metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

Di­chlorido{4-cyclo­hexyl-1-[1-(2-pyridyl-κN)ethyl­­idene]thio­semicarbazidato-κ2N1,S}methyl­tin(IV)

aFaculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 April 2010; accepted 20 April 2010; online 24 April 2010)

The monodeprotonated Schiff base ligand in the title compound, [Sn(CH3)(C14H19N4S)Cl2], N,N′,S-chelates to the Sn atom, which is six-coordinated in an octa­hedral environment. The three coordinating atoms along with the methyl C atom comprise a square plane, above and below which are positioned the Cl atoms. The amino group is a hydrogen-bond donor to a Cl atom of an adjacent mol­ecule, the hydrogen bond giving rise to a helical chain extending parallel to [100].

Related literature

For the crystal structures of other metal derivatives of the Schiff base, see: Joseph et al. (2004[Joseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069-3080.]); Kovala-Demertzi et al. (2007[Kovala-Demertzi, D., Galani, A., Kourkoumelis, N., Miller, J. R. & Demertzis, M. A. (2007). Polyhedron, 26, 2871-2879.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)(C14H19N4S)Cl2]

  • Mr = 480.02

  • Orthorhombic, P 21 21 21

  • a = 9.2016 (5) Å

  • b = 12.2434 (7) Å

  • c = 17.4544 (10) Å

  • V = 1966.39 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.633, Tmax = 0.730

  • 18838 measured reflections

  • 4498 independent reflections

  • 4223 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.054

  • S = 1.02

  • 4498 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1493 Friedel pairs

  • Flack parameter: −0.020 (17)

Table 1
Selected bond lengths (Å)

Sn1—C1 2.136 (3)
Sn1—N1 2.269 (2)
Sn1—N2 2.224 (2)
Sn1—S1 2.4814 (7)
Sn1—Cl1 2.4960 (7)
Sn1—Cl2 2.4701 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯Cl1i 0.86 (1) 2.36 (1) 3.219 (3) 177 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The mono-deprotonated anion of 2-acetylpyridine 4-cyclohexyl thiosemicarbazone is a ligand that N,N',S-binds to metal atoms (Joseph et al., 2004). Whereas similar ligands have been complexed with diorganotin and triorganotin systems, the monoorganotin analogues have not been so extensively studied. The mono-deprotonated Schiff-base ligand in SnCl2(CH3)(C14H19N4S) N,N',S-chelates to the tin atom, which is six-coordinate in an octahedral environment (Scheme I, Fig. 1). The three coordinating atoms along with the methyl carbon comprise a square plane, above and below which are positioned the chlorine atoms.

Related literature top

For the crystal structures of other metal derivatives of the Schiff base, see: Joseph et al. (2004); Kovala-Demertzi et al. (2007).

Experimental top

2-Acetylpyridine 4-cyclohexyl thiosemicarbazone was synthesized by using a literature method (Joseph et al., 2004). The compound (0.28 g, 1 mmol) was dissolved in dry methanol (10 ml) in a Schlenk apparatus under a nitrogen atmosphere. Methyltin trichoride (0.24 g, 1 mmol) dissolved in methanol (10 ml) was added. The mixture was heated for an hour. The solvent was removed and the yellow compound recrystallized from chloroform/methanol (1:1) in 70% yield, m.p. 551-553 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.978 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The amino H-atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of N–H 0.84±0.01 Å.

Structure description top

The mono-deprotonated anion of 2-acetylpyridine 4-cyclohexyl thiosemicarbazone is a ligand that N,N',S-binds to metal atoms (Joseph et al., 2004). Whereas similar ligands have been complexed with diorganotin and triorganotin systems, the monoorganotin analogues have not been so extensively studied. The mono-deprotonated Schiff-base ligand in SnCl2(CH3)(C14H19N4S) N,N',S-chelates to the tin atom, which is six-coordinate in an octahedral environment (Scheme I, Fig. 1). The three coordinating atoms along with the methyl carbon comprise a square plane, above and below which are positioned the chlorine atoms.

For the crystal structures of other metal derivatives of the Schiff base, see: Joseph et al. (2004); Kovala-Demertzi et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of SnCl2(CH3)(C14H19N4S) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Dichlorido{4-cyclohexyl-1-[1-(2-pyridyl- κN)ethylidene]thiosemicarbazidato- κ2N1,S}methyltin(IV) top
Crystal data top
[Sn(CH3)(C14H19N4S)Cl2]F(000) = 960
Mr = 480.02Dx = 1.621 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8827 reflections
a = 9.2016 (5) Åθ = 2.3–27.7°
b = 12.2434 (7) ŵ = 1.68 mm1
c = 17.4544 (10) ÅT = 293 K
V = 1966.39 (19) Å3Prism, yellow
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
4498 independent reflections
Radiation source: fine-focus sealed tube4223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.633, Tmax = 0.730k = 1515
18838 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.032P)2 + 0.1524P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4498 reflectionsΔρmax = 0.29 e Å3
214 parametersΔρmin = 0.41 e Å3
1 restraintAbsolute structure: Flack (1983), 1493 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (17)
Crystal data top
[Sn(CH3)(C14H19N4S)Cl2]V = 1966.39 (19) Å3
Mr = 480.02Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.2016 (5) ŵ = 1.68 mm1
b = 12.2434 (7) ÅT = 293 K
c = 17.4544 (10) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
4498 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4223 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.730Rint = 0.025
18838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054Δρmax = 0.29 e Å3
S = 1.02Δρmin = 0.41 e Å3
4498 reflectionsAbsolute structure: Flack (1983), 1493 Friedel pairs
214 parametersAbsolute structure parameter: 0.020 (17)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn11.061930 (18)0.634199 (13)0.160119 (10)0.03748 (6)
Cl10.97585 (8)0.54078 (6)0.04139 (4)0.04922 (17)
Cl21.10680 (12)0.73379 (8)0.28090 (5)0.0724 (3)
S11.22890 (7)0.75142 (6)0.08461 (5)0.04529 (16)
N10.8388 (3)0.59846 (18)0.20943 (13)0.0411 (5)
N20.9157 (2)0.77150 (16)0.12825 (11)0.0351 (5)
N30.9636 (2)0.85860 (18)0.08811 (12)0.0398 (5)
N41.1533 (3)0.9409 (2)0.02881 (19)0.0602 (7)
H41.2404 (17)0.944 (3)0.0111 (18)0.063 (11)*
C11.1749 (4)0.4916 (3)0.1978 (2)0.0687 (10)
H1A1.17550.48930.25270.103*
H1B1.27310.49360.17920.103*
H1C1.12700.42770.17830.103*
C20.8073 (4)0.5114 (2)0.25205 (17)0.0524 (7)
H20.87830.45860.26020.063*
C30.6713 (4)0.4978 (3)0.28448 (19)0.0599 (9)
H30.65130.43700.31460.072*
C40.5676 (4)0.5746 (3)0.27171 (17)0.0589 (8)
H4A0.47610.56750.29380.071*
C50.5985 (3)0.6628 (2)0.22600 (16)0.0490 (7)
H50.52710.71460.21570.059*
C60.7362 (3)0.6743 (2)0.19527 (14)0.0372 (6)
C70.7802 (3)0.7679 (2)0.14765 (14)0.0363 (5)
C80.6739 (3)0.8530 (3)0.12494 (18)0.0517 (7)
H8A0.72400.91210.10020.077*
H8B0.62490.87990.16970.077*
H8C0.60420.82220.09020.077*
C91.1021 (3)0.8555 (2)0.06741 (14)0.0400 (6)
C101.0719 (4)1.0403 (2)0.0096 (2)0.0595 (8)
H100.97251.03280.02900.071*
C111.1403 (6)1.1369 (3)0.0467 (2)0.0941 (16)
H11A1.24211.14040.03240.113*
H11B1.13511.12880.10190.113*
C121.0651 (7)1.2431 (3)0.0232 (2)0.0936 (15)
H12A0.96711.24360.04370.112*
H12B1.11711.30440.04520.112*
C131.0586 (6)1.2563 (3)0.0593 (2)0.0750 (11)
H13A1.15611.26880.07860.090*
H13B1.00071.32030.07120.090*
C140.9968 (8)1.1623 (3)0.0982 (3)0.123 (2)
H14A1.00861.17170.15310.147*
H14B0.89351.15920.08750.147*
C151.0660 (8)1.0544 (3)0.0745 (2)0.115 (2)
H15A1.01090.99470.09670.138*
H15B1.16391.05090.09500.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03555 (9)0.03065 (8)0.04623 (9)0.00216 (7)0.00566 (7)0.00345 (7)
Cl10.0458 (4)0.0469 (4)0.0550 (4)0.0002 (3)0.0045 (3)0.0088 (3)
Cl20.0986 (7)0.0686 (5)0.0500 (4)0.0184 (5)0.0149 (4)0.0065 (4)
S10.0341 (3)0.0362 (3)0.0656 (4)0.0016 (3)0.0043 (3)0.0044 (3)
N10.0436 (13)0.0366 (11)0.0431 (11)0.0039 (10)0.0010 (9)0.0059 (9)
N20.0395 (12)0.0274 (10)0.0383 (10)0.0034 (9)0.0030 (9)0.0019 (8)
N30.0371 (11)0.0332 (10)0.0491 (11)0.0028 (10)0.0050 (9)0.0071 (10)
N40.0442 (15)0.0431 (14)0.093 (2)0.0067 (11)0.0179 (14)0.0239 (14)
C10.060 (2)0.0515 (19)0.095 (3)0.0150 (17)0.021 (2)0.0203 (18)
C20.061 (2)0.0445 (16)0.0518 (16)0.0074 (15)0.0060 (15)0.0125 (13)
C30.067 (2)0.058 (2)0.0554 (17)0.0250 (18)0.0023 (16)0.0152 (15)
C40.0554 (18)0.067 (2)0.0543 (16)0.0200 (19)0.0087 (16)0.0020 (14)
C50.0451 (17)0.0505 (17)0.0513 (15)0.0044 (12)0.0106 (13)0.0029 (12)
C60.0389 (14)0.0353 (13)0.0375 (12)0.0017 (11)0.0023 (11)0.0067 (10)
C70.0371 (13)0.0348 (12)0.0371 (13)0.0036 (10)0.0032 (10)0.0028 (10)
C80.0415 (15)0.0502 (17)0.0632 (16)0.0141 (14)0.0045 (13)0.0060 (14)
C90.0426 (14)0.0317 (13)0.0458 (13)0.0002 (12)0.0011 (10)0.0017 (11)
C100.0435 (15)0.0419 (15)0.093 (2)0.0065 (15)0.0162 (18)0.0256 (15)
C110.159 (5)0.059 (2)0.064 (2)0.046 (3)0.036 (3)0.0167 (19)
C120.154 (4)0.052 (2)0.075 (2)0.032 (3)0.021 (3)0.0103 (19)
C130.092 (3)0.0485 (18)0.085 (2)0.013 (2)0.013 (2)0.0252 (17)
C140.214 (7)0.071 (3)0.083 (3)0.057 (3)0.064 (4)0.008 (2)
C150.197 (6)0.058 (2)0.090 (3)0.049 (3)0.067 (4)0.022 (2)
Geometric parameters (Å, º) top
Sn1—C12.136 (3)C5—C61.383 (4)
Sn1—N12.269 (2)C5—H50.9300
Sn1—N22.224 (2)C6—C71.473 (4)
Sn1—S12.4814 (7)C7—C81.483 (4)
Sn1—Cl12.4960 (7)C8—H8A0.9600
Sn1—Cl22.4701 (8)C8—H8B0.9600
S1—C91.753 (3)C8—H8C0.9600
N1—C21.332 (4)C10—C151.479 (5)
N1—C61.348 (3)C10—C111.488 (6)
N2—C71.292 (3)C10—H100.9800
N2—N31.350 (3)C11—C121.529 (5)
N3—C91.326 (3)C11—H11A0.9700
N4—C91.330 (4)C11—H11B0.9700
N4—C101.468 (4)C12—C131.450 (5)
N4—H40.861 (10)C12—H12A0.9700
C1—H1A0.9600C12—H12B0.9700
C1—H1B0.9600C13—C141.453 (6)
C1—H1C0.9600C13—H13A0.9700
C2—C31.383 (5)C13—H13B0.9700
C2—H20.9300C14—C151.523 (5)
C3—C41.359 (5)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C4—C51.372 (4)C15—H15A0.9700
C4—H4A0.9300C15—H15B0.9700
C1—Sn1—N2171.66 (12)N2—C7—C8122.8 (2)
C1—Sn1—N199.56 (12)C6—C7—C8121.1 (2)
N2—Sn1—N172.12 (8)C7—C8—H8A109.5
C1—Sn1—Cl293.43 (11)C7—C8—H8B109.5
N2—Sn1—Cl286.65 (6)H8A—C8—H8B109.5
N1—Sn1—Cl285.57 (6)C7—C8—H8C109.5
C1—Sn1—S1109.56 (11)H8A—C8—H8C109.5
N2—Sn1—S178.74 (6)H8B—C8—H8C109.5
N1—Sn1—S1150.85 (6)N3—C9—N4117.1 (3)
Cl2—Sn1—S193.69 (3)N3—C9—S1127.9 (2)
C1—Sn1—Cl192.01 (11)N4—C9—S1115.0 (2)
N2—Sn1—Cl186.94 (6)N4—C10—C15110.0 (3)
N1—Sn1—Cl186.53 (6)N4—C10—C11110.1 (3)
Cl2—Sn1—Cl1171.05 (3)C15—C10—C11110.8 (3)
S1—Sn1—Cl191.18 (3)N4—C10—H10108.6
C9—S1—Sn195.70 (9)C15—C10—H10108.6
C2—N1—C6120.1 (3)C11—C10—H10108.6
C2—N1—Sn1124.3 (2)C10—C11—C12111.5 (3)
C6—N1—Sn1115.58 (17)C10—C11—H11A109.3
C7—N2—N3118.5 (2)C12—C11—H11A109.3
C7—N2—Sn1119.51 (17)C10—C11—H11B109.3
N3—N2—Sn1121.94 (16)C12—C11—H11B109.3
C9—N3—N2115.7 (2)H11A—C11—H11B108.0
C9—N4—C10126.0 (3)C13—C12—C11112.3 (3)
C9—N4—H4123 (2)C13—C12—H12A109.1
C10—N4—H4111 (2)C11—C12—H12A109.1
Sn1—C1—H1A109.5C13—C12—H12B109.1
Sn1—C1—H1B109.5C11—C12—H12B109.1
H1A—C1—H1B109.5H12A—C12—H12B107.9
Sn1—C1—H1C109.5C12—C13—C14113.1 (4)
H1A—C1—H1C109.5C12—C13—H13A109.0
H1B—C1—H1C109.5C14—C13—H13A109.0
N1—C2—C3121.5 (3)C12—C13—H13B109.0
N1—C2—H2119.3C14—C13—H13B109.0
C3—C2—H2119.3H13A—C13—H13B107.8
C4—C3—C2119.0 (3)C13—C14—C15113.3 (4)
C4—C3—H3120.5C13—C14—H14A108.9
C2—C3—H3120.5C15—C14—H14A108.9
C3—C4—C5119.6 (3)C13—C14—H14B108.9
C3—C4—H4A120.2C15—C14—H14B108.9
C5—C4—H4A120.2H14A—C14—H14B107.7
C4—C5—C6119.7 (3)C10—C15—C14112.7 (4)
C4—C5—H5120.1C10—C15—H15A109.0
C6—C5—H5120.1C14—C15—H15A109.0
N1—C6—C5120.1 (2)C10—C15—H15B109.0
N1—C6—C7116.6 (2)C14—C15—H15B109.0
C5—C6—C7123.4 (2)H15A—C15—H15B107.8
N2—C7—C6116.1 (2)
C1—Sn1—S1—C9178.73 (15)C3—C4—C5—C61.9 (5)
N2—Sn1—S1—C92.07 (10)C2—N1—C6—C51.0 (4)
N1—Sn1—S1—C93.74 (16)Sn1—N1—C6—C5176.8 (2)
Cl2—Sn1—S1—C983.77 (9)C2—N1—C6—C7180.0 (2)
Cl1—Sn1—S1—C988.72 (9)Sn1—N1—C6—C72.1 (3)
C1—Sn1—N1—C22.9 (3)C4—C5—C6—N10.8 (4)
N2—Sn1—N1—C2177.8 (2)C4—C5—C6—C7178.0 (3)
Cl2—Sn1—N1—C289.9 (2)N3—N2—C7—C6176.5 (2)
S1—Sn1—N1—C2179.50 (18)Sn1—N2—C7—C64.4 (3)
Cl1—Sn1—N1—C294.3 (2)N3—N2—C7—C82.6 (4)
C1—Sn1—N1—C6179.4 (2)Sn1—N2—C7—C8176.5 (2)
N2—Sn1—N1—C60.01 (17)N1—C6—C7—N24.3 (3)
Cl2—Sn1—N1—C687.89 (18)C5—C6—C7—N2174.6 (2)
S1—Sn1—N1—C61.7 (3)N1—C6—C7—C8176.6 (2)
Cl1—Sn1—N1—C687.92 (18)C5—C6—C7—C84.5 (4)
C1—Sn1—N2—C71.9 (9)N2—N3—C9—N4179.0 (3)
N1—Sn1—N2—C72.46 (18)N2—N3—C9—S11.1 (3)
Cl2—Sn1—N2—C788.88 (19)C10—N4—C9—N32.6 (5)
S1—Sn1—N2—C7176.68 (19)C10—N4—C9—S1177.5 (3)
Cl1—Sn1—N2—C784.87 (19)Sn1—S1—C9—N32.6 (3)
C1—Sn1—N2—N3177.3 (8)Sn1—S1—C9—N4177.5 (2)
N1—Sn1—N2—N3178.4 (2)C9—N4—C10—C15120.0 (5)
Cl2—Sn1—N2—N391.99 (17)C9—N4—C10—C11117.6 (4)
S1—Sn1—N2—N32.45 (17)N4—C10—C11—C12175.8 (4)
Cl1—Sn1—N2—N394.26 (17)C15—C10—C11—C1253.9 (6)
C7—N2—N3—C9177.5 (2)C10—C11—C12—C1354.4 (7)
Sn1—N2—N3—C91.6 (3)C11—C12—C13—C1452.4 (7)
C6—N1—C2—C31.8 (4)C12—C13—C14—C1550.4 (8)
Sn1—N1—C2—C3175.8 (2)N4—C10—C15—C14174.0 (5)
N1—C2—C3—C40.7 (5)C11—C10—C15—C1452.0 (7)
C2—C3—C4—C51.2 (5)C13—C14—C15—C1050.5 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl1i0.86 (1)2.36 (1)3.219 (3)177 (3)
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Sn(CH3)(C14H19N4S)Cl2]
Mr480.02
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.2016 (5), 12.2434 (7), 17.4544 (10)
V3)1966.39 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.633, 0.730
No. of measured, independent and
observed [I > 2σ(I)] reflections
18838, 4498, 4223
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.02
No. of reflections4498
No. of parameters214
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.41
Absolute structureFlack (1983), 1493 Friedel pairs
Absolute structure parameter0.020 (17)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—C12.136 (3)Sn1—S12.4814 (7)
Sn1—N12.269 (2)Sn1—Cl12.4960 (7)
Sn1—N22.224 (2)Sn1—Cl22.4701 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl1i0.86 (1)2.36 (1)3.219 (3)177 (3)
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

We thank MOSTI (grant No. 06-01-09-SF0046), Universiti Malaysia Sarawak and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJoseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069–3080.  Web of Science CSD CrossRef CAS Google Scholar
First citationKovala-Demertzi, D., Galani, A., Kourkoumelis, N., Miller, J. R. & Demertzis, M. A. (2007). Polyhedron, 26, 2871–2879.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds