organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,4-Di­methyl­phen­yl)-2,4-di­methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 17 April 2010; accepted 19 April 2010; online 24 April 2010)

In the title compound, C16H19NO2S, the dihedral angle between the aromatic rings is 47.2 (2)°. The crystal structure features zigzag C(4) chains linked by N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006[Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600-606.]). For our study on the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009a[Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576.],b[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009b). Acta Cryst. E65, o3275.]); Nirmala et al. (2010[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1017.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19NO2S

  • Mr = 289.38

  • Monoclinic, P 21 /c

  • a = 9.732 (1) Å

  • b = 15.045 (2) Å

  • c = 10.425 (1) Å

  • β = 100.10 (1)°

  • V = 1502.8 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.92 mm−1

  • T = 299 K

  • 0.45 × 0.38 × 0.28 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.479, Tmax = 0.616

  • 2858 measured reflections

  • 2672 independent reflections

  • 2265 reflections with I > 2σ(I)

  • Rint = 0.047

  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.338

  • S = 1.59

  • 2672 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 2.41 2.976 (4) 124
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009a,b; Nirmala et al., 2010),in the present work, the structure of 2,4-dimethyl-N-(3,4-dimethylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—C bond in the C—SO2—NH—C segment of the structure has gauche torsions with respect to the SO bonds. The molecule in (I) is bent at the S- atom with the C—SO2—NH—C torsion angle of 57.4 (3)°, compared to the values of 70.1 (2) and -66.0 (2)° in the two independent molecules of 2,4-dimethyl-N-(2,3-dimethylphenyl)benzenesulfonamide (II), 66.5 (2)° in 2,4-dimethyl-N-(2,4-dimethylphenyl)benzenesulfonamide (III) , 53.9 (2)° in 2,4-dimethyl-N-(3,5-dimethylphenyl)benzenesulfonamide (IV) and 46.1 (3)° (glide image of molecule 1) and 47.7 (3)° (molecule 2) in the two independent molecules of 2,4-dimethyl-N- (phenyl)benzenesulfonamide (V).

The sulfonyl and the anilino benzene rings in (I) are tilted relative to each other by 47.2 (2)°, compared to the values of 41.5 (1) and 43.8 (1)° in the two molecules of (II), 41.0 (1)° in (III), 82.1 (1)° in (IV) and 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) in (V),

The remaining bond parameters in (I) are similar to those observed in (II), (III), (IV), (V) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) through N—H···O(S) hydrogen bonds (Table 1) is shown in Fig.2.

Related literature top

For the preparation of the title compound, see: Savitha & Gowda (2006). For our study on the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009a,b); Nirmala et al. (2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of m-xylene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with 3,4-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dimethyl-N- (3,4-dimethylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). Prism like yellow single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model (C—H = 0.93–0.96 Å, N—H = 0.86 Å) and were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom. To improve the values of R1, wR2, and GOOF, six reflections (-3 4 7, -3 9 3, 0 9 5, -8 4 3, 3 11 1, -8 4 1) were omitted from the refinement.

Structure description top

As part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009a,b; Nirmala et al., 2010),in the present work, the structure of 2,4-dimethyl-N-(3,4-dimethylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—C bond in the C—SO2—NH—C segment of the structure has gauche torsions with respect to the SO bonds. The molecule in (I) is bent at the S- atom with the C—SO2—NH—C torsion angle of 57.4 (3)°, compared to the values of 70.1 (2) and -66.0 (2)° in the two independent molecules of 2,4-dimethyl-N-(2,3-dimethylphenyl)benzenesulfonamide (II), 66.5 (2)° in 2,4-dimethyl-N-(2,4-dimethylphenyl)benzenesulfonamide (III) , 53.9 (2)° in 2,4-dimethyl-N-(3,5-dimethylphenyl)benzenesulfonamide (IV) and 46.1 (3)° (glide image of molecule 1) and 47.7 (3)° (molecule 2) in the two independent molecules of 2,4-dimethyl-N- (phenyl)benzenesulfonamide (V).

The sulfonyl and the anilino benzene rings in (I) are tilted relative to each other by 47.2 (2)°, compared to the values of 41.5 (1) and 43.8 (1)° in the two molecules of (II), 41.0 (1)° in (III), 82.1 (1)° in (IV) and 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) in (V),

The remaining bond parameters in (I) are similar to those observed in (II), (III), (IV), (V) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) through N—H···O(S) hydrogen bonds (Table 1) is shown in Fig.2.

For the preparation of the title compound, see: Savitha & Gowda (2006). For our study on the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009a,b); Nirmala et al. (2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(3,4-Dimethylphenyl)-2,4-dimethylbenzenesulfonamide top
Crystal data top
C16H19NO2SF(000) = 616
Mr = 289.38Dx = 1.279 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.732 (1) Åθ = 4.6–22.4°
b = 15.045 (2) ŵ = 1.92 mm1
c = 10.425 (1) ÅT = 299 K
β = 100.10 (1)°Prism, yellow
V = 1502.8 (3) Å30.45 × 0.38 × 0.28 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2265 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 67.0°, θmin = 4.6°
ω/2θ scansh = 1111
Absorption correction: ψ scan
(North et al., 1968)
k = 170
Tmin = 0.479, Tmax = 0.616l = 121
2858 measured reflections3 standard reflections every 120 min
2672 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.338H-atom parameters constrained
S = 1.59 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
2672 reflections(Δ/σ)max = 0.042
185 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
C16H19NO2SV = 1502.8 (3) Å3
Mr = 289.38Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.732 (1) ŵ = 1.92 mm1
b = 15.045 (2) ÅT = 299 K
c = 10.425 (1) Å0.45 × 0.38 × 0.28 mm
β = 100.10 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2265 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.047
Tmin = 0.479, Tmax = 0.6163 standard reflections every 120 min
2858 measured reflections intensity decay: 1.0%
2672 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.338H-atom parameters constrained
S = 1.59Δρmax = 0.71 e Å3
2672 reflectionsΔρmin = 0.71 e Å3
185 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01170 (9)0.29486 (6)0.42947 (8)0.0414 (5)
O10.1509 (3)0.3027 (2)0.3594 (3)0.0581 (9)
O20.0109 (3)0.2694 (2)0.5633 (3)0.0539 (9)
N10.0626 (3)0.2187 (2)0.3527 (3)0.0420 (8)
H1N0.01430.19090.28800.050*
C10.0835 (4)0.3947 (2)0.4209 (4)0.0407 (9)
C20.0551 (4)0.4535 (3)0.3159 (4)0.0462 (10)
C30.1420 (5)0.5271 (3)0.3193 (5)0.0551 (11)
H30.12510.56730.25070.066*
C40.2520 (5)0.5435 (3)0.4192 (5)0.0571 (12)
C50.2745 (6)0.4854 (3)0.5202 (6)0.0658 (13)
H50.34780.49540.58890.079*
C60.1904 (5)0.4114 (3)0.5229 (4)0.0547 (11)
H60.20620.37290.59380.066*
C70.2084 (4)0.1981 (2)0.3928 (4)0.0406 (9)
C80.2517 (4)0.1470 (3)0.5026 (4)0.0460 (10)
H80.18600.12510.54940.055*
C90.3919 (5)0.1279 (3)0.5439 (4)0.0501 (10)
C100.4903 (5)0.1578 (3)0.4705 (5)0.0541 (11)
C110.4431 (5)0.2072 (3)0.3588 (5)0.0578 (12)
H110.50720.22660.30840.069*
C120.3043 (5)0.2284 (3)0.3204 (4)0.0492 (10)
H120.27570.26280.24640.059*
C130.0607 (6)0.4423 (4)0.2013 (5)0.0685 (14)
H13A0.14700.46190.22450.082*
H13B0.06830.38080.17670.082*
H13C0.04080.47700.12950.082*
C140.3438 (7)0.6239 (4)0.4164 (9)0.094 (2)
H14A0.29150.67020.36660.113*
H14B0.42270.60840.37720.113*
H14C0.37560.64440.50380.113*
C150.4395 (6)0.0747 (3)0.6666 (5)0.0719 (15)
H15A0.48040.01990.64490.086*
H15B0.36090.06220.70800.086*
H15C0.50750.10830.72500.086*
C160.6417 (6)0.1387 (4)0.5107 (7)0.0804 (18)
H16A0.65340.08070.54960.096*
H16B0.68280.18250.57290.096*
H16C0.68650.14060.43580.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0466 (7)0.0476 (7)0.0298 (7)0.0046 (3)0.0060 (4)0.0006 (3)
O10.0496 (19)0.065 (2)0.058 (2)0.0046 (13)0.0062 (15)0.0016 (14)
O20.075 (2)0.0593 (18)0.0301 (16)0.0065 (14)0.0176 (14)0.0018 (11)
N10.0517 (19)0.0441 (17)0.0270 (15)0.0076 (13)0.0018 (13)0.0048 (12)
C10.046 (2)0.0384 (19)0.0377 (19)0.0013 (14)0.0077 (15)0.0023 (14)
C20.052 (2)0.043 (2)0.043 (2)0.0089 (16)0.0090 (17)0.0022 (16)
C30.065 (3)0.044 (2)0.060 (3)0.0053 (19)0.020 (2)0.0052 (19)
C40.061 (3)0.042 (2)0.074 (3)0.0055 (18)0.025 (2)0.017 (2)
C50.063 (3)0.066 (3)0.064 (3)0.011 (2)0.000 (2)0.019 (2)
C60.058 (2)0.054 (2)0.047 (2)0.0079 (19)0.0055 (18)0.0016 (19)
C70.053 (2)0.0352 (18)0.0312 (18)0.0039 (14)0.0021 (16)0.0068 (13)
C80.060 (2)0.041 (2)0.0369 (19)0.0011 (16)0.0080 (17)0.0016 (15)
C90.068 (3)0.0382 (19)0.039 (2)0.0048 (17)0.0056 (18)0.0041 (16)
C100.060 (3)0.041 (2)0.057 (2)0.0015 (17)0.0011 (19)0.0083 (18)
C110.061 (3)0.057 (3)0.056 (3)0.0009 (19)0.012 (2)0.0007 (19)
C120.062 (2)0.049 (2)0.036 (2)0.0008 (18)0.0076 (18)0.0022 (17)
C130.084 (3)0.059 (3)0.053 (3)0.005 (2)0.011 (2)0.015 (2)
C140.089 (4)0.063 (3)0.138 (6)0.023 (3)0.041 (4)0.026 (4)
C150.100 (4)0.057 (3)0.050 (3)0.016 (3)0.009 (3)0.009 (2)
C160.069 (3)0.065 (3)0.098 (4)0.003 (2)0.012 (3)0.006 (3)
Geometric parameters (Å, º) top
S1—O21.426 (3)C8—H80.9300
S1—O11.427 (3)C9—C101.401 (7)
S1—N11.636 (3)C9—C151.511 (6)
S1—C11.775 (4)C10—C111.391 (7)
N1—C71.441 (5)C10—C161.487 (7)
N1—H1N0.8600C11—C121.377 (6)
C1—C61.374 (5)C11—H110.9300
C1—C21.397 (6)C12—H120.9300
C2—C31.389 (6)C13—H13A0.9600
C2—C131.501 (6)C13—H13B0.9600
C3—C41.378 (7)C13—H13C0.9600
C3—H30.9300C14—H14A0.9600
C4—C51.357 (8)C14—H14B0.9600
C4—C141.507 (7)C14—H14C0.9600
C5—C61.385 (7)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—H60.9300C15—H15C0.9600
C7—C121.377 (6)C16—H16A0.9600
C7—C81.382 (5)C16—H16B0.9600
C8—C91.387 (6)C16—H16C0.9600
O2—S1—O1119.5 (2)C10—C9—C15119.6 (4)
O2—S1—N1106.57 (18)C11—C10—C9118.2 (4)
O1—S1—N1105.59 (18)C11—C10—C16120.3 (5)
O2—S1—C1106.50 (19)C9—C10—C16121.5 (5)
O1—S1—C1111.18 (18)C12—C11—C10122.0 (5)
N1—S1—C1106.75 (17)C12—C11—H11119.0
C7—N1—S1120.4 (2)C10—C11—H11119.0
C7—N1—H1N119.8C11—C12—C7119.3 (4)
S1—N1—H1N119.8C11—C12—H12120.4
C6—C1—C2120.6 (4)C7—C12—H12120.4
C6—C1—S1116.5 (3)C2—C13—H13A109.5
C2—C1—S1122.9 (3)C2—C13—H13B109.5
C3—C2—C1116.6 (4)H13A—C13—H13B109.5
C3—C2—C13118.6 (4)C2—C13—H13C109.5
C1—C2—C13124.7 (4)H13A—C13—H13C109.5
C4—C3—C2123.4 (4)H13B—C13—H13C109.5
C4—C3—H3118.3C4—C14—H14A109.5
C2—C3—H3118.3C4—C14—H14B109.5
C5—C4—C3118.0 (4)H14A—C14—H14B109.5
C5—C4—C14121.1 (5)C4—C14—H14C109.5
C3—C4—C14120.9 (5)H14A—C14—H14C109.5
C4—C5—C6121.2 (5)H14B—C14—H14C109.5
C4—C5—H5119.4C9—C15—H15A109.5
C6—C5—H5119.4C9—C15—H15B109.5
C1—C6—C5120.1 (4)H15A—C15—H15B109.5
C1—C6—H6120.0C9—C15—H15C109.5
C5—C6—H6120.0H15A—C15—H15C109.5
C12—C7—C8120.0 (4)H15B—C15—H15C109.5
C12—C7—N1119.8 (4)C10—C16—H16A109.5
C8—C7—N1120.1 (4)C10—C16—H16B109.5
C7—C8—C9120.9 (4)H16A—C16—H16B109.5
C7—C8—H8119.6C10—C16—H16C109.5
C9—C8—H8119.6H16A—C16—H16C109.5
C8—C9—C10119.6 (4)H16B—C16—H16C109.5
C8—C9—C15120.8 (4)
O2—S1—N1—C756.1 (3)C2—C1—C6—C52.3 (7)
O1—S1—N1—C7175.8 (3)S1—C1—C6—C5176.5 (4)
C1—S1—N1—C757.4 (3)C4—C5—C6—C11.3 (8)
O2—S1—C1—C621.0 (4)S1—N1—C7—C12104.3 (4)
O1—S1—C1—C6152.8 (3)S1—N1—C7—C876.6 (4)
N1—S1—C1—C692.5 (3)C12—C7—C8—C92.1 (6)
O2—S1—C1—C2160.2 (3)N1—C7—C8—C9178.8 (3)
O1—S1—C1—C228.4 (4)C7—C8—C9—C102.5 (6)
N1—S1—C1—C286.2 (3)C7—C8—C9—C15177.8 (4)
C6—C1—C2—C31.6 (6)C8—C9—C10—C111.0 (6)
S1—C1—C2—C3177.2 (3)C15—C9—C10—C11179.4 (4)
C6—C1—C2—C13178.8 (5)C8—C9—C10—C16179.9 (4)
S1—C1—C2—C132.5 (6)C15—C9—C10—C160.2 (7)
C1—C2—C3—C40.2 (6)C9—C10—C11—C121.1 (7)
C13—C2—C3—C4179.5 (5)C16—C10—C11—C12178.1 (5)
C2—C3—C4—C51.2 (7)C10—C11—C12—C71.6 (7)
C2—C3—C4—C14179.2 (4)C8—C7—C12—C110.0 (6)
C3—C4—C5—C60.5 (8)N1—C7—C12—C11179.2 (4)
C14—C4—C5—C6180.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.412.976 (4)124
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H19NO2S
Mr289.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)9.732 (1), 15.045 (2), 10.425 (1)
β (°) 100.10 (1)
V3)1502.8 (3)
Z4
Radiation typeCu Kα
µ (mm1)1.92
Crystal size (mm)0.45 × 0.38 × 0.28
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.479, 0.616
No. of measured, independent and
observed [I > 2σ(I)] reflections
2858, 2672, 2265
Rint0.047
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.338, 1.59
No. of reflections2672
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.71

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.412.976 (4)123.6
Symmetry code: (i) x, y+1/2, z1/2.
 

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009b). Acta Cryst. E65, o3275.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1017.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds