organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[1-(2-Amino­phen­yl)ethyl­­idene]benzo­hydrazide

aFaculty of Science, Department of Chemistry, Banaras Hindu University, Varanasi, U. P. 221 005, India
*Correspondence e-mail: singvp@yahoo.co.in

(Received 6 November 2009; accepted 23 March 2010; online 24 April 2010)

The title compound, C15H15N3O, was obtained by a condensation reaction between o-amino­acetophenone and benzoyl hydrazine. The mol­ecule displays an E configuration about the C=N bond. Intra­molecular N—H⋯N hydrogen bonds are formed between the 2-amino­phenyl and imine groups. In the crystal, dimers are formed between mol­ecules linked by inter­molecular N—H⋯O hydrogen bonds from the 2-amino­phenyl group. In addition there are inter­molecular N—H⋯O hydrogen bonds between the amine and carbonyl groups of adjacent mol­ecules. The mol­ecule is twisted rather than planar due to a steric inter­action between the central amide group and the two outer benzene rings. The dihedral angles between this central group and the two rings are 23.29 (9) and 24.96 (9)°.

Related literature

For the biological properties of hydrazones derived from the condensation reactions of hydrazides with aldehydes or ketones, see: Gupta et al. (2007[Gupta, L. K., Bansal, V. & Chandra, S. (2007). Spectrochim. Acta Part A, 66, 972-975.]); Kocyigit-Kaymakcioglu et al. (2009[Kocyigit-Kaymakcioglu, B., Oruc-Emre, E. E., Unsalan, S. & Rollas, S. (2009). Med. Chem. Res. pp. 277-286.]); Kou et al. (2009[Kou, Y., Tian, J., Li, D., Gu, W., Liu, X., Yan, S., Liao, D. & Cheng, P. (2009). Dalton Trans. pp. 2374-2382.]); Mahalingam et al. (2009[Mahalingam, V., Chitrapriya, N., Zeller, Z. & Natarajan, K. (2009). Polyhedron, 28, 1532-1540.]); Sundaraval et al. (2009[Sundaraval, K., Suresh, E. & Palaniandavar, M. (2009). Inorg. Chim. Acta, 362, 199-207.]); Yin et al. (2007[Yin, H. D., Chen, S. W., Li, L. W. & Wang, D. Q. (2007). Inorg. Chim. Acta, 360, 2215-2223.]); Zhang et al. (2007[Zhang, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774-3777.]). For related structures, see: Fun et al. (2008a[Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008a). Acta Cryst. E64, o1907-o1908.],b[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008b). Acta Cryst. E64, o1961-o1962.]); Qiu & Zhao (2008[Qiu, F. & Zhao, L.-M. (2008). Acta Cryst. E64, o2067.]); Qiu (2009[Qiu, X.-Y. (2009). Acta Cryst. E65, o975.]); Ren (2009[Ren, C.-G. (2009). Acta Cryst. E65, o1505-o1506.]); Xiao & Wei (2009[Xiao, G.-J. & Wei, C. (2009). Acta Cryst. E65, o585.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3O

  • Mr = 253.30

  • Monoclinic, P 21 /c

  • a = 13.7531 (10) Å

  • b = 5.1575 (3) Å

  • c = 18.7178 (13) Å

  • β = 105.917 (7)°

  • V = 1276.78 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.33 × 0.25 × 0.13 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.780, Tmax = 1.000

  • 5257 measured reflections

  • 2894 independent reflections

  • 1839 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.125

  • S = 0.98

  • 2894 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O1i 0.86 2.41 3.1611 (15) 147
N1—H1A⋯O1ii 0.86 2.29 3.0856 (16) 154
N1—H1B⋯N2 0.86 2.03 2.6626 (16) 130
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: CIFTAB (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Hydrazones derived from the condensation reactions of hydrazides with aldehydes or ketones show excellent biological properties, such as antimicrobial, antitubercular, anticancer and antimalarial (Kocyigit-Kaymakcioglu et al., 2009; Kou et al., 2009; Mahalingam et al.., 2009; Sundaravel et al., 2009; Yin et al., 2007; Zhang et al.,2007. The hydrazones are also important for their use as plasticizers and stabilizers for polymers, polymerization initiators, antioxidants and as indicators (Gupta et al., 2007). Recently, a large number of hydrazone compounds have been reported (Qiu et al., 2008; Qiu, 2009; Ren et al., 2009). In this paper, a new hydrazone compound, derived from the condensation reaction of 2-aminoacetophenone and benzoyl hydrazine, has been reported.

The molecular structure of the title compound is shown in the fig. 1. The molecule and displays an E configuration about the C=N double bond. All bond lengths are within normal ranges (Xiao et al., 2009; Fun et al., 2008a,b). The molecular conformation is stabilized by an intramolecular N—H···.O hydrogen bond and short contact bonds (Fig. 1). In the crystal there are both inter- and intra-molecular hydrogen bonding involving the amine protons. In-plane dimers (r.m.s. deviation for N1 N2 N3 C10–C16 and equivalent atoms = 0.016 Å) are formed between molecules linked by N—H···O hydrogen bonds from the 2-aminophenyl moiety (Fig. 2). In addition there are intermolecular out of plane N—H···O hydrogen bonds between amine and carbonyl group of adjoining molecules (Fig. 3). Intramolecular N—H···N hydrogen bonds are formed between the 2-aminophenyl and imine moieties within the same molecule. The molecule is twisted rather than planar due to steric interaction between the central amide group and the two end groups. The torsion angles between this central group and the two ends are 23.29 (9) and 24.96 (9)° respectively.

Related literature top

For the biological properties of hydrazones derived from the condensation reactions of hydrazides with aldehydes or ketones, see: Gupta et al. (2007); Kocyigit-Kaymakcioglu et al. (2009); Kou et al. (2009); Mahalingam et al. (2009); Sundaraval et al. (2009); Yin et al. (2007); Zhang et al. (2007). For related structures, see: Fun et al. (2008a,b); Qiu & Zhao (2008); Qiu 2009); Ren (2009); Xiao & Wei (2009).

Experimental top

An ethanolic solution of benzoyl hydazine (50 ml, 6.8 g) was taken in a round bottom flask followed by dropwise addition of ethanolic solution of o-aminoacetophenone (50 ml, 6.05 ml) with stirring. The above solution was refluxed for 4-5 h and gave a yellow transparent solution. On keeping the solution in open air for 5-6 h in a beaker, yellow crystals of the product were obtained.

Refinement top

H atoms bound to C and N atoms were located in a difference Fourier map, refined isotropically and then placed using HFIX commands in SHELXL97. All H atoms were allowed for as riding atoms with the N—H distances of 0.86 Å, and C—H distances of 0.93 and 0.96 (2) Å with Uĩso~(H) = 1.2 [1.5Ueq(C) for CH3].

Structure description top

Hydrazones derived from the condensation reactions of hydrazides with aldehydes or ketones show excellent biological properties, such as antimicrobial, antitubercular, anticancer and antimalarial (Kocyigit-Kaymakcioglu et al., 2009; Kou et al., 2009; Mahalingam et al.., 2009; Sundaravel et al., 2009; Yin et al., 2007; Zhang et al.,2007. The hydrazones are also important for their use as plasticizers and stabilizers for polymers, polymerization initiators, antioxidants and as indicators (Gupta et al., 2007). Recently, a large number of hydrazone compounds have been reported (Qiu et al., 2008; Qiu, 2009; Ren et al., 2009). In this paper, a new hydrazone compound, derived from the condensation reaction of 2-aminoacetophenone and benzoyl hydrazine, has been reported.

The molecular structure of the title compound is shown in the fig. 1. The molecule and displays an E configuration about the C=N double bond. All bond lengths are within normal ranges (Xiao et al., 2009; Fun et al., 2008a,b). The molecular conformation is stabilized by an intramolecular N—H···.O hydrogen bond and short contact bonds (Fig. 1). In the crystal there are both inter- and intra-molecular hydrogen bonding involving the amine protons. In-plane dimers (r.m.s. deviation for N1 N2 N3 C10–C16 and equivalent atoms = 0.016 Å) are formed between molecules linked by N—H···O hydrogen bonds from the 2-aminophenyl moiety (Fig. 2). In addition there are intermolecular out of plane N—H···O hydrogen bonds between amine and carbonyl group of adjoining molecules (Fig. 3). Intramolecular N—H···N hydrogen bonds are formed between the 2-aminophenyl and imine moieties within the same molecule. The molecule is twisted rather than planar due to steric interaction between the central amide group and the two end groups. The torsion angles between this central group and the two ends are 23.29 (9) and 24.96 (9)° respectively.

For the biological properties of hydrazones derived from the condensation reactions of hydrazides with aldehydes or ketones, see: Gupta et al. (2007); Kocyigit-Kaymakcioglu et al. (2009); Kou et al. (2009); Mahalingam et al. (2009); Sundaraval et al. (2009); Yin et al. (2007); Zhang et al. (2007). For related structures, see: Fun et al. (2008a,b); Qiu & Zhao (2008); Qiu 2009); Ren (2009); Xiao & Wei (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: CIFTAB (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular diagram with labeled atoms of Benzoic acid [1-(2-amino-phenyl)- ethylidene]-hydrazide. Hydrogen bonds are shown by dashed lines.
[Figure 2] Fig. 2. Diagram showing the formation of in-plane intermolecular hydrogen-bonded dimers. Hydrogen bonds are shown by dashed lines.
[Figure 3] Fig. 3. Packing diagram showing both in-plane and out of plane intermolecular hydrogen bonding. Hydrogen bonds are shown by dashed lines.
N'-[1-(2-Aminophenyl)ethylidene]benzohydrazide top
Crystal data top
C15H15N3OF(000) = 536
Mr = 253.30Dx = 1.318 Mg m3
Monoclinic, P21/cMelting point: 449 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.7531 (10) ÅCell parameters from 2381 reflections
b = 5.1575 (3) Åθ = 2.1–28.9°
c = 18.7178 (13) ŵ = 0.09 mm1
β = 105.917 (7)°T = 293 K
V = 1276.78 (15) Å3Block, yellow
Z = 40.33 × 0.25 × 0.13 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2894 independent reflections
Radiation source: fine-focus sealed tube1839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 16.0938 pixels mm-1θmax = 28.9°, θmin = 2.3°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 06
Tmin = 0.780, Tmax = 1.000l = 025
5257 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0722P)2]
where P = (Fo2 + 2Fc2)/3
2894 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C15H15N3OV = 1276.78 (15) Å3
Mr = 253.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7531 (10) ŵ = 0.09 mm1
b = 5.1575 (3) ÅT = 293 K
c = 18.7178 (13) Å0.33 × 0.25 × 0.13 mm
β = 105.917 (7)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2894 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1839 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 1.000Rint = 0.016
5257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 0.98Δρmax = 0.23 e Å3
2894 reflectionsΔρmin = 0.17 e Å3
173 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66011 (8)0.1102 (2)0.65390 (6)0.0519 (3)
N10.39154 (10)0.1668 (2)0.49800 (7)0.0503 (4)
H1A0.37860.04520.46530.060*
H1B0.45180.18490.52670.060*
N20.50765 (9)0.4528 (2)0.60680 (7)0.0421 (3)
N30.60065 (8)0.5188 (2)0.65630 (6)0.0412 (3)
H3B0.61150.67360.67380.049*
C10.76802 (10)0.4196 (2)0.73150 (8)0.0358 (3)
C20.85408 (11)0.2716 (3)0.73861 (8)0.0447 (4)
H2A0.85260.13230.70680.054*
C30.94215 (11)0.3296 (3)0.79275 (9)0.0525 (4)
H3A0.99990.23060.79660.063*
C40.94508 (12)0.5322 (3)0.84082 (9)0.0511 (4)
H4A1.00420.56800.87770.061*
C50.86097 (12)0.6814 (3)0.83443 (9)0.0515 (4)
H5A0.86320.81930.86680.062*
C60.77205 (11)0.6280 (3)0.77967 (8)0.0440 (4)
H6A0.71530.73130.77520.053*
C70.67244 (10)0.3368 (3)0.67595 (8)0.0369 (3)
C90.43928 (12)0.8049 (3)0.66631 (9)0.0550 (4)
H9A0.49360.76690.70970.083*
H9B0.37700.81730.67990.083*
H9C0.45250.96640.64530.083*
C100.43119 (10)0.5926 (3)0.61032 (7)0.0367 (3)
C110.33225 (10)0.5346 (2)0.55733 (7)0.0357 (3)
C120.31699 (11)0.3301 (3)0.50418 (8)0.0391 (3)
C130.21932 (12)0.2954 (3)0.45633 (9)0.0508 (4)
H13A0.20850.16380.42100.061*
C140.13992 (13)0.4485 (3)0.45999 (10)0.0571 (5)
H14A0.07620.41840.42790.069*
C150.15369 (12)0.6478 (3)0.51108 (9)0.0526 (4)
H15A0.09970.75280.51350.063*
C160.24806 (11)0.6886 (3)0.55826 (9)0.0468 (4)
H16A0.25680.82370.59230.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0476 (6)0.0412 (6)0.0576 (7)0.0001 (5)0.0013 (5)0.0141 (5)
N10.0502 (8)0.0459 (7)0.0476 (8)0.0006 (6)0.0015 (6)0.0132 (6)
N20.0344 (6)0.0422 (7)0.0416 (7)0.0020 (5)0.0033 (5)0.0061 (5)
N30.0364 (7)0.0354 (6)0.0431 (7)0.0027 (5)0.0035 (5)0.0068 (5)
C10.0367 (7)0.0334 (7)0.0342 (7)0.0036 (6)0.0044 (6)0.0011 (6)
C20.0416 (8)0.0453 (8)0.0434 (9)0.0002 (7)0.0052 (6)0.0068 (7)
C30.0375 (8)0.0583 (10)0.0549 (10)0.0018 (7)0.0012 (7)0.0017 (8)
C40.0436 (9)0.0545 (10)0.0455 (9)0.0107 (8)0.0040 (7)0.0004 (8)
C50.0579 (10)0.0447 (9)0.0448 (9)0.0076 (7)0.0023 (7)0.0101 (7)
C60.0438 (8)0.0378 (8)0.0462 (9)0.0002 (6)0.0052 (7)0.0044 (7)
C70.0365 (7)0.0360 (8)0.0361 (8)0.0017 (6)0.0063 (6)0.0031 (6)
C90.0441 (9)0.0630 (10)0.0519 (10)0.0027 (8)0.0029 (7)0.0175 (8)
C100.0389 (8)0.0352 (7)0.0337 (7)0.0045 (6)0.0064 (6)0.0020 (6)
C110.0351 (7)0.0345 (7)0.0337 (7)0.0034 (6)0.0028 (6)0.0034 (6)
C120.0421 (8)0.0357 (7)0.0359 (8)0.0038 (6)0.0043 (6)0.0043 (6)
C130.0519 (9)0.0489 (9)0.0424 (9)0.0075 (8)0.0026 (7)0.0052 (7)
C140.0427 (9)0.0637 (10)0.0527 (10)0.0068 (8)0.0075 (7)0.0038 (8)
C150.0400 (9)0.0576 (10)0.0544 (10)0.0056 (7)0.0029 (7)0.0036 (8)
C160.0441 (9)0.0453 (9)0.0468 (9)0.0016 (7)0.0051 (7)0.0028 (7)
Geometric parameters (Å, º) top
O1—C71.2359 (16)C5—H5A0.9300
N1—C121.3561 (17)C6—H6A0.9300
N1—H1A0.8600C9—C101.498 (2)
N1—H1B0.8600C9—H9A0.9600
N2—C101.2915 (18)C9—H9B0.9600
N2—N31.4002 (14)C9—H9C0.9600
N3—C71.3387 (17)C10—C111.4781 (18)
N3—H3B0.8600C11—C161.4079 (19)
C1—C21.3838 (19)C11—C121.4254 (19)
C1—C61.3942 (19)C12—C131.4068 (19)
C1—C71.4972 (18)C13—C141.364 (2)
C2—C31.382 (2)C13—H13A0.9300
C2—H2A0.9300C14—C151.381 (2)
C3—C41.372 (2)C14—H14A0.9300
C3—H3A0.9300C15—C161.371 (2)
C4—C51.367 (2)C15—H15A0.9300
C4—H4A0.9300C16—H16A0.9300
C5—C61.391 (2)
C12—N1—H1A120.0C10—C9—H9A109.5
C12—N1—H1B120.0C10—C9—H9B109.5
H1A—N1—H1B120.0H9A—C9—H9B109.5
C10—N2—N3116.06 (11)C10—C9—H9C109.5
C7—N3—N2118.84 (11)H9A—C9—H9C109.5
C7—N3—H3B120.6H9B—C9—H9C109.5
N2—N3—H3B120.6N2—C10—C11117.74 (12)
C2—C1—C6118.80 (13)N2—C10—C9122.56 (13)
C2—C1—C7118.32 (12)C11—C10—C9119.69 (13)
C6—C1—C7122.72 (13)C16—C11—C12117.51 (12)
C3—C2—C1120.37 (14)C16—C11—C10119.11 (13)
C3—C2—H2A119.8C12—C11—C10123.39 (13)
C1—C2—H2A119.8N1—C12—C13118.61 (13)
C4—C3—C2120.52 (15)N1—C12—C11123.31 (12)
C4—C3—H3A119.7C13—C12—C11118.07 (13)
C2—C3—H3A119.7C14—C13—C12122.14 (15)
C5—C4—C3119.95 (14)C14—C13—H13A118.9
C5—C4—H4A120.0C12—C13—H13A118.9
C3—C4—H4A120.0C13—C14—C15120.38 (15)
C4—C5—C6120.33 (15)C13—C14—H14A119.8
C4—C5—H5A119.8C15—C14—H14A119.8
C6—C5—H5A119.8C16—C15—C14119.08 (15)
C5—C6—C1120.02 (14)C16—C15—H15A120.5
C5—C6—H6A120.0C14—C15—H15A120.5
C1—C6—H6A120.0C15—C16—C11122.81 (14)
O1—C7—N3123.24 (12)C15—C16—H16A118.6
O1—C7—C1121.04 (12)C11—C16—H16A118.6
N3—C7—C1115.59 (12)
C10—N2—N3—C7155.32 (13)N3—N2—C10—C93.0 (2)
C6—C1—C2—C30.2 (2)N2—C10—C11—C16178.10 (13)
C7—C1—C2—C3175.37 (14)C9—C10—C11—C162.9 (2)
C1—C2—C3—C40.9 (2)N2—C10—C11—C121.4 (2)
C2—C3—C4—C51.3 (3)C9—C10—C11—C12177.57 (13)
C3—C4—C5—C60.4 (3)C16—C11—C12—N1179.41 (13)
C4—C5—C6—C10.7 (2)C10—C11—C12—N11.1 (2)
C2—C1—C6—C51.0 (2)C16—C11—C12—C130.0 (2)
C7—C1—C6—C5174.34 (14)C10—C11—C12—C13179.53 (13)
N2—N3—C7—O11.7 (2)N1—C12—C13—C14178.76 (15)
N2—N3—C7—C1177.50 (12)C11—C12—C13—C140.7 (2)
C2—C1—C7—O122.1 (2)C12—C13—C14—C150.9 (3)
C6—C1—C7—O1153.29 (15)C13—C14—C15—C160.3 (3)
C2—C1—C7—N3162.04 (13)C14—C15—C16—C110.4 (2)
C6—C1—C7—N322.6 (2)C12—C11—C16—C150.5 (2)
N3—N2—C10—C11178.06 (11)C10—C11—C16—C15179.94 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O1i0.862.413.1611 (15)147
N1—H1A···O1ii0.862.293.0856 (16)154
N1—H1B···N20.862.032.6626 (16)130
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H15N3O
Mr253.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.7531 (10), 5.1575 (3), 18.7178 (13)
β (°) 105.917 (7)
V3)1276.78 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.33 × 0.25 × 0.13
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.780, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5257, 2894, 1839
Rint0.016
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 0.98
No. of reflections2894
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999), CIFTAB (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O1i0.862.413.1611 (15)146.7
N1—H1A···O1ii0.862.293.0856 (16)153.5
N1—H1B···N20.862.032.6626 (16)129.9
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank the CSIR for financial support.

References

First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008a). Acta Cryst. E64, o1907–o1908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008b). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGupta, L. K., Bansal, V. & Chandra, S. (2007). Spectrochim. Acta Part A, 66, 972–975.  CrossRef Google Scholar
First citationKocyigit-Kaymakcioglu, B., Oruc-Emre, E. E., Unsalan, S. & Rollas, S. (2009). Med. Chem. Res. pp. 277–286.  Web of Science CrossRef Google Scholar
First citationKou, Y., Tian, J., Li, D., Gu, W., Liu, X., Yan, S., Liao, D. & Cheng, P. (2009). Dalton Trans. pp. 2374–2382.  Web of Science CSD CrossRef Google Scholar
First citationMahalingam, V., Chitrapriya, N., Zeller, Z. & Natarajan, K. (2009). Polyhedron, 28, 1532–1540.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationQiu, X.-Y. (2009). Acta Cryst. E65, o975.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, F. & Zhao, L.-M. (2008). Acta Cryst. E64, o2067.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRen, C.-G. (2009). Acta Cryst. E65, o1505–o1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundaraval, K., Suresh, E. & Palaniandavar, M. (2009). Inorg. Chim. Acta, 362, 199-207.  Google Scholar
First citationXiao, G.-J. & Wei, C. (2009). Acta Cryst. E65, o585.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, H. D., Chen, S. W., Li, L. W. & Wang, D. Q. (2007). Inorg. Chim. Acta, 360, 2215–2223.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774–3777.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds