organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,8-Dihydr­­oxy-2,4,5,7-tetra­nitro-9,10-anthra­quinone

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 April 2010; accepted 19 April 2010; online 24 April 2010)

The ring system in the title compound, C14H4N4O12, is essentially planar (r.m.s. deviation of the carbon atoms = 0.085 Å); the two hydr­oxy groups form intra­molecular hydrogen bonds to the same carbonyl O atom. The nitro groups are twisted with respect to the mean plane of the ring system by 74.3 (1) (1-nitro), 42.3 (3) (3-nitro), 45.7 (3) (6-nitro) and 66.9 (1)° (8-nitro).

Related literature

For the synthesis of the title compound, see: Teich et al. (2004[Teich, L., Daub, K. S., Krugel, V., Nissler, L., Gebhardt, R. & Eger, K. (2004). Bioorg. Med. Chem. 12, 5961-5971.]). For related structures, see: Armaghan et al. (2010[Armaghan, M., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, o767.]); Brown & Colclough (1983[Brown, C. J. & Colclough, M. L. (1983). Acta Cryst. C39, 300-302.]), Yatsenko et al. (1996[Yatsenko, A. V., Paseshnichenko, K. A. & Popov, S. I. (1996). Acta Cryst. C52, 3258-3260.]).

[Scheme 1]

Experimental

Crystal data
  • C14H4N4O12

  • Mr = 420.21

  • Monoclinic, P 21 /c

  • a = 17.726 (2) Å

  • b = 9.007 (1) Å

  • c = 9.731 (1) Å

  • β = 102.643 (2)°

  • V = 1515.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 223 K

  • 0.35 × 0.25 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 11323 measured reflections

  • 2672 independent reflections

  • 2034 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.215

  • S = 1.10

  • 2672 reflections

  • 279 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 (3) 1.84 (3) 2.579 (3) 146 (5)
O3—H3⋯O2 0.84 (4) 1.82 (3) 2.576 (3) 148 (5)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

In continuation to our previous synthesis of anthraquinone derivatives for the absorption of aromatic sulfur compounds from oil when immobilized on silica surface (MCM-41) (Armaghan et al., 2010), we have synthesized the title compound. The compound was reported in a previous report (Teich et al., 2004). In the present study, the synthesis involves functionalization of 1,8-dihydroxy-anthraquinone with the fuming nitric acid. The compound (Scheme I, Fig. 1) is soluble in methanol.

Related literature top

For the synthesis of the title compoud, see: Teich et al. (2004). For related stuctures, see: Armaghan et al. (2010); Brown & Colclough (1983), Yatsenko et al. (1996).

Experimental top

Fuming nitric acid (4 ml) was added to a solution of 1,8-dihydroxy-anthraquinone (240 mg, 1.0 mmol) dissolved in concentrated sulfuric acid (5 ml). The mixture was stirred for 2 hours. It was then poured into ice (100 g). The yellow precipitate was washed with water. Crystals were obtained by slow diffusion of n-hexane into a methanol solution of the title compound; m.p.> 473 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.94 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The oxygen-bound H-atoms were located in a difference Fourier map. They were refined isotropically with a distance restraint of O–H 0.84±0.01 Å.

The parameters in the weighting scheme are somewhat large; these could not be reduced without affecting the goodness of fit.

Structure description top

In continuation to our previous synthesis of anthraquinone derivatives for the absorption of aromatic sulfur compounds from oil when immobilized on silica surface (MCM-41) (Armaghan et al., 2010), we have synthesized the title compound. The compound was reported in a previous report (Teich et al., 2004). In the present study, the synthesis involves functionalization of 1,8-dihydroxy-anthraquinone with the fuming nitric acid. The compound (Scheme I, Fig. 1) is soluble in methanol.

For the synthesis of the title compoud, see: Teich et al. (2004). For related stuctures, see: Armaghan et al. (2010); Brown & Colclough (1983), Yatsenko et al. (1996).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C14H4N4O12; ellipsoids are drawn at the 50% probability level and H atoms are of arbitrary radius.
1,8-Dihydroxy-2,4,5,7-tetranitro-9,10-anthraquinone top
Crystal data top
C14H4N4O12F(000) = 848
Mr = 420.21Dx = 1.841 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2323 reflections
a = 17.726 (2) Åθ = 2.3–27.5°
b = 9.007 (1) ŵ = 0.17 mm1
c = 9.731 (1) ÅT = 223 K
β = 102.643 (2)°Plate, brown
V = 1515.9 (3) Å30.35 × 0.25 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
Rint = 0.045
Graphite monochromatorθmax = 25.0°, θmin = 1.2°
ω scansh = 1921
11323 measured reflectionsk = 1010
2672 independent reflectionsl = 1111
2034 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.215H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.137P)2 + 0.3859P]
where P = (Fo2 + 2Fc2)/3
2672 reflections(Δ/σ)max = 0.001
279 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = 0.36 e Å3
Crystal data top
C14H4N4O12V = 1515.9 (3) Å3
Mr = 420.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.726 (2) ŵ = 0.17 mm1
b = 9.007 (1) ÅT = 223 K
c = 9.731 (1) Å0.35 × 0.25 × 0.10 mm
β = 102.643 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2034 reflections with I > 2σ(I)
11323 measured reflectionsRint = 0.045
2672 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0632 restraints
wR(F2) = 0.215H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.35 e Å3
2672 reflectionsΔρmin = 0.36 e Å3
279 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34937 (16)0.2030 (3)0.4649 (3)0.0528 (7)
H10.323 (2)0.172 (5)0.388 (3)0.082 (16)*
O20.24924 (13)0.2174 (2)0.2291 (2)0.0417 (6)
O30.15091 (14)0.2212 (2)0.0089 (3)0.0410 (6)
H30.183 (2)0.186 (6)0.060 (4)0.099 (18)*
O40.07048 (14)0.2831 (3)0.2661 (3)0.0503 (7)
O50.02307 (13)0.4233 (3)0.2381 (3)0.0465 (7)
O60.06528 (16)0.8754 (3)0.0919 (3)0.0606 (8)
O70.17014 (16)0.9106 (3)0.0217 (3)0.0565 (8)
O80.22018 (17)0.7979 (3)0.2950 (3)0.0614 (9)
O90.33793 (14)0.8827 (3)0.5708 (3)0.0507 (7)
O100.3791 (2)0.8835 (3)0.3801 (4)0.0895 (12)
O110.51679 (18)0.4003 (4)0.7123 (4)0.0879 (12)
O120.43047 (19)0.2420 (4)0.7288 (3)0.0806 (11)
N10.04326 (15)0.3791 (3)0.2055 (3)0.0333 (6)
N20.12252 (16)0.8324 (3)0.0558 (3)0.0348 (6)
N30.35601 (16)0.8218 (3)0.4727 (3)0.0413 (7)
N40.45331 (17)0.3494 (3)0.6774 (3)0.0438 (7)
C10.34783 (18)0.3492 (4)0.4612 (3)0.0348 (7)
C20.29723 (16)0.4320 (3)0.3556 (3)0.0293 (7)
C30.24621 (16)0.3536 (3)0.2380 (3)0.0305 (7)
C40.19253 (16)0.4400 (3)0.1305 (3)0.0279 (7)
C50.14731 (17)0.3649 (3)0.0136 (3)0.0292 (7)
C60.09371 (17)0.4510 (3)0.0830 (3)0.0295 (7)
C70.08449 (17)0.5998 (3)0.0660 (3)0.0303 (7)
H70.04650.65320.12950.036*
C80.13215 (16)0.6704 (3)0.0466 (3)0.0284 (7)
C90.18590 (16)0.5934 (3)0.1447 (3)0.0270 (7)
C100.23464 (18)0.6727 (3)0.2673 (3)0.0326 (7)
C110.29712 (17)0.5868 (3)0.3616 (3)0.0296 (7)
C120.35047 (17)0.6585 (4)0.4664 (3)0.0324 (7)
C130.40121 (18)0.5807 (4)0.5685 (3)0.0374 (8)
H130.43710.63090.63860.045*
C140.39833 (18)0.4294 (4)0.5659 (3)0.0374 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0710 (18)0.0263 (13)0.0517 (16)0.0112 (11)0.0070 (13)0.0058 (11)
O20.0511 (14)0.0192 (12)0.0471 (14)0.0043 (9)0.0062 (11)0.0007 (9)
O30.0589 (16)0.0178 (11)0.0410 (13)0.0005 (10)0.0008 (11)0.0021 (9)
O40.0553 (16)0.0469 (15)0.0447 (14)0.0009 (12)0.0024 (11)0.0179 (12)
O50.0356 (13)0.0538 (15)0.0459 (14)0.0033 (11)0.0002 (10)0.0021 (11)
O60.0752 (19)0.0413 (15)0.0698 (19)0.0242 (13)0.0254 (15)0.0017 (12)
O70.0714 (18)0.0215 (12)0.080 (2)0.0048 (12)0.0241 (15)0.0037 (12)
O80.094 (2)0.0270 (14)0.0471 (15)0.0208 (13)0.0187 (14)0.0113 (11)
O90.0628 (16)0.0403 (14)0.0484 (15)0.0035 (11)0.0108 (12)0.0159 (11)
O100.174 (4)0.0379 (16)0.074 (2)0.0259 (18)0.066 (2)0.0057 (14)
O110.057 (2)0.092 (3)0.097 (3)0.0004 (17)0.0214 (18)0.020 (2)
O120.075 (2)0.089 (2)0.067 (2)0.0012 (17)0.0084 (16)0.0411 (18)
N10.0357 (15)0.0309 (14)0.0308 (13)0.0076 (11)0.0020 (11)0.0005 (11)
N20.0458 (16)0.0257 (14)0.0300 (13)0.0127 (12)0.0018 (11)0.0004 (11)
N30.0558 (17)0.0317 (15)0.0339 (15)0.0049 (13)0.0047 (13)0.0061 (12)
N40.0417 (17)0.0464 (18)0.0391 (16)0.0086 (13)0.0002 (13)0.0057 (13)
C10.0400 (17)0.0286 (17)0.0348 (16)0.0070 (13)0.0064 (13)0.0033 (12)
C20.0344 (16)0.0266 (16)0.0262 (15)0.0051 (12)0.0052 (12)0.0020 (11)
C30.0357 (17)0.0223 (17)0.0321 (16)0.0040 (11)0.0045 (13)0.0021 (12)
C40.0301 (15)0.0205 (15)0.0324 (15)0.0006 (11)0.0052 (12)0.0015 (11)
C50.0361 (16)0.0214 (15)0.0307 (15)0.0014 (12)0.0085 (12)0.0007 (11)
C60.0315 (15)0.0259 (16)0.0297 (15)0.0030 (12)0.0041 (12)0.0004 (12)
C70.0321 (16)0.0291 (16)0.0285 (15)0.0032 (12)0.0041 (12)0.0043 (12)
C80.0348 (16)0.0196 (15)0.0310 (15)0.0039 (12)0.0078 (12)0.0003 (12)
C90.0321 (15)0.0218 (15)0.0273 (15)0.0037 (12)0.0071 (12)0.0019 (11)
C100.0457 (18)0.0206 (16)0.0294 (15)0.0046 (13)0.0034 (13)0.0000 (12)
C110.0377 (17)0.0241 (16)0.0272 (15)0.0027 (12)0.0073 (13)0.0002 (11)
C120.0380 (16)0.0294 (17)0.0295 (15)0.0012 (13)0.0064 (12)0.0019 (12)
C130.0398 (18)0.0413 (19)0.0297 (16)0.0005 (14)0.0047 (13)0.0039 (13)
C140.0355 (17)0.042 (2)0.0319 (17)0.0073 (14)0.0019 (13)0.0037 (14)
Geometric parameters (Å, º) top
O1—C11.317 (4)C1—C141.401 (4)
O1—H10.84 (3)C1—C21.419 (4)
O2—C31.232 (4)C2—C111.395 (4)
O3—C51.316 (4)C2—C31.474 (4)
O3—H30.84 (4)C3—C41.473 (4)
O4—N11.206 (3)C4—C91.396 (4)
O5—N11.216 (3)C4—C51.412 (4)
O6—N21.208 (4)C5—C61.413 (4)
O7—N21.201 (4)C6—C71.364 (4)
O8—C101.199 (4)C7—C81.383 (4)
O9—N31.203 (4)C7—H70.9400
O10—N31.205 (4)C8—C91.379 (4)
O11—N41.194 (4)C9—C101.493 (4)
O12—N41.199 (4)C10—C111.491 (4)
N1—C61.475 (4)C11—C121.389 (4)
N2—C81.474 (4)C12—C131.377 (4)
N3—C121.474 (4)C13—C141.364 (4)
N4—C141.478 (4)C13—H130.9400
C1—O1—H1108 (4)C4—C5—C6116.9 (3)
C5—O3—H3107 (4)C7—C6—C5122.7 (3)
O4—N1—O5125.1 (3)C7—C6—N1117.5 (2)
O4—N1—C6118.3 (2)C5—C6—N1119.8 (3)
O5—N1—C6116.6 (3)C6—C7—C8118.6 (3)
O7—N2—O6125.3 (3)C6—C7—H7120.7
O7—N2—C8117.8 (3)C8—C7—H7120.7
O6—N2—C8116.8 (3)C9—C8—C7121.8 (3)
O9—N3—O10125.2 (3)C9—C8—N2121.9 (2)
O9—N3—C12117.4 (3)C7—C8—N2116.4 (2)
O10—N3—C12117.4 (3)C8—C9—C4119.3 (3)
O11—N4—O12125.1 (3)C8—C9—C10120.2 (3)
O11—N4—C14116.7 (3)C4—C9—C10120.4 (2)
O12—N4—C14118.1 (3)O8—C10—C11121.1 (3)
O1—C1—C14119.3 (3)O8—C10—C9121.0 (3)
O1—C1—C2123.4 (3)C11—C10—C9117.7 (3)
C14—C1—C2117.2 (3)C12—C11—C2119.3 (3)
C11—C2—C1120.1 (3)C12—C11—C10120.3 (3)
C11—C2—C3120.3 (2)C2—C11—C10120.0 (2)
C1—C2—C3119.6 (3)C13—C12—C11121.7 (3)
O2—C3—C4120.5 (3)C13—C12—N3116.8 (3)
O2—C3—C2120.2 (3)C11—C12—N3121.6 (3)
C4—C3—C2119.3 (3)C14—C13—C12118.6 (3)
C9—C4—C5120.6 (3)C14—C13—H13120.7
C9—C4—C3120.5 (3)C12—C13—H13120.7
C5—C4—C3118.9 (3)C13—C14—C1123.0 (3)
O3—C5—C4124.4 (3)C13—C14—N4117.3 (3)
O3—C5—C6118.6 (3)C1—C14—N4119.7 (3)
O1—C1—C2—C11177.7 (3)C5—C4—C9—C82.9 (4)
C14—C1—C2—C112.4 (4)C3—C4—C9—C8176.4 (3)
O1—C1—C2—C33.7 (5)C5—C4—C9—C10179.1 (3)
C14—C1—C2—C3176.3 (3)C3—C4—C9—C101.6 (4)
C11—C2—C3—O2176.3 (3)C8—C9—C10—O811.7 (5)
C1—C2—C3—O22.3 (4)C4—C9—C10—O8166.3 (3)
C11—C2—C3—C42.8 (4)C8—C9—C10—C11173.9 (3)
C1—C2—C3—C4178.6 (3)C4—C9—C10—C118.1 (4)
O2—C3—C4—C9176.3 (3)C1—C2—C11—C124.3 (4)
C2—C3—C4—C94.5 (4)C3—C2—C11—C12174.3 (3)
O2—C3—C4—C53.0 (4)C1—C2—C11—C10168.6 (3)
C2—C3—C4—C5176.1 (3)C3—C2—C11—C1012.8 (4)
C9—C4—C5—O3178.9 (3)O8—C10—C11—C1213.8 (5)
C3—C4—C5—O31.8 (4)C9—C10—C11—C12171.8 (3)
C9—C4—C5—C62.6 (4)O8—C10—C11—C2159.0 (3)
C3—C4—C5—C6176.7 (3)C9—C10—C11—C215.4 (4)
O3—C5—C6—C7178.2 (3)C2—C11—C12—C133.0 (5)
C4—C5—C6—C70.5 (4)C10—C11—C12—C13169.9 (3)
O3—C5—C6—N10.2 (4)C2—C11—C12—N3176.3 (3)
C4—C5—C6—N1178.5 (2)C10—C11—C12—N310.8 (4)
O4—N1—C6—C7142.1 (3)O9—N3—C12—C1367.5 (4)
O5—N1—C6—C737.2 (4)O10—N3—C12—C13111.6 (4)
O4—N1—C6—C539.8 (4)O9—N3—C12—C11113.1 (3)
O5—N1—C6—C5140.9 (3)O10—N3—C12—C1167.7 (4)
C5—C6—C7—C83.2 (4)C11—C12—C13—C140.2 (5)
N1—C6—C7—C8178.8 (3)N3—C12—C13—C14179.6 (3)
C6—C7—C8—C92.9 (4)C12—C13—C14—C12.2 (5)
C6—C7—C8—N2176.9 (3)C12—C13—C14—N4179.7 (3)
O7—N2—C8—C976.1 (4)O1—C1—C14—C13179.0 (3)
O6—N2—C8—C9106.8 (3)C2—C1—C14—C131.0 (5)
O7—N2—C8—C7103.7 (3)O1—C1—C14—N41.0 (5)
O6—N2—C8—C773.4 (3)C2—C1—C14—N4179.0 (3)
C7—C8—C9—C40.1 (4)O11—N4—C14—C1338.1 (5)
N2—C8—C9—C4179.9 (3)O12—N4—C14—C13139.6 (4)
C7—C8—C9—C10178.1 (3)O11—N4—C14—C1140.0 (4)
N2—C8—C9—C102.1 (4)O12—N4—C14—C142.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (3)1.84 (3)2.579 (3)146 (5)
O3—H3···O20.84 (4)1.82 (3)2.576 (3)148 (5)

Experimental details

Crystal data
Chemical formulaC14H4N4O12
Mr420.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)17.726 (2), 9.007 (1), 9.731 (1)
β (°) 102.643 (2)
V3)1515.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.35 × 0.25 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11323, 2672, 2034
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.215, 1.10
No. of reflections2672
No. of parameters279
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.36

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (3)1.84 (3)2.579 (3)146 (5)
O3—H3···O20.84 (4)1.82 (3)2.576 (3)148 (5)
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationArmaghan, M., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, o767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrown, C. J. & Colclough, M. L. (1983). Acta Cryst. C39, 300–302.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeich, L., Daub, K. S., Krugel, V., Nissler, L., Gebhardt, R. & Eger, K. (2004). Bioorg. Med. Chem. 12, 5961–5971.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationYatsenko, A. V., Paseshnichenko, K. A. & Popov, S. I. (1996). Acta Cryst. C52, 3258–3260.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds