organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Bromo-3,4-di­hydro-2H-1,3-thia­zino[2,3:2′,1′]imidazo[5′,4′-b]pyridine

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fés, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, Lille, France, cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 April 2010; accepted 6 April 2010; online 14 April 2010)

The imidazopyridine ring system in the title compound, C9H8BrN3S, is almost planar [r.m.s. deviation of the C and N atoms = 0.007 (1) Å]. The S and methyl­ene C atoms connected to the five-membered ring lie within this plane. The remaining two methyl­ene groups of the thia­zine ring are disordered over two sets of sites in a 0.817 (5):0.183 (5) ratio.

Related literature

The parent triclyclic condensed imidazole (without bromine) has been patented as a pharmaceutical; see: Hideg et al. (1975[Hideg, K., Hankovszky, O., Palosi, E., Hajos, G. & Szporny, L. (1975). Ger. Patent DE 2429290 19750116.], 1976[Hideg, K., Hankovszky, O., Palosi, E., Hajos, G. & Szporny, L. (1976). Hung. Patent HU 12392 19761028.]). For other compounds synthesized from 6-bromo-1H-imidazo[4,5-b]pyridine-2(3H)-thione, see: Liszkiewicz et al. (2007[Liszkiewicz, H., Kowalska, M. W. & Wietrzyk, J. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 199-208.]); Prasad et al. (1986[Prasad, A. R., Rao, A. N., Ramalingam, T. & Sattur, P. B. (1986). Indian J. Chem. Sect. B, 25, 776-778.]); Yutilov & Svertilova (1988[Yutilov, Yu. M. & Svertilova, I. A. (1988). Khim. Geterotsikl. Soedin. pp. 799-804.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8BrN3S

  • Mr = 270.15

  • Monoclinic, C 2/c

  • a = 20.2738 (3) Å

  • b = 13.2786 (2) Å

  • c = 7.3169 (1) Å

  • β = 102.193 (1)°

  • V = 1925.33 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.45 mm−1

  • T = 100 K

  • 0.46 × 0.14 × 0.12 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.234, Tmax = 0.618

  • 30460 measured reflections

  • 3561 independent reflections

  • 3003 reflections with I > 2σ(I)

  • Rint = 0.039

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.064

  • S = 0.99

  • 3561 reflections

  • 146 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Commerically-available 6-bromo-1H-imidazo[4,5-b]pyridine-2(3H)-thione has been used to react with a range of organic compounds to furnish chemicals having useful biological activities (Liszkiewicz et al., 2007; Prasad et al., 1986; Yutilov & Svertilova, 1988). The compound reacts with 1-chloropropanal under catalytic conditions to yield the title triclyclic condensed imidazole (Scheme I, Fig. 1). The imidazopyridine fused ring is planar. One ethylene fragment of the six-membered ring is twisted such that one atom lies above and the other below the plane. This fragment is disordered over two positions.

Related literature top

The parent triclyclic condensed imidazole (without bromine) has been patented as a pharmaceutical; see: Hideg et al. (1975, 1976). For other compounds synthesized from 6-bromo-1H-imidazo[4,5-b]pyridine-2(3H)-thione, see: Liszkiewicz et al. (2007); Prasad et al. (1986); Yutilov & Svertilova (1988).

Experimental top

6-Bromo-1H-imidazo[4,5-b]pyridine-2(3H)-thione (1 mmol), potassium carbonate (4 mmol), tetra-n-butylammonium bromide (0.1 mmol) and 1-chloro-propanol (1.5 mmol) in DMF (15 ml) were stirred for 72 h. After completion of reaction (as monitored by TLC), the salt was filtered and the solvent removed under reduced pressure. The resulting residue was purified by column chromatography on silica gel using chloroform/hexane (1/1) as eluent. Colorless crystals were isolated when the solvent was allowed to evaporate.

Refinement top

H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The two methylene atoms next to the S atom are disordered over two sites; the disorder refined to an 0.817 (5):0.183 (5) ratio. The pair of S—C distances were restrained to be equal within 0.01 Å of each other, as were the pair of C—C distances. The anisotropic temperature factors of the primed atoms were restrained to be nearly isotropic.

Structure description top

Commerically-available 6-bromo-1H-imidazo[4,5-b]pyridine-2(3H)-thione has been used to react with a range of organic compounds to furnish chemicals having useful biological activities (Liszkiewicz et al., 2007; Prasad et al., 1986; Yutilov & Svertilova, 1988). The compound reacts with 1-chloropropanal under catalytic conditions to yield the title triclyclic condensed imidazole (Scheme I, Fig. 1). The imidazopyridine fused ring is planar. One ethylene fragment of the six-membered ring is twisted such that one atom lies above and the other below the plane. This fragment is disordered over two positions.

The parent triclyclic condensed imidazole (without bromine) has been patented as a pharmaceutical; see: Hideg et al. (1975, 1976). For other compounds synthesized from 6-bromo-1H-imidazo[4,5-b]pyridine-2(3H)-thione, see: Liszkiewicz et al. (2007); Prasad et al. (1986); Yutilov & Svertilova (1988).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C9H8BrN3O at the 70% probability level; H atoms are drawn as spheres of an arbitrary radius. The disorder is not shown.
8-Bromo-3,4-dihydro-2H1,3-thiazino[2,3:2',1']imidazo[5',4'- b]pyridine top
Crystal data top
C9H8BrN3SF(000) = 1072
Mr = 270.15Dx = 1.864 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9070 reflections
a = 20.2738 (3) Åθ = 2.8–32.5°
b = 13.2786 (2) ŵ = 4.45 mm1
c = 7.3169 (1) ÅT = 100 K
β = 102.193 (1)°Block, colourless
V = 1925.33 (5) Å30.46 × 0.14 × 0.12 mm
Z = 8
Data collection top
Bruker X8 APEXII
diffractometer
3561 independent reflections
Radiation source: fine-focus sealed tube3003 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 32.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3030
Tmin = 0.234, Tmax = 0.618k = 2020
30460 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0351P)2 + 1.6536P]
where P = (Fo2 + 2Fc2)/3
3561 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.49 e Å3
14 restraintsΔρmin = 0.55 e Å3
Crystal data top
C9H8BrN3SV = 1925.33 (5) Å3
Mr = 270.15Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.2738 (3) ŵ = 4.45 mm1
b = 13.2786 (2) ÅT = 100 K
c = 7.3169 (1) Å0.46 × 0.14 × 0.12 mm
β = 102.193 (1)°
Data collection top
Bruker X8 APEXII
diffractometer
3561 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3003 reflections with I > 2σ(I)
Tmin = 0.234, Tmax = 0.618Rint = 0.039
30460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02414 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 0.99Δρmax = 0.49 e Å3
3561 reflectionsΔρmin = 0.55 e Å3
146 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.446434 (7)0.655625 (11)0.45346 (2)0.02338 (5)
S10.082325 (17)0.50817 (3)0.60465 (5)0.01612 (7)
N10.20317 (6)0.43515 (8)0.54957 (17)0.0139 (2)
N20.19469 (6)0.60483 (9)0.56459 (18)0.0162 (2)
N30.31734 (6)0.42166 (9)0.50005 (18)0.0167 (2)
C10.07654 (9)0.37320 (13)0.6425 (4)0.0175 (4)0.817 (5)
H1A0.09930.35680.77260.021*0.817 (5)
H1B0.02850.35370.62560.021*0.817 (5)
C20.10897 (9)0.31333 (13)0.5076 (3)0.0178 (4)0.817 (5)
H2A0.08880.33420.37800.021*0.817 (5)
H2B0.09910.24090.51960.021*0.817 (5)
C1'0.0642 (4)0.3746 (5)0.5409 (16)0.0186 (18)0.183 (5)
H1'A0.02330.35270.58360.022*0.183 (5)
H1'B0.05560.36700.40330.022*0.183 (5)
C2'0.1237 (3)0.3089 (6)0.6309 (11)0.0158 (18)0.183 (5)
H2'A0.11060.23710.61480.019*0.183 (5)
H2'B0.13600.32320.76670.019*0.183 (5)
C30.18508 (7)0.32823 (10)0.5435 (2)0.0179 (3)
H3A0.20620.29620.66390.021*0.817 (5)
H3B0.20300.29470.44330.021*0.817 (5)
H3C0.22400.28870.61180.021*0.183 (5)
H3D0.17480.30510.41190.021*0.183 (5)
C40.16459 (7)0.51691 (10)0.57248 (19)0.0142 (2)
C50.26416 (7)0.47390 (10)0.52582 (19)0.0140 (2)
C60.25763 (7)0.57918 (10)0.53377 (19)0.0143 (2)
C70.31223 (7)0.63821 (10)0.5118 (2)0.0166 (2)
H70.31110.70970.51430.020*
C80.36844 (7)0.58455 (10)0.4857 (2)0.0158 (2)
C90.37001 (7)0.47932 (11)0.4812 (2)0.0175 (3)
H90.41010.44710.46410.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01399 (7)0.02031 (8)0.03740 (10)0.00406 (5)0.00897 (6)0.00137 (6)
S10.01303 (14)0.01364 (14)0.02374 (16)0.00071 (11)0.00854 (12)0.00036 (12)
N10.0120 (5)0.0103 (4)0.0206 (5)0.0002 (4)0.0058 (4)0.0006 (4)
N20.0136 (5)0.0117 (5)0.0246 (6)0.0011 (4)0.0068 (4)0.0003 (4)
N30.0131 (5)0.0136 (5)0.0244 (6)0.0008 (4)0.0065 (4)0.0004 (4)
C10.0156 (8)0.0145 (7)0.0240 (11)0.0020 (6)0.0079 (7)0.0010 (7)
C20.0155 (7)0.0133 (7)0.0255 (11)0.0024 (6)0.0066 (7)0.0022 (6)
C1'0.020 (4)0.015 (3)0.023 (5)0.005 (3)0.009 (3)0.001 (3)
C2'0.016 (3)0.013 (3)0.020 (4)0.001 (2)0.005 (3)0.002 (3)
C30.0153 (6)0.0099 (5)0.0301 (7)0.0009 (4)0.0088 (5)0.0011 (5)
C40.0128 (5)0.0125 (5)0.0183 (6)0.0014 (4)0.0054 (4)0.0002 (5)
C50.0123 (5)0.0122 (5)0.0179 (6)0.0001 (4)0.0043 (4)0.0003 (4)
C60.0132 (5)0.0114 (5)0.0187 (6)0.0005 (4)0.0041 (5)0.0006 (4)
C70.0144 (6)0.0128 (5)0.0230 (6)0.0008 (4)0.0047 (5)0.0008 (5)
C80.0119 (5)0.0153 (6)0.0208 (6)0.0022 (4)0.0046 (5)0.0011 (5)
C90.0128 (6)0.0160 (6)0.0250 (7)0.0010 (5)0.0067 (5)0.0002 (5)
Geometric parameters (Å, º) top
Br1—C81.8986 (13)C1'—C2'1.521 (13)
S1—C41.7367 (14)C1'—H1'A0.9900
S1—C11.8211 (18)C1'—H1'B0.9900
S1—C1'1.851 (6)C2'—C31.536 (6)
N1—C41.3689 (17)C2'—H2'A0.9900
N1—C51.3836 (17)C2'—H2'B0.9900
N1—C31.4647 (17)C3—H3A0.9900
N2—C41.3243 (17)C3—H3B0.9900
N2—C61.3844 (17)C3—H3C0.9900
N3—C51.3286 (17)C3—H3D0.9900
N3—C91.3445 (18)C5—C61.4067 (18)
C1—C21.521 (3)C6—C71.3931 (19)
C1—H1A0.9900C7—C81.391 (2)
C1—H1B0.9900C7—H70.9500
C2—C31.522 (2)C8—C91.3982 (19)
C2—H2A0.9900C9—H90.9500
C2—H2B0.9900
C4—S1—C1100.42 (7)N1—C3—C2111.68 (12)
C4—S1—C1'100.1 (3)N1—C3—C2'111.7 (3)
C4—N1—C5105.63 (11)N1—C3—H3A109.3
C4—N1—C3128.79 (12)C2—C3—H3A109.3
C5—N1—C3125.55 (11)N1—C3—H3B109.3
C4—N2—C6103.85 (11)C2—C3—H3B109.3
C5—N3—C9113.77 (12)H3A—C3—H3B107.9
C2—C1—S1111.42 (14)N1—C3—H3C109.3
C2—C1—H1A109.3C2'—C3—H3C109.3
S1—C1—H1A109.3N1—C3—H3D109.3
C2—C1—H1B109.3C2'—C3—H3D109.3
S1—C1—H1B109.3H3C—C3—H3D107.9
H1A—C1—H1B108.0N2—C4—N1114.41 (12)
C1—C2—C3112.43 (15)N2—C4—S1121.96 (10)
C1—C2—H2A109.1N1—C4—S1123.61 (10)
C3—C2—H2A109.1N3—C5—N1126.67 (12)
C1—C2—H2B109.1N3—C5—C6127.66 (13)
C3—C2—H2B109.1N1—C5—C6105.67 (11)
H2A—C2—H2B107.8N2—C6—C7131.50 (12)
C2'—C1'—S1110.1 (6)N2—C6—C5110.44 (12)
C2'—C1'—H1'A109.6C7—C6—C5118.06 (12)
S1—C1'—H1'A109.6C8—C7—C6114.94 (12)
C2'—C1'—H1'B109.6C8—C7—H7122.5
S1—C1'—H1'B109.6C6—C7—H7122.5
H1'A—C1'—H1'B108.2C7—C8—C9122.59 (13)
C1'—C2'—C3111.2 (6)C7—C8—Br1119.37 (10)
C1'—C2'—H2'A109.4C9—C8—Br1118.04 (10)
C3—C2'—H2'A109.4N3—C9—C8122.97 (13)
C1'—C2'—H2'B109.4N3—C9—H9118.5
C3—C2'—H2'B109.4C8—C9—H9118.5
H2'A—C2'—H2'B108.0
C4—S1—C1—C242.19 (16)C1—S1—C4—N110.57 (15)
C1'—S1—C1—C249.0 (7)C1'—S1—C4—N112.8 (4)
S1—C1—C2—C367.0 (2)C9—N3—C5—N1179.92 (13)
C4—S1—C1'—C2'44.5 (7)C9—N3—C5—C60.4 (2)
C1—S1—C1'—C2'48.5 (7)C4—N1—C5—N3179.51 (14)
S1—C1'—C2'—C369.0 (8)C3—N1—C5—N32.5 (2)
C4—N1—C3—C217.2 (2)C4—N1—C5—C60.78 (15)
C5—N1—C3—C2160.32 (14)C3—N1—C5—C6177.23 (13)
C4—N1—C3—C2'19.3 (4)C4—N2—C6—C7179.69 (15)
C5—N1—C3—C2'163.2 (3)C4—N2—C6—C50.67 (16)
C1—C2—C3—N152.1 (2)N3—C5—C6—N2179.37 (14)
C1—C2—C3—C2'44.8 (5)N1—C5—C6—N20.92 (16)
C1'—C2'—C3—N154.3 (7)N3—C5—C6—C70.3 (2)
C1'—C2'—C3—C242.7 (5)N1—C5—C6—C7179.37 (12)
C6—N2—C4—N10.15 (16)N2—C6—C7—C8178.98 (14)
C6—N2—C4—S1178.61 (10)C5—C6—C7—C80.6 (2)
C5—N1—C4—N20.41 (16)C6—C7—C8—C90.3 (2)
C3—N1—C4—N2177.51 (14)C6—C7—C8—Br1179.90 (10)
C5—N1—C4—S1179.16 (10)C5—N3—C9—C80.9 (2)
C3—N1—C4—S11.2 (2)C7—C8—C9—N30.6 (2)
C1—S1—C4—N2170.77 (14)Br1—C8—C9—N3179.09 (11)
C1'—S1—C4—N2165.9 (4)

Experimental details

Crystal data
Chemical formulaC9H8BrN3S
Mr270.15
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)20.2738 (3), 13.2786 (2), 7.3169 (1)
β (°) 102.193 (1)
V3)1925.33 (5)
Z8
Radiation typeMo Kα
µ (mm1)4.45
Crystal size (mm)0.46 × 0.14 × 0.12
Data collection
DiffractometerBruker X8 APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.234, 0.618
No. of measured, independent and
observed [I > 2σ(I)] reflections
30460, 3561, 3003
Rint0.039
(sin θ/λ)max1)0.762
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 0.99
No. of reflections3561
No. of parameters146
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.55

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the University Sidi Mohammed Ben Abdallah, the Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHideg, K., Hankovszky, O., Palosi, E., Hajos, G. & Szporny, L. (1975). Ger. Patent DE 2429290 19750116.  Google Scholar
First citationHideg, K., Hankovszky, O., Palosi, E., Hajos, G. & Szporny, L. (1976). Hung. Patent HU 12392 19761028.  Google Scholar
First citationLiszkiewicz, H., Kowalska, M. W. & Wietrzyk, J. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 199–208.  Web of Science CrossRef CAS Google Scholar
First citationPrasad, A. R., Rao, A. N., Ramalingam, T. & Sattur, P. B. (1986). Indian J. Chem. Sect. B, 25, 776–778.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationYutilov, Yu. M. & Svertilova, I. A. (1988). Khim. Geterotsikl. Soedin. pp. 799–804.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds