organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(3,4-di­methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 April 2010; accepted 23 April 2010; online 28 April 2010)

In the title compound, C15H14ClNO, the N—H bond is trans to the C=O bond. The dihedral angle between the two aromatic rings is 5.5 (2)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains running along the a axis.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For related structures, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2008a[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o340.],b[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1365.], 2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o2751.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14ClNO

  • Mr = 259.72

  • Orthorhombic, P b c a

  • a = 9.550 (1) Å

  • b = 10.104 (2) Å

  • c = 28.133 (4) Å

  • V = 2714.6 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 299 K

  • 0.38 × 0.20 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.905, Tmax = 0.984

  • 9354 measured reflections

  • 2469 independent reflections

  • 1405 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.086

  • wR(F2) = 0.193

  • S = 1.16

  • 2469 reflections

  • 166 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 (1) 2.04 (2) 2.862 (5) 160 (4)
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of the substituent effects on the crystal structures of benzanilides (Gowda et al., 2008a,b, 2009), the structure of N-(3,4-dimethylphenyl)-4-chlorobenzamide (I) has been determined. In the structure, the conformations of the N—H and C=O bonds are anti to each other(Fig. 1), similar to those observed in N-(3,4-dimethylphenyl)-4-methylbenzamide(II)(Gowda et al., 2009), N-(3,4-dimethylphenyl)benzamide(III)(Gowda et al., 2008a), N-(2,6-dimethylphenyl)4-chlorobenzamide (IV)(Gowda et al., 2008b) and the parent benzanilide (Bowes et al., 2003). Further, the conformation of the N—H bond is syn to the meta- methyl-substituent in the anilino ring.

The dihedral angle between the two benzene rings is 5.5 (2)°, compared to the values of 52.6 (1)° and 10.5 (1)° in the two molecules of (II), and 39.9 (2)°, 51.0 (1)° and 87.2 (3)° in the molecules 1, 2 and 3 of (IV), respectively.

The packing diagram of molecules in (I) showing the intermolecular N–H···O hydrogen bonds (Table 1) involved in the formation of molecular chains running along the a-axis is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2003). For related structures, see: Bowes et al. (2003); Gowda et al. (2008a,b, 2009).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra.

Needle like colourless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of its ethanolic solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map. It was refined with the distance restrained to N—H = 0.86 (1) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Structure description top

In the present work, as part of a study of the substituent effects on the crystal structures of benzanilides (Gowda et al., 2008a,b, 2009), the structure of N-(3,4-dimethylphenyl)-4-chlorobenzamide (I) has been determined. In the structure, the conformations of the N—H and C=O bonds are anti to each other(Fig. 1), similar to those observed in N-(3,4-dimethylphenyl)-4-methylbenzamide(II)(Gowda et al., 2009), N-(3,4-dimethylphenyl)benzamide(III)(Gowda et al., 2008a), N-(2,6-dimethylphenyl)4-chlorobenzamide (IV)(Gowda et al., 2008b) and the parent benzanilide (Bowes et al., 2003). Further, the conformation of the N—H bond is syn to the meta- methyl-substituent in the anilino ring.

The dihedral angle between the two benzene rings is 5.5 (2)°, compared to the values of 52.6 (1)° and 10.5 (1)° in the two molecules of (II), and 39.9 (2)°, 51.0 (1)° and 87.2 (3)° in the molecules 1, 2 and 3 of (IV), respectively.

The packing diagram of molecules in (I) showing the intermolecular N–H···O hydrogen bonds (Table 1) involved in the formation of molecular chains running along the a-axis is shown in Fig. 2.

For the preparation of the title compound, see: Gowda et al. (2003). For related structures, see: Bowes et al. (2003); Gowda et al. (2008a,b, 2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
4-Chloro-N-(3,4-dimethylphenyl)benzamide top
Crystal data top
C15H14ClNOF(000) = 1088
Mr = 259.72Dx = 1.271 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2409 reflections
a = 9.550 (1) Åθ = 2.6–27.9°
b = 10.104 (2) ŵ = 0.27 mm1
c = 28.133 (4) ÅT = 299 K
V = 2714.6 (7) Å3Needle, colourless
Z = 80.38 × 0.20 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2469 independent reflections
Radiation source: fine-focus sealed tube1405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Rotation method data acquisition using ω and phi scansθmax = 25.3°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1110
Tmin = 0.905, Tmax = 0.984k = 712
9354 measured reflectionsl = 2433
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0485P)2 + 3.5049P]
where P = (Fo2 + 2Fc2)/3
2469 reflections(Δ/σ)max = 0.003
166 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C15H14ClNOV = 2714.6 (7) Å3
Mr = 259.72Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.550 (1) ŵ = 0.27 mm1
b = 10.104 (2) ÅT = 299 K
c = 28.133 (4) Å0.38 × 0.20 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2469 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1405 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.984Rint = 0.051
9354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0861 restraint
wR(F2) = 0.193H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.23 e Å3
2469 reflectionsΔρmin = 0.23 e Å3
166 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3133 (4)0.2816 (4)0.31176 (13)0.0477 (10)
C20.2436 (5)0.2315 (5)0.35073 (13)0.0576 (12)
H20.16550.17820.34590.069*
C30.2865 (5)0.2583 (5)0.39707 (13)0.0581 (12)
C40.4057 (5)0.3357 (5)0.40367 (15)0.0602 (13)
C50.4728 (5)0.3856 (4)0.36439 (16)0.0611 (12)
H50.55140.43860.36890.073*
C60.4286 (5)0.3605 (4)0.31838 (14)0.0551 (12)
H60.47590.39640.29250.066*
C70.3374 (4)0.2232 (4)0.22645 (13)0.0500 (11)
C80.2595 (5)0.1668 (4)0.18478 (12)0.0457 (10)
C90.3119 (5)0.1932 (4)0.13955 (13)0.0564 (12)
H90.38990.24750.13630.068*
C100.2503 (6)0.1405 (5)0.09976 (14)0.0663 (14)
H100.28590.15900.06970.080*
C110.1355 (6)0.0602 (5)0.10495 (15)0.0655 (14)
C120.0799 (5)0.0327 (4)0.14903 (17)0.0664 (13)
H120.00140.02110.15200.080*
C130.1436 (5)0.0869 (4)0.18880 (15)0.0573 (12)
H130.10720.06880.21880.069*
C140.2071 (6)0.2009 (6)0.43859 (15)0.0912 (18)
H14A0.21010.10610.43710.109*
H14B0.11140.23000.43740.109*
H14C0.24910.23020.46780.109*
C150.4610 (6)0.3627 (5)0.45336 (16)0.0898 (18)
H15A0.48210.28040.46880.108*
H15B0.39150.40950.47140.108*
H15C0.54450.41540.45130.108*
N10.2614 (3)0.2460 (4)0.26579 (11)0.0547 (10)
H1N0.1728 (14)0.233 (4)0.2629 (14)0.066*
O10.4632 (3)0.2440 (4)0.22403 (10)0.0739 (10)
Cl10.0598 (2)0.01106 (17)0.05511 (5)0.1200 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.038 (2)0.061 (3)0.044 (2)0.002 (2)0.0062 (18)0.007 (2)
C20.045 (3)0.077 (3)0.051 (2)0.007 (3)0.001 (2)0.003 (2)
C30.066 (3)0.070 (3)0.038 (2)0.007 (3)0.002 (2)0.001 (2)
C40.072 (4)0.059 (3)0.050 (3)0.007 (3)0.016 (2)0.010 (2)
C50.064 (3)0.052 (3)0.067 (3)0.012 (3)0.014 (3)0.009 (2)
C60.057 (3)0.062 (3)0.046 (2)0.009 (3)0.002 (2)0.002 (2)
C70.040 (3)0.070 (3)0.039 (2)0.006 (2)0.0009 (19)0.000 (2)
C80.042 (3)0.056 (3)0.039 (2)0.008 (2)0.0043 (19)0.0027 (18)
C90.059 (3)0.066 (3)0.045 (2)0.008 (3)0.003 (2)0.002 (2)
C100.089 (4)0.076 (3)0.034 (2)0.018 (3)0.004 (2)0.005 (2)
C110.088 (4)0.060 (3)0.048 (3)0.013 (3)0.020 (3)0.014 (2)
C120.072 (4)0.054 (3)0.074 (3)0.004 (3)0.013 (3)0.014 (2)
C130.063 (3)0.060 (3)0.050 (2)0.002 (3)0.005 (2)0.006 (2)
C140.096 (5)0.125 (5)0.052 (3)0.003 (4)0.005 (3)0.006 (3)
C150.128 (5)0.084 (4)0.058 (3)0.001 (4)0.032 (3)0.014 (3)
N10.0341 (19)0.087 (3)0.0428 (18)0.007 (2)0.0019 (16)0.0121 (17)
O10.0312 (16)0.138 (3)0.0523 (18)0.003 (2)0.0006 (13)0.0042 (18)
Cl10.1683 (18)0.1139 (13)0.0777 (10)0.0066 (13)0.0518 (10)0.0319 (9)
Geometric parameters (Å, º) top
C1—C61.372 (5)C9—C101.372 (6)
C1—C21.379 (5)C9—H90.9300
C1—N11.431 (5)C10—C111.372 (7)
C2—C31.393 (5)C10—H100.9300
C2—H20.9300C11—C121.378 (6)
C3—C41.394 (6)C11—Cl11.734 (4)
C3—C141.508 (6)C12—C131.386 (6)
C4—C51.374 (6)C12—H120.9300
C4—C151.519 (6)C13—H130.9300
C5—C61.385 (5)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—O11.221 (5)C15—H15A0.9600
C7—N11.344 (5)C15—H15B0.9600
C7—C81.500 (5)C15—H15C0.9600
C8—C131.376 (6)N1—H1N0.860 (10)
C8—C91.393 (5)
C6—C1—C2119.5 (4)C9—C10—C11119.0 (4)
C6—C1—N1123.2 (4)C9—C10—H10120.5
C2—C1—N1117.3 (4)C11—C10—H10120.5
C1—C2—C3122.1 (4)C10—C11—C12121.6 (4)
C1—C2—H2118.9C10—C11—Cl1119.5 (4)
C3—C2—H2118.9C12—C11—Cl1118.9 (4)
C2—C3—C4118.3 (4)C11—C12—C13118.5 (5)
C2—C3—C14120.2 (4)C11—C12—H12120.7
C4—C3—C14121.5 (4)C13—C12—H12120.7
C5—C4—C3118.7 (4)C8—C13—C12121.3 (4)
C5—C4—C15120.8 (5)C8—C13—H13119.4
C3—C4—C15120.5 (5)C12—C13—H13119.4
C4—C5—C6122.8 (4)C3—C14—H14A109.5
C4—C5—H5118.6C3—C14—H14B109.5
C6—C5—H5118.6H14A—C14—H14B109.5
C1—C6—C5118.6 (4)C3—C14—H14C109.5
C1—C6—H6120.7H14A—C14—H14C109.5
C5—C6—H6120.7H14B—C14—H14C109.5
O1—C7—N1123.2 (4)C4—C15—H15A109.5
O1—C7—C8120.6 (4)C4—C15—H15B109.5
N1—C7—C8116.2 (4)H15A—C15—H15B109.5
C13—C8—C9118.5 (4)C4—C15—H15C109.5
C13—C8—C7123.9 (4)H15A—C15—H15C109.5
C9—C8—C7117.6 (4)H15B—C15—H15C109.5
C10—C9—C8121.1 (5)C7—N1—C1126.9 (3)
C10—C9—H9119.4C7—N1—H1N115 (3)
C8—C9—H9119.4C1—N1—H1N118 (3)
C6—C1—C2—C30.1 (7)N1—C7—C8—C9153.1 (4)
N1—C1—C2—C3179.0 (4)C13—C8—C9—C100.3 (6)
C1—C2—C3—C41.5 (7)C7—C8—C9—C10177.1 (4)
C1—C2—C3—C14179.8 (4)C8—C9—C10—C110.2 (7)
C2—C3—C4—C52.1 (6)C9—C10—C11—C120.7 (7)
C14—C3—C4—C5179.6 (5)C9—C10—C11—Cl1178.1 (3)
C2—C3—C4—C15177.2 (4)C10—C11—C12—C130.7 (7)
C14—C3—C4—C151.1 (7)Cl1—C11—C12—C13178.1 (3)
C3—C4—C5—C61.1 (7)C9—C8—C13—C120.3 (6)
C15—C4—C5—C6178.1 (4)C7—C8—C13—C12176.9 (4)
C2—C1—C6—C51.1 (6)C11—C12—C13—C80.2 (7)
N1—C1—C6—C5178.0 (4)O1—C7—N1—C18.0 (8)
C4—C5—C6—C10.5 (7)C8—C7—N1—C1170.8 (4)
O1—C7—C8—C13149.2 (5)C6—C1—N1—C734.7 (7)
N1—C7—C8—C1329.6 (6)C2—C1—N1—C7144.4 (5)
O1—C7—C8—C928.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (1)2.04 (2)2.862 (5)160 (4)
Symmetry code: (i) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14ClNO
Mr259.72
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)299
a, b, c (Å)9.550 (1), 10.104 (2), 28.133 (4)
V3)2714.6 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.38 × 0.20 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.905, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
9354, 2469, 1405
Rint0.051
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.193, 1.16
No. of reflections2469
No. of parameters166
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.860 (10)2.039 (18)2.862 (5)160 (4)
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for award of a research fellowship.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o2751.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds