organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-4-(2-nitro­phen­yl)semicarbazide

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: actaeli@gmail.com

(Received 6 April 2010; accepted 8 April 2010; online 17 April 2010)

The title compound, C14H12N4O4, was prepared by the reaction of 2-nitro­phenyl isocyanate with benzoyl­hydrazine. The dihedral angle between the rings is 71.49 (6)) Å. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond, generating an S(6) ring. The crystal packing shows N—H⋯O hydrogen bonds.

Related literature

For the bioactivity of urea derivatives, see: Yip et al. (1986[Yip, W. K. & Yang, S. F. (1986). Plant Physiol. 80, 515-519.]); Liu et al. (2005[Liu, X. P., Liu, A. P., Lin, L. Z., Wei, Z. Z., Huang, L. & Yu, K. (2005). Mod. Agrochem. 4, 14-16.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N4O4

  • Mr = 300.28

  • Monoclinic, P c

  • a = 4.655 (2) Å

  • b = 15.020 (7) Å

  • c = 10.005 (5) Å

  • β = 97.954 (7)°

  • V = 692.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 113 K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Rigaku Saturn 724 CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.979, Tmax = 0.987

  • 5816 measured reflections

  • 1652 independent reflections

  • 1383 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.059

  • S = 0.96

  • 1652 reflections

  • 212 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.80 (2) 2.10 (2) 2.844 (2) 154.8 (18)
N3—H3A⋯O4ii 0.90 (2) 1.95 (2) 2.835 (2) 167 (2)
N1—H1⋯O2 0.83 (2) 2.13 (2) 2.640 (2) 119.8 (17)
N1—H1⋯O3i 0.83 (2) 2.32 (2) 2.987 (2) 138.7 (19)
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Urea derivates are very interesting reagents due to their useful properties and important medical and biological applications. For example, aryl urea derivates have been found to inhibit cell division as weedicides, and homologous aryl urea derivates have also been researched as antibacterial activity. Thidiazuron, a substituted heterocyclic urea compound, mimicked the effect of benzyladenine(BA) in the Ca2+ + cytokinin system and the IAA + cytokinin systems systems. (Yip et al., 1986). Recently, better activity of sectiona benzoyl urea derivates were reported. (Liu et al., 2005). In order to discover further biologically active urea compounds, the title compound was synthesized and its crystal structure was determined (Fig. 1). The molecular conformation is stabilized by an intramolecular N—H···O hydrogen bond. The crystal packing shows N—H···O hydrogen-bonds. (Fig. 2).

Related literature top

For the bioactivity of urea derivatives, see: Yip et al. (1986); Liu et al. (2005).

Experimental top

2-nitrophenyl isocyanate(0.164 g, 1 mmol) and benzoyl hydrazine (0.136 g, 1 mmol) were milled and mixed thoroughly in an agate mortar. Then the mixture was put into a beaker and irradiated by microwave for 1 min. After the reaction was completed, the resulting mixture was dissolved in 95% ethanol and filtrated. The products separated and were collected by filtration. The title compound was recrystallized from ethanol and single crystals were obtained by slow evaporation.

Refinement top

In the absence of anomalous scatterers, the absolute structure could not be determined and, therefore, Friedel pairs were merged. All H atoms bonded to C atoms were placed in calculated positions, with C—H = 0.95 Å, and included in the refinement using a riding model, with Uiso(H) = 1.2Ueq(C). H atoms bonded to N were freely refined.

Structure description top

Urea derivates are very interesting reagents due to their useful properties and important medical and biological applications. For example, aryl urea derivates have been found to inhibit cell division as weedicides, and homologous aryl urea derivates have also been researched as antibacterial activity. Thidiazuron, a substituted heterocyclic urea compound, mimicked the effect of benzyladenine(BA) in the Ca2+ + cytokinin system and the IAA + cytokinin systems systems. (Yip et al., 1986). Recently, better activity of sectiona benzoyl urea derivates were reported. (Liu et al., 2005). In order to discover further biologically active urea compounds, the title compound was synthesized and its crystal structure was determined (Fig. 1). The molecular conformation is stabilized by an intramolecular N—H···O hydrogen bond. The crystal packing shows N—H···O hydrogen-bonds. (Fig. 2).

For the bioactivity of urea derivatives, see: Yip et al. (1986); Liu et al. (2005).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
1-Benzoyl-4-(2-nitrophenyl)semicarbazide top
Crystal data top
C14H12N4O4F(000) = 312
Mr = 300.28Dx = 1.439 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 2582 reflections
a = 4.655 (2) Åθ = 1.4–27.9°
b = 15.020 (7) ŵ = 0.11 mm1
c = 10.005 (5) ÅT = 113 K
β = 97.954 (7)°Prism, colorless
V = 692.9 (5) Å30.20 × 0.16 × 0.12 mm
Z = 2
Data collection top
Rigaku Saturn 724 CCD area-detector
diffractometer
1652 independent reflections
Radiation source: fine-focus sealed tube1383 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 14.68 pixels mm-1θmax = 27.9°, θmin = 1.4°
ω and φ scansh = 46
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1619
Tmin = 0.979, Tmax = 0.987l = 1312
5816 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0305P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.007
1652 reflectionsΔρmax = 0.17 e Å3
212 parametersΔρmin = 0.16 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (4)
Crystal data top
C14H12N4O4V = 692.9 (5) Å3
Mr = 300.28Z = 2
Monoclinic, PcMo Kα radiation
a = 4.655 (2) ŵ = 0.11 mm1
b = 15.020 (7) ÅT = 113 K
c = 10.005 (5) Å0.20 × 0.16 × 0.12 mm
β = 97.954 (7)°
Data collection top
Rigaku Saturn 724 CCD area-detector
diffractometer
1652 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1383 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.987Rint = 0.033
5816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0282 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.17 e Å3
1652 reflectionsΔρmin = 0.16 e Å3
212 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4760 (3)0.01804 (9)0.99297 (16)0.0318 (4)
O20.4185 (3)0.12193 (9)1.02923 (16)0.0305 (4)
O31.1178 (3)0.32395 (8)0.92954 (15)0.0224 (3)
O40.8286 (3)0.48594 (9)0.76324 (14)0.0256 (3)
N10.6951 (4)0.24346 (11)0.90518 (17)0.0191 (4)
H10.539 (5)0.2410 (13)0.936 (2)0.021 (6)*
N20.6976 (4)0.38858 (10)0.97176 (17)0.0172 (3)
H2A0.523 (5)0.3870 (12)0.958 (2)0.014 (5)*
N30.8310 (3)0.47099 (10)0.98749 (17)0.0183 (3)
H3A0.853 (5)0.4899 (15)1.073 (2)0.031 (6)*
N40.5259 (3)0.06040 (10)0.97133 (17)0.0220 (4)
C10.7987 (3)0.16832 (12)0.8453 (2)0.0169 (4)
C20.7208 (4)0.08059 (13)0.8735 (2)0.0186 (4)
C30.8283 (4)0.00766 (13)0.8095 (2)0.0238 (5)
H30.77300.05090.83100.029*
C41.0138 (4)0.02023 (13)0.7156 (2)0.0244 (5)
H41.09070.02930.67340.029*
C51.0872 (4)0.10670 (13)0.6832 (2)0.0228 (4)
H51.21080.11600.61650.027*
C60.9833 (4)0.17889 (12)0.7465 (2)0.0181 (4)
H61.03770.23720.72290.022*
C70.8559 (4)0.31947 (12)0.93330 (19)0.0165 (4)
C80.9025 (4)0.51379 (12)0.8784 (2)0.0189 (4)
C91.0848 (4)0.59575 (12)0.9075 (2)0.0202 (4)
C101.2623 (4)0.60775 (13)1.0298 (2)0.0228 (4)
H101.26380.56481.09960.027*
C111.4379 (4)0.68291 (13)1.0494 (2)0.0297 (5)
H111.55980.69101.13280.036*
C121.4367 (5)0.74538 (13)0.9493 (3)0.0337 (5)
H121.55760.79640.96360.040*
C131.2588 (5)0.73400 (15)0.8273 (3)0.0404 (6)
H131.25600.77760.75830.048*
C141.0851 (5)0.65894 (14)0.8064 (2)0.0339 (5)
H140.96560.65070.72240.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0371 (9)0.0231 (8)0.0370 (10)0.0064 (6)0.0116 (7)0.0067 (7)
O20.0351 (8)0.0255 (8)0.0349 (10)0.0007 (7)0.0189 (7)0.0013 (7)
O30.0137 (6)0.0229 (7)0.0310 (8)0.0021 (5)0.0050 (5)0.0033 (6)
O40.0360 (8)0.0254 (7)0.0149 (8)0.0060 (6)0.0018 (6)0.0025 (6)
N10.0144 (8)0.0190 (8)0.0256 (10)0.0022 (6)0.0089 (7)0.0017 (7)
N20.0137 (8)0.0160 (8)0.0223 (9)0.0024 (6)0.0036 (6)0.0027 (7)
N30.0224 (8)0.0174 (8)0.0156 (9)0.0034 (6)0.0045 (6)0.0038 (7)
N40.0203 (8)0.0228 (9)0.0224 (10)0.0023 (7)0.0007 (7)0.0040 (7)
C10.0114 (9)0.0190 (9)0.0196 (11)0.0001 (7)0.0002 (7)0.0003 (8)
C20.0158 (9)0.0210 (9)0.0185 (10)0.0010 (7)0.0011 (7)0.0002 (8)
C30.0229 (10)0.0180 (9)0.0295 (12)0.0005 (8)0.0002 (8)0.0009 (8)
C40.0233 (10)0.0219 (10)0.0281 (12)0.0034 (8)0.0038 (8)0.0063 (9)
C50.0191 (10)0.0281 (11)0.0217 (11)0.0005 (8)0.0043 (8)0.0013 (9)
C60.0150 (8)0.0198 (10)0.0199 (11)0.0006 (7)0.0033 (7)0.0012 (8)
C70.0166 (9)0.0201 (9)0.0130 (10)0.0006 (7)0.0024 (7)0.0018 (7)
C80.0205 (10)0.0182 (9)0.0181 (10)0.0011 (7)0.0033 (7)0.0001 (8)
C90.0241 (10)0.0174 (9)0.0201 (10)0.0005 (8)0.0066 (8)0.0016 (8)
C100.0245 (10)0.0216 (10)0.0228 (11)0.0028 (8)0.0055 (8)0.0010 (8)
C110.0263 (11)0.0307 (11)0.0324 (13)0.0058 (9)0.0049 (9)0.0086 (10)
C120.0414 (13)0.0227 (11)0.0395 (15)0.0104 (9)0.0148 (10)0.0086 (10)
C130.0603 (16)0.0267 (12)0.0353 (16)0.0126 (11)0.0107 (12)0.0065 (10)
C140.0503 (13)0.0265 (11)0.0238 (13)0.0079 (10)0.0012 (10)0.0028 (9)
Geometric parameters (Å, º) top
O1—N41.226 (2)C4—C51.393 (3)
O2—N41.233 (2)C4—H40.9500
O3—C71.227 (2)C5—C61.377 (3)
O4—C81.229 (2)C5—H50.9500
N1—C71.373 (2)C6—H60.9500
N1—C11.395 (2)C8—C91.500 (3)
N1—H10.83 (2)C9—C141.387 (3)
N2—C71.359 (2)C9—C101.390 (3)
N2—N31.384 (2)C10—C111.392 (3)
N2—H2A0.80 (2)C10—H100.9500
N3—C81.348 (3)C11—C121.371 (3)
N3—H3A0.90 (2)C11—H110.9500
N4—C21.456 (3)C12—C131.388 (3)
C1—C61.405 (3)C12—H120.9500
C1—C21.406 (3)C13—C141.386 (3)
C2—C31.396 (3)C13—H130.9500
C3—C41.374 (3)C14—H140.9500
C3—H30.9500
C7—N1—C1123.34 (16)C5—C6—C1121.51 (18)
C7—N1—H1116.3 (14)C5—C6—H6119.2
C1—N1—H1119.8 (14)C1—C6—H6119.2
C7—N2—N3117.57 (16)O3—C7—N2123.16 (16)
C7—N2—H2A120.0 (14)O3—C7—N1123.73 (17)
N3—N2—H2A118.2 (13)N2—C7—N1113.05 (15)
C8—N3—N2119.45 (16)O4—C8—N3121.89 (17)
C8—N3—H3A128.0 (15)O4—C8—C9122.59 (17)
N2—N3—H3A112.5 (15)N3—C8—C9115.49 (17)
O1—N4—O2122.58 (17)C14—C9—C10119.50 (18)
O1—N4—C2118.03 (17)C14—C9—C8118.53 (18)
O2—N4—C2119.39 (15)C10—C9—C8121.90 (17)
N1—C1—C6119.49 (16)C9—C10—C11119.69 (19)
N1—C1—C2123.91 (16)C9—C10—H10120.2
C6—C1—C2116.54 (16)C11—C10—H10120.2
C3—C2—C1121.65 (18)C12—C11—C10120.6 (2)
C3—C2—N4116.19 (16)C12—C11—H11119.7
C1—C2—N4122.16 (16)C10—C11—H11119.7
C4—C3—C2120.32 (19)C11—C12—C13120.0 (2)
C4—C3—H3119.8C11—C12—H12120.0
C2—C3—H3119.8C13—C12—H12120.0
C3—C4—C5119.01 (19)C14—C13—C12119.8 (2)
C3—C4—H4120.5C14—C13—H13120.1
C5—C4—H4120.5C12—C13—H13120.1
C6—C5—C4120.9 (2)C13—C14—C9120.4 (2)
C6—C5—H5119.5C13—C14—H14119.8
C4—C5—H5119.5C9—C14—H14119.8
C7—N2—N3—C867.4 (2)N3—N2—C7—O310.0 (3)
C7—N1—C1—C635.8 (3)N3—N2—C7—N1172.79 (16)
C7—N1—C1—C2146.84 (18)C1—N1—C7—O312.5 (3)
N1—C1—C2—C3179.25 (18)C1—N1—C7—N2170.32 (17)
C6—C1—C2—C31.8 (2)N2—N3—C8—O47.0 (3)
N1—C1—C2—N41.2 (2)N2—N3—C8—C9171.28 (16)
C6—C1—C2—N4178.62 (16)O4—C8—C9—C1423.4 (3)
O1—N4—C2—C31.8 (2)N3—C8—C9—C14158.26 (18)
O2—N4—C2—C3178.46 (17)O4—C8—C9—C10153.41 (19)
O1—N4—C2—C1177.80 (17)N3—C8—C9—C1024.9 (2)
O2—N4—C2—C12.0 (2)C14—C9—C10—C110.0 (3)
C1—C2—C3—C40.4 (3)C8—C9—C10—C11176.84 (17)
N4—C2—C3—C4180.00 (16)C9—C10—C11—C120.2 (3)
C2—C3—C4—C51.4 (3)C10—C11—C12—C130.1 (3)
C3—C4—C5—C61.8 (3)C11—C12—C13—C140.7 (4)
C4—C5—C6—C10.4 (3)C12—C13—C14—C91.0 (4)
N1—C1—C6—C5178.97 (17)C10—C9—C14—C130.6 (3)
C2—C1—C6—C51.4 (3)C8—C9—C14—C13177.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.80 (2)2.10 (2)2.844 (2)154.8 (18)
N3—H3A···O4ii0.90 (2)1.95 (2)2.835 (2)167 (2)
N1—H1···O20.83 (2)2.13 (2)2.640 (2)119.8 (17)
N1—H1···O3i0.83 (2)2.32 (2)2.987 (2)138.7 (19)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12N4O4
Mr300.28
Crystal system, space groupMonoclinic, Pc
Temperature (K)113
a, b, c (Å)4.655 (2), 15.020 (7), 10.005 (5)
β (°) 97.954 (7)
V3)692.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerRigaku Saturn 724 CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.979, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
5816, 1652, 1383
Rint0.033
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.059, 0.96
No. of reflections1652
No. of parameters212
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.80 (2)2.10 (2)2.844 (2)154.8 (18)
N3—H3A···O4ii0.90 (2)1.95 (2)2.835 (2)167 (2)
N1—H1···O20.83 (2)2.13 (2)2.640 (2)119.8 (17)
N1—H1···O3i0.83 (2)2.32 (2)2.987 (2)138.7 (19)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Henan Province, China (grant No. 082300420110) and the Natural Science Foundation of Henan Province Education Department, China (grant No. 2007150036).

References

First citationLiu, X. P., Liu, A. P., Lin, L. Z., Wei, Z. Z., Huang, L. & Yu, K. (2005). Mod. Agrochem. 4, 14–16.  CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYip, W. K. & Yang, S. F. (1986). Plant Physiol. 80, 515–519.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds