organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­phenyl-3,4-di­hydro­benzo[b][1,6]naphthyridine

aInstitute of Pharmaceutical Sciences, Departement of Pharmaceutical Chemistry, Karl-Franzens University Graz, Universitätsplatz 1, A-8010 Graz, Austria, bInstitute for Chemistry and Technology of Materials (ICTM), Graz University of Technology, Stremayrgasse 16, A-8010 Graz, Austria, and cInstitute of Chemistry, Karl-Franzens University Graz, Schubertstrasse 1, A-8010 Graz, Austria
*Correspondence e-mail: ferdinand.belaj@uni-graz.at

(Received 12 April 2010; accepted 13 April 2010; online 17 April 2010)

The title compound, C24H18N2, is the first structural example containing the 3,4-dihydro­benzo[b][1,6]naphthyridine fragment. It was synthesized from 2,4,6,8-tetra­phenyl-3,7-diaza­bicyclo­[3.3.1]nonan-9-one and was crystallized from a methanol–ethanol solution over two years as a racemate. The C=N double bond [1.2868 (15) Å] is bent significantly out of the plane of the aromatic bicyclic ring system [N—C—C—C = −157.63 (12)°] and out of the plane of the phenyl ring bonded at the 1-position [N—C—C—C = 41.15 (16)°].

Related literature

For the synthesis of 1,3-diphenyl-1,2,3,4-tetra­hydro­benzo[b][1,6]naphthyridine, see: Sivakumar (2000[Sivakumar, B. (2000). PhD thesis, Bharathidasan University, Tiruchirappalli, India.]). For the synthesis of 2,4,6,8-tetra­phenyl-3,7-diaza­bicyclo­[3.3.1]nonan-9-one, see Ravindran et al. (1991[Ravindran, T., Jeyaraman, R., Murray, R. W. & Singh, M. (1991). J. Org. Chem. 56, 4833-4840.]). For the crystal structures of other naphthyridine derivatives, see: Sivakumar et al. (2003[Sivakumar, B., SethuSankar, K., Senthil Kumar, U. P., Jeyaraman, R. & Velmurugan, D. (2003). Acta Cryst. C59, o153-o155.]); Laavanya et al. (2001[Laavanya, P., Panchanatheswaran, K., Sivakumar, B., Jeyaraman, R. & Krause Bauer, J. A. (2001). Acta Cryst. E57, o599-o601.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18N2

  • Mr = 334.40

  • Monoclinic, P 21 /c

  • a = 10.2658 (4) Å

  • b = 10.8583 (5) Å

  • c = 16.1842 (7) Å

  • β = 107.909 (2)°

  • V = 1716.63 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.32 × 0.28 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.885, Tmax = 0.988

  • 20360 measured reflections

  • 3365 independent reflections

  • 3060 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.02

  • 3365 reflections

  • 241 parameters

  • Only H-atom displacement parameters refined

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: modified ORTEP (Johnson, 1965[Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schmidt reaction of 2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one leads not to the expected bicyclic amide but to 1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine. This compound crystallized in form of fine needles from ethanol. Our attempts to yield more compact crystals ended up in a new compound, 1,3-diphenyl-3,4-dihydrobenzo[b][1,6]naphthyridine, which was formed after a lomg term crystallization from a mixture of ethanol and methanol.

Related literature top

For the synthesis of 1,3-diphenyl-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine, see: Sivakumar (2000). For the synthesis of 2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one, see Ravindran et al. (1991). For the crystal structures of other naphthyridine derivatives, see: Sivakumar et al. (2003); Laavanya et al. (2001).

Experimental top

Synthesis: 2,4,6,8-Tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one (1.34 g, 3.0 mmol) was dissolved in concentrated sulfuric acid (4 ml) under stirring and cooling and by use of an ultrasonic bath. This takes some time and the solution comes up to room temperature during this process. When the substance is completely dissolved, NaN3 (240 mg, 3,7 mmol) was added and the reaction mixture was stirred for 1 h at room temperature. It was quenched with ice water, the yellow solution was extracted 3 times with ether to remove non basic impurities and then alkalized with 2 M NaOH solution. Then it was extracted 5 times with CH2Cl2, the organic layers were combined, washed 3 times with water, dried (Na2SO4), filtered and the solvent removed in vacuo. The residue was dissolved in benzene and filtered and the solvent removed in vacuo. Finally, the residue was dissolved in the minimum amount of hot ethanol and the solution left for crystallization for 2 days. The formed needles were sucked off and dried giving pure 1,3-diphenyl-1,2,3,4-tetrahydro-benzo[b][1,6]naphthyridine (330 mg, 0.98 mmol, 33 % yield). A part of it was dissolved in a mixture of methanol and ethanol and left for crystallization for 2 years. A few crystals of 1,3-diphenyl-3,4-dihydro-benzo[b][1,6]naphthyridine were obtained and subjected to the x-ray structure analysis.

HR—MS data [collected on a GCT-Premier spectrometer, Waters (EI, 70 eV)]: C24H18N2 requires [M]+ 334.1470; Found: 334.1452; C24H17N2 requires [M—H]+ 333.1392; Found: 333.1381.

Structure description top

Schmidt reaction of 2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one leads not to the expected bicyclic amide but to 1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine. This compound crystallized in form of fine needles from ethanol. Our attempts to yield more compact crystals ended up in a new compound, 1,3-diphenyl-3,4-dihydrobenzo[b][1,6]naphthyridine, which was formed after a lomg term crystallization from a mixture of ethanol and methanol.

For the synthesis of 1,3-diphenyl-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine, see: Sivakumar (2000). For the synthesis of 2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one, see Ravindran et al. (1991). For the crystal structures of other naphthyridine derivatives, see: Sivakumar et al. (2003); Laavanya et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: modified ORTEP (Johnson, 1965); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot (Johnson, 1965) showing the atomic numbering scheme. The probability ellipsoids are drawn at the 50% probability level, the H atoms are drawn with arbitrary radii. Selected distances: C1—N2 1.2868 (15) Å, C1—C101 1.4862 (16) Å, C1—C11 1.4936 (16) Å, N2—C3 1.4769 (14) Å, C3—C21 1.5128 (15) Å, C3—C4 1.5369 (15) Å, C4—C41 1.5073 (15) Å, C41—N5 1.3152 (14) Å, C41—C101 1.4293 (15) Å, N5—C51 1.3764 (14) Å.
1,3-Diphenyl-3,4-dihydrobenzo[b][1,6]naphthyridine top
Crystal data top
C24H18N2F(000) = 704
Mr = 334.40Dx = 1.294 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9913 reflections
a = 10.2658 (4) Åθ = 2.7–26.0°
b = 10.8583 (5) ŵ = 0.08 mm1
c = 16.1842 (7) ÅT = 100 K
β = 107.909 (2)°Block, yellow
V = 1716.63 (13) Å30.32 × 0.28 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3365 independent reflections
Radiation source: sealed tube3060 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.885, Tmax = 0.988k = 1313
20360 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094Only H-atom displacement parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.7644P]
where P = (Fo2 + 2Fc2)/3
3365 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C24H18N2V = 1716.63 (13) Å3
Mr = 334.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2658 (4) ŵ = 0.08 mm1
b = 10.8583 (5) ÅT = 100 K
c = 16.1842 (7) Å0.32 × 0.28 × 0.16 mm
β = 107.909 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3365 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3060 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.988Rint = 0.029
20360 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.094Only H-atom displacement parameters refined
S = 1.02Δρmax = 0.40 e Å3
3365 reflectionsΔρmin = 0.28 e Å3
241 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints. The H atom of the tertiary C—H group was refined with an individual isotropic displacement parameter and all X—C—H angles equal at a C—H distance of 1.00 Å (AFIX 13 of SHELXL-97). The H atoms of the CH2 group were refined with common isotropic displacement parameters and idealized geometry with approximately tetrahedral angles and C—H distances of 0.99 Å (AFIX 23 of SHELXL-97). The H atoms of the phenyl rings as well as the atoma H6, H7, H8, and H9 were put at the external bisector of the C—C—C angle at a C—H distance of 0.95 Å and common isotropic displacement parameters were refined for the H atoms of the same ring (AFIX 43 of SHELXL-97). The H atom H10 was put at the external bisector of the C—C—C angle at a C—H distance of 0.95 Å but the individual isotropic displacement parameter was free to refine (AFIX 43 of SHELXL-97).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60895 (12)0.61918 (11)0.71264 (8)0.0221 (3)
N20.67352 (10)0.72215 (9)0.71977 (6)0.0183 (2)
C30.61969 (11)0.81335 (10)0.64987 (7)0.0162 (2)
H30.53640.85160.65880.016 (3)*
C40.57620 (11)0.75231 (10)0.55983 (7)0.0167 (2)
H410.53410.81450.51480.022 (2)*
H420.65760.71800.54740.022 (2)*
C410.47489 (11)0.65074 (10)0.55714 (7)0.0154 (2)
N50.37687 (9)0.62770 (8)0.48450 (6)0.0160 (2)
C510.28123 (11)0.53968 (10)0.48615 (7)0.0160 (2)
C60.17392 (11)0.51425 (11)0.40906 (7)0.0186 (2)
H60.16920.55780.35730.0233 (17)*
C70.07669 (12)0.42730 (11)0.40843 (8)0.0216 (3)
H70.00540.41090.35610.0233 (17)*
C80.08147 (12)0.36181 (11)0.48477 (8)0.0220 (3)
H80.01430.30100.48330.0233 (17)*
C90.18252 (12)0.38568 (11)0.56076 (8)0.0195 (2)
H90.18390.34290.61220.0233 (17)*
C910.28508 (11)0.47405 (10)0.56299 (7)0.0168 (2)
C100.39474 (12)0.49926 (10)0.63871 (7)0.0180 (2)
H100.40190.45640.69110.022 (3)*
C1010.49068 (11)0.58561 (10)0.63637 (7)0.0173 (2)
C110.66051 (11)0.52633 (10)0.78325 (7)0.0173 (2)
C120.67192 (11)0.40231 (11)0.76360 (7)0.0182 (2)
H120.64170.37540.70490.0262 (16)*
C130.72750 (11)0.31812 (11)0.82995 (8)0.0217 (3)
H130.73710.23410.81640.0262 (16)*
C140.76892 (12)0.35674 (12)0.91590 (8)0.0234 (3)
H140.80490.29880.96110.0262 (16)*
C150.75784 (12)0.47979 (12)0.93583 (8)0.0236 (3)
H150.78670.50620.99460.0262 (16)*
C160.70445 (12)0.56423 (11)0.86972 (8)0.0208 (3)
H160.69780.64860.88350.0262 (16)*
C210.72353 (11)0.91467 (10)0.65640 (7)0.0154 (2)
C220.68122 (12)1.03683 (11)0.64243 (7)0.0184 (2)
H220.58711.05630.63070.0257 (16)*
C230.77463 (13)1.13070 (11)0.64538 (7)0.0210 (3)
H230.74411.21360.63570.0257 (16)*
C240.91240 (12)1.10332 (11)0.66241 (7)0.0218 (3)
H240.97661.16720.66460.0257 (16)*
C250.95581 (12)0.98180 (12)0.67630 (8)0.0220 (3)
H251.05000.96260.68760.0257 (16)*
C260.86247 (12)0.88817 (11)0.67380 (7)0.0190 (2)
H260.89340.80550.68400.0257 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0239 (6)0.0193 (6)0.0199 (6)0.0017 (5)0.0022 (5)0.0022 (5)
N20.0227 (5)0.0168 (5)0.0146 (5)0.0015 (4)0.0046 (4)0.0017 (4)
C30.0175 (5)0.0155 (5)0.0157 (5)0.0009 (4)0.0051 (4)0.0005 (4)
C40.0197 (5)0.0160 (5)0.0139 (5)0.0009 (4)0.0043 (4)0.0014 (4)
C410.0166 (5)0.0135 (5)0.0165 (5)0.0029 (4)0.0059 (4)0.0005 (4)
N50.0173 (5)0.0144 (5)0.0161 (5)0.0017 (4)0.0047 (4)0.0008 (4)
C510.0170 (5)0.0133 (5)0.0182 (5)0.0029 (4)0.0061 (4)0.0016 (4)
C60.0196 (6)0.0181 (6)0.0176 (6)0.0033 (4)0.0050 (4)0.0012 (4)
C70.0176 (6)0.0225 (6)0.0226 (6)0.0008 (5)0.0031 (5)0.0061 (5)
C80.0181 (6)0.0198 (6)0.0293 (6)0.0038 (4)0.0091 (5)0.0038 (5)
C90.0205 (6)0.0173 (6)0.0227 (6)0.0005 (4)0.0098 (5)0.0007 (4)
C910.0178 (5)0.0140 (5)0.0194 (6)0.0022 (4)0.0071 (4)0.0017 (4)
C100.0218 (6)0.0159 (5)0.0169 (5)0.0014 (4)0.0067 (5)0.0015 (4)
C1010.0191 (6)0.0150 (5)0.0169 (6)0.0014 (4)0.0043 (4)0.0003 (4)
C110.0151 (5)0.0186 (6)0.0177 (5)0.0011 (4)0.0042 (4)0.0029 (4)
C120.0164 (5)0.0204 (6)0.0192 (6)0.0019 (4)0.0074 (4)0.0001 (4)
C130.0171 (5)0.0176 (6)0.0328 (7)0.0015 (4)0.0112 (5)0.0048 (5)
C140.0165 (6)0.0288 (7)0.0252 (6)0.0029 (5)0.0067 (5)0.0138 (5)
C150.0206 (6)0.0339 (7)0.0158 (6)0.0013 (5)0.0046 (5)0.0035 (5)
C160.0204 (6)0.0211 (6)0.0197 (6)0.0004 (5)0.0043 (5)0.0008 (5)
C210.0191 (5)0.0164 (5)0.0104 (5)0.0003 (4)0.0040 (4)0.0005 (4)
C220.0199 (6)0.0190 (6)0.0172 (5)0.0031 (4)0.0068 (4)0.0012 (4)
C230.0318 (6)0.0141 (5)0.0180 (6)0.0006 (5)0.0091 (5)0.0006 (4)
C240.0265 (6)0.0221 (6)0.0157 (5)0.0096 (5)0.0051 (5)0.0034 (5)
C250.0169 (6)0.0287 (6)0.0183 (6)0.0010 (5)0.0024 (4)0.0013 (5)
C260.0207 (6)0.0168 (6)0.0177 (5)0.0031 (4)0.0033 (4)0.0004 (4)
Geometric parameters (Å, º) top
C1—N21.2868 (15)C10—C1011.3688 (16)
C1—C1011.4862 (16)C10—H100.95
C1—C111.4936 (16)C11—C161.3938 (16)
N2—C31.4769 (14)C11—C121.3969 (16)
C3—C211.5128 (15)C12—C131.3920 (16)
C3—C41.5369 (15)C12—H120.95
C3—H31.00C13—C141.3884 (18)
C4—C411.5073 (15)C13—H130.95
C4—H410.99C14—C151.3873 (19)
C4—H420.99C14—H140.95
C41—N51.3152 (14)C15—C161.3875 (17)
C41—C1011.4293 (15)C15—H150.95
N5—C511.3764 (14)C16—H160.95
C51—C61.4146 (16)C21—C221.3925 (16)
C51—C911.4233 (16)C21—C261.3962 (16)
C6—C71.3717 (17)C22—C231.3901 (17)
C6—H60.95C22—H220.95
C7—C81.4132 (17)C23—C241.3874 (17)
C7—H70.95C23—H230.95
C8—C91.3679 (17)C24—C251.3887 (18)
C8—H80.95C24—H240.95
C9—C911.4168 (16)C25—C261.3891 (17)
C9—H90.95C25—H250.95
C91—C101.4126 (16)C26—H260.95
N2—C1—C101123.67 (11)C91—C10—H10120.1
N2—C1—C11117.79 (10)C10—C101—C41118.67 (10)
C101—C1—C11118.47 (10)C10—C101—C1123.78 (10)
C1—N2—C3116.92 (9)C41—C101—C1117.52 (10)
N2—C3—C21110.15 (9)C16—C11—C12119.29 (10)
N2—C3—C4111.61 (9)C16—C11—C1119.87 (11)
C21—C3—C4111.89 (9)C12—C11—C1120.75 (10)
N2—C3—H3107.7C13—C12—C11120.04 (11)
C21—C3—H3107.7C13—C12—H12120.0
C4—C3—H3107.7C11—C12—H12120.0
C41—C4—C3109.85 (9)C14—C13—C12120.07 (11)
C41—C4—H41109.7C14—C13—H13120.0
C3—C4—H41109.7C12—C13—H13120.0
C41—C4—H42109.7C15—C14—C13120.13 (11)
C3—C4—H42109.7C15—C14—H14119.9
H41—C4—H42108.2C13—C14—H14119.9
N5—C41—C101123.53 (10)C14—C15—C16119.89 (11)
N5—C41—C4119.76 (10)C14—C15—H15120.1
C101—C41—C4116.69 (9)C16—C15—H15120.1
C41—N5—C51117.96 (9)C15—C16—C11120.55 (11)
N5—C51—C6119.02 (10)C15—C16—H16119.7
N5—C51—C91122.44 (10)C11—C16—H16119.7
C6—C51—C91118.54 (10)C22—C21—C26118.52 (10)
C7—C6—C51120.56 (11)C22—C21—C3120.23 (10)
C7—C6—H6119.7C26—C21—C3121.23 (10)
C51—C6—H6119.7C23—C22—C21121.02 (11)
C6—C7—C8120.68 (11)C23—C22—H22119.5
C6—C7—H7119.7C21—C22—H22119.5
C8—C7—H7119.7C24—C23—C22120.00 (11)
C9—C8—C7120.24 (11)C24—C23—H23120.0
C9—C8—H8119.9C22—C23—H23120.0
C7—C8—H8119.9C23—C24—C25119.51 (11)
C8—C9—C91120.22 (11)C23—C24—H24120.2
C8—C9—H9119.9C25—C24—H24120.2
C91—C9—H9119.9C24—C25—C26120.43 (11)
C10—C91—C9122.76 (11)C24—C25—H25119.8
C10—C91—C51117.49 (10)C26—C25—H25119.8
C9—C91—C51119.74 (10)C25—C26—C21120.52 (11)
C101—C10—C91119.80 (10)C25—C26—H26119.7
C101—C10—H10120.1C21—C26—H26119.7
C101—C1—N2—C33.86 (17)C4—C41—C101—C13.06 (15)
C11—C1—N2—C3179.16 (10)N2—C1—C101—C10157.63 (12)
C1—N2—C3—C21166.72 (10)C11—C1—C101—C1025.41 (17)
C1—N2—C3—C441.79 (14)N2—C1—C101—C4120.27 (17)
N2—C3—C4—C4155.03 (12)C11—C1—C101—C41156.69 (10)
C21—C3—C4—C41178.98 (9)N2—C1—C11—C1641.15 (16)
C3—C4—C41—N5146.44 (10)C101—C1—C11—C16141.71 (11)
C3—C4—C41—C10132.39 (13)N2—C1—C11—C12135.55 (12)
C101—C41—N5—C512.88 (16)C101—C1—C11—C1241.59 (16)
C4—C41—N5—C51175.87 (9)C16—C11—C12—C130.41 (16)
C41—N5—C51—C6179.30 (10)C1—C11—C12—C13176.31 (10)
C41—N5—C51—C910.11 (15)C11—C12—C13—C141.41 (17)
N5—C51—C6—C7179.86 (10)C12—C13—C14—C151.41 (17)
C91—C51—C6—C70.64 (16)C13—C14—C15—C160.39 (18)
C51—C6—C7—C80.24 (17)C14—C15—C16—C110.61 (18)
C6—C7—C8—C90.89 (18)C12—C11—C16—C150.60 (17)
C7—C8—C9—C911.58 (17)C1—C11—C16—C15177.35 (11)
C8—C9—C91—C10177.57 (11)N2—C3—C21—C22139.22 (10)
C8—C9—C91—C511.16 (17)C4—C3—C21—C2296.01 (12)
N5—C51—C91—C102.06 (16)N2—C3—C21—C2642.74 (13)
C6—C51—C91—C10178.75 (10)C4—C3—C21—C2682.02 (12)
N5—C51—C91—C9179.14 (10)C26—C21—C22—C230.20 (16)
C6—C51—C91—C90.05 (16)C3—C21—C22—C23177.89 (10)
C9—C91—C10—C101179.82 (10)C21—C22—C23—C240.03 (17)
C51—C91—C10—C1011.06 (16)C22—C23—C24—C250.09 (17)
C91—C10—C101—C411.65 (16)C23—C24—C25—C260.43 (17)
C91—C10—C101—C1179.53 (10)C24—C25—C26—C210.66 (17)
N5—C41—C101—C103.83 (17)C22—C21—C26—C250.54 (16)
C4—C41—C101—C10174.95 (10)C3—C21—C26—C25177.53 (10)
N5—C41—C101—C1178.16 (10)

Experimental details

Crystal data
Chemical formulaC24H18N2
Mr334.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.2658 (4), 10.8583 (5), 16.1842 (7)
β (°) 107.909 (2)
V3)1716.63 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.28 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.885, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
20360, 3365, 3060
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.02
No. of reflections3365
No. of parameters241
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.40, 0.28

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), modified ORTEP (Johnson, 1965).

 

References

First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLaavanya, P., Panchanatheswaran, K., Sivakumar, B., Jeyaraman, R. & Krause Bauer, J. A. (2001). Acta Cryst. E57, o599–o601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavindran, T., Jeyaraman, R., Murray, R. W. & Singh, M. (1991). J. Org. Chem. 56, 4833–4840.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, B. (2000). PhD thesis, Bharathidasan University, Tiruchirappalli, India.  Google Scholar
First citationSivakumar, B., SethuSankar, K., Senthil Kumar, U. P., Jeyaraman, R. & Velmurugan, D. (2003). Acta Cryst. C59, o153–o155.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds