmo.net.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N3O+·C6H2N3O7

  • Mr = 368.28

  • Monoclinic, P 21 /c

  • a = 8.9442 (3) Å

  • b = 6.2793 (3) Å

  • c = 27.0354 (8) Å

  • β = 94.471 (3)°

  • V = 1513.78 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 200 K

  • 0.52 × 0.46 × 0.35 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.986, Tmax = 1.000

  • 15870 measured reflections

  • 6133 independent reflections

  • 3107 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.160

  • S = 0.94

  • 6133 reflections

  • 256 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1BA⋯O61Bi 0.88 2.09 2.883 (10) 150
N1B—H1BA⋯O61Ai 0.88 2.13 2.9309 (17) 151
N1B—H1BB⋯O1A 0.88 1.95 2.7223 (13) 146
N1B—H1BB⋯O21A 0.88 2.20 2.8855 (14) 134
N2B—H2BA⋯O1A 0.88 1.97 2.7380 (12) 145
N2B—H2BA⋯O62B 0.88 2.55 3.303 (10) 144
N2B—H2BA⋯O62A 0.88 2.62 3.381 (2) 145
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97) (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The synthesis of imidazo[1,2-a]pyrimidines has been widely investigated and is one of the most common strategies in the use of 2-aminopyrimidine as the starting material (Katritzky et al., 2003). Recently, the hydrogen-bonding patterns in 2-amino-4,6-dimethylpyrimidinium picrate has been reported (Subashini et al., 2006). In continuation of our work on picrates of biologically important molecules, we have prepared a new picrate of 2-amino-4-methoxy-6-methylpyrimidine, [C6H10N3 O]+, [C6H2N3O7]- and its crystal structure is reported.

The title compound,(I), C12H12N6O8, crystallizes as a salt with one C6H10N3 O+, C6H2N3O7- , cation-anion pair in the asymmetric unit (Fig. 1). The dihedral angle between the mean planes of the benzene and pyridine rings is 3.10°. In the cation the methoxy group is almost coplanar with the pyridine ring [C6B-O1B-C5B-N3B torsion angle = -0.63 (19)°]. Bond distances and angles in both the cation and anion are in normal ranges (Allen, 2002). The p [torsion angle C3A-C4A-N4A-O41A = 1.17 (18)°] and one o [torsion angle C1A-C2A-N2A-O21A = 1.83 (19)°] nitro group in the anion are nearly coplanar with the benzene ring. The other disordered o nitro group containing the predomoinate oxygen atom (occupancy = 0.868 (6)) is twisted -29.0 (2)\5 from the mean plane of the benzene ring. Bifurcated intramolecular donor, N1B, [O1A [N1B—H1BB···O21A. & N1B—H1BB···O1A] and acceptor, O1A, [N1B—H1BB···O1A & N2B—H2BA···O1A] hydrogen bonds and a weak C3B—H3BB···O62A(0.868 (6)) hydrogen bond interaction (Table 2) between the cation and anion produces a network of infinite O—H···O—H···O—H chains along the c axis in the [101] plane which helps to establish crystal packing (Fig. 2).

A density functional theory (DFT) geometry optimization molecular orbital calculation (Schmidt & Polik, 2007) was performed on the independent cation-anion pair (C6H10N3 O+, C6H2N3O7- ) within the asymmetric unit with the B3LYP 6-31-G(d) basis set (Hehre et al., 1986). Starting geometries were taken from X-ray refinement data. The dihedral angle between the mean planes of the benzene and pyridine rings increases to 28.10°. In the anion, the mean planes of the two o-nitro groups become twisted by 23.14° and 24.20°, respectively, from the mean plane of the benzene ring. The mean plane of the p-nitro group remains planar to the benzene ring. The mean plane of the methoxy group in the cation also remains planar to the pyridine ring. These observations suggest that the bifurcated N—H···(O,O) donor and acceptor hydrogen bonds and weak C—H···O intermolecular interactions play a significant role in crystal stability.

Related literature top

For the synthesis of imidazo[1,2-a]pyrimidines, see: Katritzky et al. (2003). For related structures, see: Ferguson et al. (1984); Glidewell et al. (2003); Narayana et al. (2008); Scheinbeim & Schempp, (1976); Schlueter et al. (2006); Subashini et al. (2006). For density functional theory, see: Hehre et al. (1986); Schmidt & Polik (2007).

Experimental top

4-Methoxy-6-methylpyrimidin-2-amine (1.39 g, 0.01 mol) was dissolved in 25 ml of ethanol. Picric acid (2.29 g, 0.01 mol) was dissolved in 15 ml of water. Both the solutions were mixed and to this, 5 ml of 5M HCl was added and stirred for few minutes. The formed complex was filtered and dried. Good quality crystals were grown from ethanol solution by slow evaporation (m. p.: 399 K). Composition: Found (Calculated): C: 39.09 (39.14); H: 3.24 (3.28); N: 22.77% (22.82%).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95-0.98 Å, N—H = 0.88 Å, and with Uiso(H) = 1.18-1.52Ueq(C,N).

Structure description top

The synthesis of imidazo[1,2-a]pyrimidines has been widely investigated and is one of the most common strategies in the use of 2-aminopyrimidine as the starting material (Katritzky et al., 2003). Recently, the hydrogen-bonding patterns in 2-amino-4,6-dimethylpyrimidinium picrate has been reported (Subashini et al., 2006). In continuation of our work on picrates of biologically important molecules, we have prepared a new picrate of 2-amino-4-methoxy-6-methylpyrimidine, [C6H10N3 O]+, [C6H2N3O7]- and its crystal structure is reported.

The title compound,(I), C12H12N6O8, crystallizes as a salt with one C6H10N3 O+, C6H2N3O7- , cation-anion pair in the asymmetric unit (Fig. 1). The dihedral angle between the mean planes of the benzene and pyridine rings is 3.10°. In the cation the methoxy group is almost coplanar with the pyridine ring [C6B-O1B-C5B-N3B torsion angle = -0.63 (19)°]. Bond distances and angles in both the cation and anion are in normal ranges (Allen, 2002). The p [torsion angle C3A-C4A-N4A-O41A = 1.17 (18)°] and one o [torsion angle C1A-C2A-N2A-O21A = 1.83 (19)°] nitro group in the anion are nearly coplanar with the benzene ring. The other disordered o nitro group containing the predomoinate oxygen atom (occupancy = 0.868 (6)) is twisted -29.0 (2)\5 from the mean plane of the benzene ring. Bifurcated intramolecular donor, N1B, [O1A [N1B—H1BB···O21A. & N1B—H1BB···O1A] and acceptor, O1A, [N1B—H1BB···O1A & N2B—H2BA···O1A] hydrogen bonds and a weak C3B—H3BB···O62A(0.868 (6)) hydrogen bond interaction (Table 2) between the cation and anion produces a network of infinite O—H···O—H···O—H chains along the c axis in the [101] plane which helps to establish crystal packing (Fig. 2).

A density functional theory (DFT) geometry optimization molecular orbital calculation (Schmidt & Polik, 2007) was performed on the independent cation-anion pair (C6H10N3 O+, C6H2N3O7- ) within the asymmetric unit with the B3LYP 6-31-G(d) basis set (Hehre et al., 1986). Starting geometries were taken from X-ray refinement data. The dihedral angle between the mean planes of the benzene and pyridine rings increases to 28.10°. In the anion, the mean planes of the two o-nitro groups become twisted by 23.14° and 24.20°, respectively, from the mean plane of the benzene ring. The mean plane of the p-nitro group remains planar to the benzene ring. The mean plane of the methoxy group in the cation also remains planar to the pyridine ring. These observations suggest that the bifurcated N—H···(O,O) donor and acceptor hydrogen bonds and weak C—H···O intermolecular interactions play a significant role in crystal stability.

For the synthesis of imidazo[1,2-a]pyrimidines, see: Katritzky et al. (2003). For related structures, see: Ferguson et al. (1984); Glidewell et al. (2003); Narayana et al. (2008); Scheinbeim & Schempp, (1976); Schlueter et al. (2006); Subashini et al. (2006). For density functional theory, see: Hehre et al. (1986); Schmidt & Polik (2007).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97) (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the C6H10N3 O+, C6H2N3O7- cation-anion pair showing the atom labeling scheme and 50% probability displacement ellipsoids. Only the predominate component of the disordered nitro group is displayed. Dashed lines indicate hydrogen bond interactions.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down the b axis. Dashed lines indicate hydrogen bonds.
2-Amino-4-methoxy-6-methylpyrimidin-1-ium picrate top
Crystal data top
C6H10N3O+·C6H2N3O7F(000) = 760
Mr = 368.28Dx = 1.616 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3951 reflections
a = 8.9442 (3) Åθ = 4.6–34.8°
b = 6.2793 (3) ŵ = 0.14 mm1
c = 27.0354 (8) ÅT = 200 K
β = 94.471 (3)°Prism, yellow
V = 1513.78 (10) Å30.52 × 0.46 × 0.35 mm
Z = 4
Data collection top
Oxford Diffraction Gemini
diffractometer
6133 independent reflections
Radiation source: fine-focus sealed tube3107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.5081 pixels mm-1θmax = 34.9°, θmin = 4.6°
φ and ω scansh = 1114
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 99
Tmin = 0.986, Tmax = 1.000l = 4243
15870 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0847P)2]
where P = (Fo2 + 2Fc2)/3
6133 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.43 e Å3
24 restraintsΔρmin = 0.29 e Å3
Crystal data top
C6H10N3O+·C6H2N3O7V = 1513.78 (10) Å3
Mr = 368.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9442 (3) ŵ = 0.14 mm1
b = 6.2793 (3) ÅT = 200 K
c = 27.0354 (8) Å0.52 × 0.46 × 0.35 mm
β = 94.471 (3)°
Data collection top
Oxford Diffraction Gemini
diffractometer
6133 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3107 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 1.000Rint = 0.031
15870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05424 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 0.94Δρmax = 0.43 e Å3
6133 reflectionsΔρmin = 0.29 e Å3
256 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.55766 (10)0.25342 (17)0.27447 (3)0.0282 (2)
O21A0.30234 (11)0.2803 (2)0.21683 (4)0.0407 (3)
O22A0.31232 (12)0.2676 (2)0.13799 (4)0.0545 (4)
O41A0.75641 (11)0.24825 (17)0.05802 (3)0.0317 (2)
O42A0.97162 (12)0.2438 (2)0.09966 (4)0.0505 (4)
O61A1.00309 (15)0.1699 (4)0.27556 (5)0.0322 (5)0.868 (6)
O62A0.83577 (17)0.3370 (5)0.31386 (5)0.0433 (6)0.868 (6)
O61B1.0068 (10)0.311 (3)0.2751 (3)0.040 (3)0.132 (6)
O62B0.8309 (11)0.195 (3)0.3157 (3)0.038 (3)0.132 (6)
O1B0.28372 (11)0.24739 (17)0.49248 (3)0.0326 (2)
N2A0.37356 (11)0.26925 (19)0.18027 (4)0.0241 (2)
N4A0.83482 (12)0.24677 (19)0.09742 (4)0.0251 (2)
N6A0.87761 (11)0.25092 (18)0.27698 (4)0.0222 (2)
N1B0.30287 (11)0.25263 (17)0.32338 (3)0.0193 (2)
H1BA0.20440.24900.31910.023*
H1BB0.35680.25550.29750.023*
N2B0.52320 (11)0.25912 (18)0.37421 (3)0.0194 (2)
H2BA0.57410.26300.34770.023*
N3B0.28659 (11)0.24940 (18)0.40787 (3)0.0209 (2)
C1A0.61812 (12)0.2561 (2)0.23423 (4)0.0173 (2)
C2A0.53717 (12)0.2594 (2)0.18562 (4)0.0175 (2)
C3A0.60696 (13)0.2561 (2)0.14188 (4)0.0183 (2)
H3AA0.54900.25880.11090.022*
C4A0.76183 (13)0.2487 (2)0.14336 (4)0.0184 (2)
C5A0.85022 (12)0.2451 (2)0.18818 (4)0.0186 (2)
H5AA0.95650.23890.18880.022*
C6A0.77977 (12)0.2506 (2)0.23132 (4)0.0173 (2)
C1B0.36982 (12)0.2538 (2)0.36869 (4)0.0169 (2)
C2B0.59876 (14)0.2586 (2)0.42009 (4)0.0243 (3)
C3B0.76596 (15)0.2631 (3)0.42302 (5)0.0375 (4)
H3BA0.80520.26420.45790.056*
H3BB0.79960.39140.40650.056*
H3BC0.80300.13660.40660.056*
C4B0.51754 (14)0.2534 (3)0.46052 (5)0.0300 (3)
H4BA0.56520.25210.49320.036*
C5B0.35982 (14)0.2501 (2)0.45220 (4)0.0235 (3)
C6B0.12228 (16)0.2460 (3)0.48535 (5)0.0344 (3)
H6BA0.07990.24540.51770.052*
H6BB0.08910.11840.46670.052*
H6BC0.08800.37320.46680.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0188 (4)0.0497 (7)0.0167 (4)0.0001 (4)0.0047 (3)0.0008 (4)
O21A0.0198 (4)0.0763 (9)0.0263 (5)0.0020 (5)0.0042 (4)0.0057 (5)
O22A0.0213 (5)0.1159 (13)0.0248 (5)0.0006 (6)0.0071 (4)0.0054 (6)
O41A0.0354 (5)0.0456 (6)0.0138 (4)0.0003 (5)0.0010 (3)0.0000 (4)
O42A0.0219 (5)0.1061 (12)0.0246 (5)0.0017 (6)0.0091 (4)0.0009 (6)
O61A0.0179 (6)0.0502 (13)0.0273 (6)0.0077 (7)0.0054 (4)0.0034 (7)
O62A0.0343 (7)0.0769 (18)0.0180 (6)0.0094 (9)0.0035 (5)0.0166 (8)
O61B0.021 (4)0.077 (9)0.023 (4)0.006 (5)0.005 (3)0.002 (5)
O62B0.023 (4)0.069 (8)0.022 (4)0.009 (5)0.001 (3)0.008 (4)
O1B0.0272 (5)0.0534 (7)0.0183 (4)0.0004 (5)0.0076 (3)0.0000 (4)
N2A0.0153 (4)0.0341 (7)0.0226 (5)0.0017 (5)0.0001 (4)0.0013 (5)
N4A0.0252 (5)0.0352 (6)0.0153 (4)0.0001 (5)0.0031 (4)0.0001 (5)
N6A0.0180 (4)0.0324 (6)0.0157 (4)0.0022 (5)0.0016 (3)0.0014 (5)
N1B0.0148 (4)0.0265 (5)0.0163 (4)0.0003 (5)0.0002 (3)0.0010 (4)
N2B0.0152 (4)0.0278 (6)0.0152 (4)0.0004 (5)0.0001 (3)0.0002 (4)
N3B0.0180 (4)0.0273 (6)0.0177 (4)0.0012 (5)0.0025 (3)0.0001 (4)
C1A0.0162 (5)0.0202 (6)0.0155 (4)0.0003 (5)0.0019 (4)0.0006 (5)
C2A0.0143 (4)0.0208 (6)0.0171 (5)0.0007 (5)0.0005 (4)0.0006 (5)
C3A0.0196 (5)0.0191 (6)0.0158 (4)0.0012 (5)0.0011 (4)0.0003 (5)
C4A0.0196 (5)0.0229 (6)0.0129 (4)0.0003 (5)0.0031 (4)0.0006 (5)
C5A0.0159 (5)0.0229 (6)0.0168 (5)0.0005 (5)0.0007 (4)0.0007 (5)
C6A0.0163 (5)0.0218 (6)0.0134 (4)0.0010 (5)0.0014 (3)0.0004 (5)
C1B0.0154 (5)0.0172 (5)0.0181 (5)0.0001 (5)0.0008 (4)0.0002 (5)
C2B0.0170 (5)0.0354 (7)0.0200 (5)0.0001 (6)0.0023 (4)0.0009 (5)
C3B0.0174 (5)0.0706 (12)0.0235 (6)0.0024 (7)0.0037 (4)0.0003 (7)
C4B0.0225 (6)0.0505 (9)0.0164 (5)0.0006 (7)0.0022 (4)0.0003 (6)
C5B0.0227 (5)0.0320 (7)0.0162 (5)0.0005 (6)0.0039 (4)0.0009 (5)
C6B0.0252 (6)0.0494 (9)0.0302 (6)0.0014 (7)0.0124 (5)0.0013 (7)
Geometric parameters (Å, º) top
O1A—C1A1.2523 (13)N3B—C5B1.3204 (15)
O21A—N2A1.2190 (13)N3B—C1B1.3416 (14)
O22A—N2A1.2284 (14)C1A—C2A1.4503 (15)
O41A—N4A1.2287 (13)C1A—C6A1.4545 (16)
O42A—N4A1.2205 (14)C2A—C3A1.3797 (15)
O61A—N6A1.2357 (17)C3A—C4A1.3834 (16)
O62A—N6A1.2182 (17)C3A—H3AA0.9500
O61B—N6A1.221 (10)C4A—C5A1.3944 (15)
O62B—N6A1.210 (9)C5A—C6A1.3685 (15)
O1B—C5B1.3283 (14)C5A—H5AA0.9500
O1B—C6B1.4418 (17)C2B—C4B1.3593 (17)
N2A—C2A1.4605 (14)C2B—C3B1.4916 (18)
N4A—C4A1.4477 (14)C3B—H3BA0.9800
N6A—C6A1.4565 (14)C3B—H3BB0.9800
N1B—C1B1.3210 (14)C3B—H3BC0.9800
N1B—H1BA0.8800C4B—C5B1.4112 (18)
N1B—H1BB0.8800C4B—H4BA0.9500
N2B—C2B1.3654 (15)C6B—H6BA0.9800
N2B—C1B1.3687 (14)C6B—H6BB0.9800
N2B—H2BA0.8800C6B—H6BC0.9800
C5B—O1B—C6B117.54 (10)C3A—C4A—C5A121.63 (10)
O21A—N2A—O22A122.12 (11)C3A—C4A—N4A119.53 (10)
O21A—N2A—C2A120.33 (10)C5A—C4A—N4A118.84 (10)
O22A—N2A—C2A117.55 (10)C6A—C5A—C4A118.20 (10)
O42A—N4A—O41A123.06 (10)C6A—C5A—H5AA120.9
O42A—N4A—C4A118.35 (10)C4A—C5A—H5AA120.9
O41A—N4A—C4A118.59 (10)C5A—C6A—C1A124.91 (10)
O62B—N6A—O62A43.1 (8)C5A—C6A—N6A115.86 (10)
O62B—N6A—O61B121.1 (6)C1A—C6A—N6A119.22 (9)
O62A—N6A—O61B104.4 (6)N1B—C1B—N3B119.52 (10)
O62B—N6A—O61A106.5 (6)N1B—C1B—N2B118.64 (9)
O62A—N6A—O61A123.08 (13)N3B—C1B—N2B121.84 (10)
O61B—N6A—O61A42.4 (9)C4B—C2B—N2B118.22 (11)
O62B—N6A—C6A120.6 (5)C4B—C2B—C3B123.65 (11)
O62A—N6A—C6A119.45 (12)N2B—C2B—C3B118.13 (11)
O61B—N6A—C6A118.3 (4)C2B—C3B—H3BA109.5
O61A—N6A—C6A117.40 (10)C2B—C3B—H3BB109.5
C1B—N1B—H1BA120.0H3BA—C3B—H3BB109.5
C1B—N1B—H1BB120.0C2B—C3B—H3BC109.5
H1BA—N1B—H1BB120.0H3BA—C3B—H3BC109.5
C2B—N2B—C1B121.33 (9)H3BB—C3B—H3BC109.5
C2B—N2B—H2BA119.3C2B—C4B—C5B117.54 (11)
C1B—N2B—H2BA119.3C2B—C4B—H4BA121.2
C5B—N3B—C1B116.75 (10)C5B—C4B—H4BA121.2
O1A—C1A—C2A124.65 (10)N3B—C5B—O1B119.64 (11)
O1A—C1A—C6A123.03 (10)N3B—C5B—C4B124.31 (10)
C2A—C1A—C6A112.30 (9)O1B—C5B—C4B116.05 (11)
C3A—C2A—C1A123.31 (10)O1B—C6B—H6BA109.5
C3A—C2A—N2A115.63 (10)O1B—C6B—H6BB109.5
C1A—C2A—N2A121.06 (9)H6BA—C6B—H6BB109.5
C2A—C3A—C4A119.64 (10)O1B—C6B—H6BC109.5
C2A—C3A—H3AA120.2H6BA—C6B—H6BC109.5
C4A—C3A—H3AA120.2H6BB—C6B—H6BC109.5
O1A—C1A—C2A—C3A178.06 (12)C2A—C1A—C6A—N6A178.84 (11)
C6A—C1A—C2A—C3A0.43 (19)O62B—N6A—C6A—C5A158.8 (10)
O1A—C1A—C2A—N2A2.7 (2)O62A—N6A—C6A—C5A151.0 (2)
C6A—C1A—C2A—N2A178.78 (11)O61B—N6A—C6A—C5A22.2 (11)
O21A—N2A—C2A—C3A177.43 (13)O61A—N6A—C6A—C5A26.1 (2)
O22A—N2A—C2A—C3A2.02 (18)O62B—N6A—C6A—C1A21.3 (10)
O21A—N2A—C2A—C1A1.83 (19)O62A—N6A—C6A—C1A29.0 (2)
O22A—N2A—C2A—C1A178.72 (13)O61B—N6A—C6A—C1A157.8 (11)
C1A—C2A—C3A—C4A0.2 (2)O61A—N6A—C6A—C1A153.92 (16)
N2A—C2A—C3A—C4A179.42 (12)C5B—N3B—C1B—N1B179.78 (12)
C2A—C3A—C4A—C5A0.2 (2)C5B—N3B—C1B—N2B0.12 (19)
C2A—C3A—C4A—N4A179.57 (12)C2B—N2B—C1B—N1B179.40 (12)
O42A—N4A—C4A—C3A178.82 (13)C2B—N2B—C1B—N3B0.5 (2)
O41A—N4A—C4A—C3A1.17 (19)C1B—N2B—C2B—C4B0.2 (2)
O42A—N4A—C4A—C5A0.59 (19)C1B—N2B—C2B—C3B179.57 (13)
O41A—N4A—C4A—C5A179.42 (13)N2B—C2B—C4B—C5B0.3 (2)
C3A—C4A—C5A—C6A0.5 (2)C3B—C2B—C4B—C5B179.86 (15)
N4A—C4A—C5A—C6A178.91 (12)C1B—N3B—C5B—O1B179.54 (12)
C4A—C5A—C6A—C1A1.2 (2)C1B—N3B—C5B—C4B0.5 (2)
C4A—C5A—C6A—N6A178.78 (12)C6B—O1B—C5B—N3B0.6 (2)
O1A—C1A—C6A—C5A177.37 (13)C6B—O1B—C5B—C4B179.43 (14)
C2A—C1A—C6A—C5A1.14 (19)C2B—C4B—C5B—N3B0.8 (2)
O1A—C1A—C6A—N6A2.6 (2)C2B—C4B—C5B—O1B179.30 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1BA···O61Bi0.882.092.883 (10)150
N1B—H1BA···O61Ai0.882.132.9309 (17)151
N1B—H1BB···O1A0.881.952.7223 (13)146
N1B—H1BB···O21A0.882.202.8855 (14)134
N2B—H2BA···O1A0.881.972.7380 (12)145
N2B—H2BA···O62B0.882.553.303 (10)144
N2B—H2BA···O62A0.882.623.381 (2)145
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC6H10N3O+·C6H2N3O7
Mr368.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)8.9442 (3), 6.2793 (3), 27.0354 (8)
β (°) 94.471 (3)
V3)1513.78 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.52 × 0.46 × 0.35
Data collection
DiffractometerOxford Diffraction Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.986, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15870, 6133, 3107
Rint0.031
(sin θ/λ)max1)0.805
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.160, 0.94
No. of reflections6133
No. of parameters256
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.29

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97) (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1BA···O61Bi0.882.092.883 (10)149.9
N1B—H1BA···O61Ai0.882.132.9309 (17)150.8
N1B—H1BB···O1A0.881.952.7223 (13)146.2
N1B—H1BB···O21A0.882.202.8855 (14)134.1
N2B—H2BA···O1A0.881.972.7380 (12)144.5
N2B—H2BA···O62B0.882.553.303 (10)143.9
N2B—H2BA···O62A0.882.623.381 (2)145.4
Symmetry code: (i) x1, y, z.
 

Acknowledgements

KPK thanks the UGC, New Delhi, for the sanction of a Faculty Improvement Programme. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationFerguson, G., Kaitner, B., Lloyd, D. & Mcnab, H. (1984). J. Chem. Res (S), pp. 182-183.  Google Scholar
First citationGlidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o9–o13.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHehre, W. J., Random, L., Schleyer, P. R. & Pople, J. A. (1986). In Ab Initio Molecular Orbital Theory. New York: Wiley.  Google Scholar
First citationKatritzky, A. R., Xu, Y.-J. & Tu, H. (2003). J. Org. Chem. 68, 4935–3937.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNarayana, B., Sarojini, B. K., Prakash Kamath, K., Yathirajan, H. S. & Bolte, M. (2008). Acta Cryst. E64, o117–o118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationScheinbeim, J. & Schempp, E. (1976). Acta Cryst. B32, 607–609.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchlueter, J. A., Funk, R. J. & Geiser, U. (2006). Acta Cryst. E62, o339–o341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC, Holland, MI, USA; available from http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2006). Acta Cryst. E62, o3847–o3849.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds