metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A tetra­nuclear cobalt(III) cluster with 2-(hy­droxy­meth­yl)pyridine ligands

aState Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
*Correspondence e-mail: wangfmzj@yahoo.com.cn

(Received 1 April 2010; accepted 26 April 2010; online 30 April 2010)

In the title compound, tetra­kis[μ3-(2-pyrid­yl)methano­lato]tetra­kis[bromido(methanol)cobalt(III)] tetra­bromide 2-(hydroxy­meth­yl)pyridine tetra­solvate dihydrate, [Co4Br4(C6H6NO)4(CH3OH)4]Br4·4C6H7NO4·2H2O, the cation comprises a [Co4O4] cubane-type core ([\overline4] symmetry). The four CoIII ions and bridging O atoms from four (2-pyrid­yl)methano­late anions are located at alternating vertices of the cube, with bromide ions and methanol ligands on the exterior of the core, completing a distorted octa­hedral geometry. The structure is stablized by inter­molecular O—H⋯Br and O—H⋯O inter­actions.

Related literature

For related structures and magnetic properties, see: Tong et al. (2002[Tong, M. L., Zheng, S. L., Shi, J. X., Tong, Y. X., Lee, H. K. & Chen, X. M. (2002). J. Chem. Soc. Dalton Trans. pp. 1727-1734.]); Yang et al. (2002[Yang, E. C., Hendrickson, D. N., Wernsdorfer, W., Nakano, M., Zakharov, L. N., Sommer, R. D., Rheingold, A. L., Ledezma-Gairaud, M. & Christou, G. (2002). J. Appl. Phys. 91, 7382-7384.]); Zhao et al. (2004[Zhao, H., Bacsa, J. & Dunbar, K. R. (2004). Acta Cryst. E60, m637-m640.]).

[Scheme 1]

Experimental

Crystal data
  • [Co4Br4(C6H6NO)4(CH4O)4]Br4·4C6H7NO4·2H2O

  • Mr = 1908.10

  • Tetragonal, [I \overline 4_2 d ]

  • a = 16.5302 (6) Å

  • c = 29.875 (2) Å

  • V = 8163.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.77 mm−1

  • T = 291 K

  • 0.30 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.265, Tmax = 0.350

  • 21461 measured reflections

  • 4018 independent reflections

  • 3180 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.113

  • S = 0.99

  • 4018 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1822 Friedel pairs

  • Flack parameter: 0.025 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯Br1i 0.97 2.54 3.217 (5) 127
O3—H3A⋯O3ii 0.96 2.31 3.030 (9) 132
O3—H3A⋯O4iii 0.96 2.57 3.370 (11) 141
Symmetry codes: (i) [y-{\script{1\over 2}}, -x+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [y+{\script{1\over 2}}, -x+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-y+{\script{3\over 2}}, x-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There have characterized many polynuclear oxide-bridged metal complexes which having a cubane-type structural geometry, because of their relevance to multi-electron transfer centers in biological systems, and to their interesting magnetic and optical properties, as well as to their potential relevance to inorganic solids.

In this work, we synthesized a new tetranuclearCo(III) cluster [Co(hmp)(MeOH)Br]4Br4.4Hhmp.2H2O which comprise a cationic "cubane"-type core (1), where Hhmp is 2-(hydroxymethyl)pyridine. The molecular structure of the cationic cubane core of (1) is shown in Fig. 1. The four cobalt ions and bridging hydroxy group oxygen atoms from four (2-pyridyl)methanolate anions are located at alternating vertices of a cube, with (2-pyridyl)methanolate anion, bromine ion and methanol ligand on the exterior of the core. Furthermore, the three-dimensional supramolecularstructure is stabilized by intramolecular and intermolecular hydrogen bonds. The hydrogen-bonding distances are 3.217 (5) Å (O2–H2B···Br1), 3.030 (9) Å (O3–H3A···O3) and 3.370 (11)Å (O3–H3A···O4), Table 1.

Related literature top

For related structures and magnetic properties, see: Tong et al. (2002); Yang et al. (2002); Zhao et al. (2004).

Experimental top

Compound [Co(hmp)(MeOH)Br]4Br4.4Hhmp.2H2O was synthesized as the process shown in reference (Yang et al., 2002). A mixture of CoBr2.6H2O (0.327 g, 1 mmol), Hhmp (0.109 g, 1 mmol), and NaOMe (0.054 g, 1 mmol) in 10 ml of MeOH was refluxed for 30 min. The resulting solution was filtered when it was still hot. Purple crystals suitable for X-ray analysis were obtained from the filtrate after several days.

Refinement top

All H atoms were fixed geometrically and were treated as riding on their parent C atoms, with C–H distances in the range of 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(parent atom), or Uiso(H) = 1.5Ueq(Cmethyl).

Structure description top

There have characterized many polynuclear oxide-bridged metal complexes which having a cubane-type structural geometry, because of their relevance to multi-electron transfer centers in biological systems, and to their interesting magnetic and optical properties, as well as to their potential relevance to inorganic solids.

In this work, we synthesized a new tetranuclearCo(III) cluster [Co(hmp)(MeOH)Br]4Br4.4Hhmp.2H2O which comprise a cationic "cubane"-type core (1), where Hhmp is 2-(hydroxymethyl)pyridine. The molecular structure of the cationic cubane core of (1) is shown in Fig. 1. The four cobalt ions and bridging hydroxy group oxygen atoms from four (2-pyridyl)methanolate anions are located at alternating vertices of a cube, with (2-pyridyl)methanolate anion, bromine ion and methanol ligand on the exterior of the core. Furthermore, the three-dimensional supramolecularstructure is stabilized by intramolecular and intermolecular hydrogen bonds. The hydrogen-bonding distances are 3.217 (5) Å (O2–H2B···Br1), 3.030 (9) Å (O3–H3A···O3) and 3.370 (11)Å (O3–H3A···O4), Table 1.

For related structures and magnetic properties, see: Tong et al. (2002); Yang et al. (2002); Zhao et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the cationic cubane core.
tetrakis[µ3-(2-pyridyl)methanolato]tetrakis[bromido(methanol)cobalt(III)] tetrabromide 2-(hydroxymethyl)pyridine tetrasolvate dihydrate top
Crystal data top
[Co4Br4(C6H6NO)4(CH4O)4]Br4·4C6H7NO4·2H2ODx = 1.553 Mg m3
Mr = 1908.10Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I42dCell parameters from 4154 reflections
Hall symbol: I -4 2bwθ = 2.2–23.1°
a = 16.5302 (6) ŵ = 4.77 mm1
c = 29.875 (2) ÅT = 291 K
V = 8163.3 (8) Å3Block, purple
Z = 40.30 × 0.24 × 0.22 mm
F(000) = 3760
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4018 independent reflections
Radiation source: sealed tube3180 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
phi and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1520
Tmin = 0.265, Tmax = 0.350k = 2017
21461 measured reflectionsl = 3236
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0635P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
4018 reflectionsΔρmax = 0.75 e Å3
200 parametersΔρmin = 0.56 e Å3
0 restraintsAbsolute structure: Flack (1983), 1822 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.025 (18)
Crystal data top
[Co4Br4(C6H6NO)4(CH4O)4]Br4·4C6H7NO4·2H2OZ = 4
Mr = 1908.10Mo Kα radiation
Tetragonal, I42dµ = 4.77 mm1
a = 16.5302 (6) ÅT = 291 K
c = 29.875 (2) Å0.30 × 0.24 × 0.22 mm
V = 8163.3 (8) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4018 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3180 reflections with I > 2σ(I)
Tmin = 0.265, Tmax = 0.350Rint = 0.056
21461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.113Δρmax = 0.75 e Å3
S = 0.99Δρmin = 0.56 e Å3
4018 reflectionsAbsolute structure: Flack (1983), 1822 Friedel pairs
200 parametersAbsolute structure parameter: 0.025 (18)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.05719 (4)0.72378 (5)0.20269 (3)0.04360 (19)
Br20.27436 (4)0.77454 (4)0.29686 (2)0.04162 (18)
C10.0376 (4)0.6172 (5)0.1104 (3)0.0415 (17)
H10.00350.65540.11260.050*
C20.0725 (5)0.6005 (5)0.0696 (2)0.0423 (18)
H20.05560.62850.04430.051*
C30.1331 (5)0.5422 (5)0.0658 (2)0.0417 (18)
H30.15640.53110.03810.050*
C40.1584 (5)0.5003 (5)0.1042 (3)0.0453 (18)
H40.19740.46000.10210.054*
C50.1241 (5)0.5198 (5)0.1460 (2)0.0422 (17)
C60.1358 (5)0.4721 (5)0.1851 (2)0.0385 (16)
H6A0.13560.41560.17630.046*
H6B0.18910.48400.19690.046*
C70.1841 (5)0.7172 (5)0.1922 (3)0.0460 (18)
H7A0.22470.68760.17600.069*
H7B0.20960.75670.21100.069*
H7C0.14880.74390.17140.069*
C80.5885 (5)0.0934 (5)0.1084 (2)0.0432 (18)
H80.57280.14720.11110.052*
C90.6092 (5)0.0630 (5)0.0676 (3)0.0415 (17)
H90.60830.09670.04260.050*
C100.6315 (5)0.0173 (5)0.0626 (3)0.0468 (19)
H100.64410.03780.03450.056*
C110.6350 (4)0.0673 (5)0.1005 (3)0.0454 (19)
H110.65120.12100.09780.055*
C120.6141 (5)0.0361 (5)0.1423 (3)0.0446 (18)
C130.6198 (5)0.0845 (5)0.1836 (3)0.0458 (19)
H13A0.67360.08030.19640.055*
H13B0.60850.14090.17740.055*
Co10.02308 (6)0.59361 (6)0.21302 (3)0.0396 (2)
N10.0641 (4)0.5764 (3)0.1481 (2)0.0367 (14)
N20.5908 (4)0.0430 (4)0.1466 (2)0.0407 (14)
O10.0801 (3)0.4821 (3)0.21907 (16)0.0415 (11)
O20.1369 (3)0.6610 (3)0.21993 (16)0.0384 (11)
H2B0.17410.61620.22380.046*
O30.5652 (3)0.0547 (3)0.21175 (16)0.0445 (12)
H3A0.59270.03230.23720.053*
O40.5585 (6)0.7840 (6)0.2123 (3)0.044 (2)0.50
H4A0.59640.75210.22970.053*0.50
H4B0.51150.78460.23180.053*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0435 (4)0.0479 (4)0.0394 (4)0.0080 (3)0.0066 (3)0.0131 (3)
Br20.0410 (4)0.0412 (4)0.0427 (4)0.0152 (3)0.0104 (3)0.0128 (3)
C10.037 (4)0.046 (4)0.041 (4)0.014 (3)0.018 (3)0.001 (3)
C20.042 (4)0.050 (4)0.035 (4)0.008 (3)0.010 (3)0.014 (3)
C30.047 (4)0.042 (4)0.035 (4)0.011 (3)0.020 (3)0.002 (3)
C40.049 (4)0.043 (4)0.044 (4)0.009 (3)0.012 (4)0.006 (3)
C50.049 (4)0.041 (4)0.036 (4)0.004 (3)0.008 (3)0.010 (3)
C60.037 (4)0.041 (4)0.037 (4)0.012 (3)0.013 (3)0.010 (3)
C70.048 (4)0.039 (4)0.051 (5)0.003 (3)0.007 (3)0.010 (4)
C80.046 (4)0.044 (4)0.040 (4)0.023 (3)0.010 (3)0.015 (3)
C90.042 (4)0.045 (4)0.038 (4)0.011 (3)0.006 (3)0.018 (3)
C100.051 (5)0.054 (5)0.035 (4)0.009 (4)0.011 (3)0.019 (4)
C110.038 (4)0.049 (5)0.050 (5)0.014 (3)0.013 (3)0.008 (4)
C120.044 (4)0.044 (4)0.046 (4)0.020 (3)0.008 (3)0.006 (3)
C130.054 (5)0.031 (4)0.052 (5)0.007 (3)0.005 (4)0.008 (3)
Co10.0400 (5)0.0405 (5)0.0384 (6)0.0002 (4)0.0028 (4)0.0029 (4)
N10.037 (3)0.029 (3)0.044 (3)0.009 (2)0.013 (3)0.002 (2)
N20.040 (3)0.038 (3)0.044 (4)0.001 (3)0.012 (3)0.011 (3)
O10.041 (3)0.042 (3)0.041 (3)0.004 (2)0.018 (2)0.005 (2)
O20.036 (3)0.044 (3)0.035 (3)0.0024 (19)0.000 (2)0.010 (2)
O30.052 (3)0.052 (3)0.029 (3)0.012 (2)0.014 (2)0.008 (2)
O40.050 (6)0.040 (5)0.041 (6)0.001 (5)0.009 (5)0.008 (5)
Geometric parameters (Å, º) top
Br1—Co12.5467 (12)C9—C101.386 (11)
C1—C21.376 (10)C9—H90.9300
C1—N11.384 (10)C10—C111.403 (12)
C1—H10.9300C10—H100.9300
C2—C31.394 (11)C11—C121.394 (11)
C2—H20.9300C11—H110.9300
C3—C41.405 (11)C12—N21.370 (9)
C3—H30.9300C12—C131.474 (11)
C4—C51.407 (10)C13—O31.328 (10)
C4—H40.9300C13—H13A0.9700
C5—N11.366 (10)C13—H13B0.9700
C5—C61.422 (10)Co1—O1i2.043 (5)
C6—O11.381 (8)Co1—N12.073 (6)
C6—H6A0.9700Co1—O12.079 (5)
C6—H6B0.9700Co1—O1ii2.123 (5)
C7—O21.469 (9)Co1—O22.196 (5)
C7—H7A0.9600O1—Co1iii2.043 (5)
C7—H7B0.9600O1—Co1ii2.123 (5)
C7—H7C0.9600O2—H2B0.9700
C8—C91.362 (10)O3—H3A0.9601
C8—N21.415 (10)O4—H4A0.9700
C8—H80.9300O4—H4B0.9700
C2—C1—N1119.4 (6)N2—C12—C11120.5 (7)
C2—C1—H1120.3N2—C12—C13117.2 (7)
N1—C1—H1120.3C11—C12—C13122.3 (7)
C1—C2—C3120.8 (7)O3—C13—C12106.6 (7)
C1—C2—H2119.6O3—C13—H13A110.4
C3—C2—H2119.6C12—C13—H13A110.4
C2—C3—C4119.2 (6)O3—C13—H13B110.4
C2—C3—H3120.4C12—C13—H13B110.4
C4—C3—H3120.4H13A—C13—H13B108.6
C3—C4—C5119.5 (7)O1i—Co1—N1158.0 (2)
C3—C4—H4120.3O1i—Co1—O180.55 (19)
C5—C4—H4120.3N1—Co1—O179.1 (2)
N1—C5—C4119.4 (7)O1i—Co1—O1ii79.5 (2)
N1—C5—C6116.1 (6)N1—Co1—O1ii105.2 (2)
C4—C5—C6123.1 (7)O1—Co1—O1ii80.5 (2)
O1—C6—C5116.6 (6)O1i—Co1—O289.86 (19)
O1—C6—H6A108.1N1—Co1—O282.9 (2)
C5—C6—H6A108.1O1—Co1—O293.03 (19)
O1—C6—H6B108.1O1ii—Co1—O2168.29 (18)
C5—C6—H6B108.1O1i—Co1—Br1101.00 (14)
H6A—C6—H6B107.3N1—Co1—Br199.94 (17)
O2—C7—H7A109.5O1—Co1—Br1175.05 (15)
O2—C7—H7B109.5O1ii—Co1—Br195.13 (14)
H7A—C7—H7B109.5O2—Co1—Br191.68 (13)
O2—C7—H7C109.5C5—N1—C1121.6 (6)
H7A—C7—H7C109.5C5—N1—Co1112.1 (5)
H7B—C7—H7C109.5C1—N1—Co1126.3 (5)
C9—C8—N2119.9 (8)C12—N2—C8119.6 (6)
C9—C8—H8120.0C6—O1—Co1iii130.8 (4)
N2—C8—H8120.0C6—O1—Co1110.1 (4)
C8—C9—C10121.0 (8)Co1iii—O1—Co199.9 (2)
C8—C9—H9119.5C6—O1—Co1ii113.7 (5)
C10—C9—H9119.5Co1iii—O1—Co1ii98.49 (19)
C9—C10—C11119.3 (7)Co1—O1—Co1ii98.7 (2)
C9—C10—H10120.3C7—O2—Co1136.3 (4)
C11—C10—H10120.3C7—O2—H2B102.3
C12—C11—C10119.6 (8)Co1—O2—H2B99.6
C12—C11—H11120.2C13—O3—H3A108.8
C10—C11—H11120.2H4A—O4—H4B101.6
N1—C1—C2—C31.3 (12)O2—Co1—N1—C1102.6 (6)
C1—C2—C3—C40.1 (12)Br1—Co1—N1—C112.1 (6)
C2—C3—C4—C52.0 (12)C11—C12—N2—C80.3 (11)
C3—C4—C5—N13.0 (12)C13—C12—N2—C8176.7 (7)
C3—C4—C5—C6169.2 (8)C9—C8—N2—C120.1 (11)
N1—C5—C6—O16.7 (11)C5—C6—O1—Co1iii146.0 (6)
C4—C5—C6—O1159.9 (7)C5—C6—O1—Co122.0 (8)
N2—C8—C9—C101.0 (11)C5—C6—O1—Co1ii87.7 (7)
C8—C9—C10—C111.8 (12)O1i—Co1—O1—C6150.0 (5)
C9—C10—C11—C121.5 (11)N1—Co1—O1—C621.6 (5)
C10—C11—C12—N20.5 (12)O1ii—Co1—O1—C6129.2 (4)
C10—C11—C12—C13177.4 (7)O2—Co1—O1—C660.7 (5)
N2—C12—C13—O330.4 (10)Br1—Co1—O1—C6101.3 (16)
C11—C12—C13—O3152.6 (7)O1i—Co1—O1—Co1iii9.59 (19)
C4—C5—N1—C11.9 (10)N1—Co1—O1—Co1iii162.0 (3)
C6—C5—N1—C1169.1 (7)O1ii—Co1—O1—Co1iii90.4 (2)
C4—C5—N1—Co1179.5 (6)O2—Co1—O1—Co1iii79.8 (2)
C6—C5—N1—Co112.4 (8)Br1—Co1—O1—Co1iii118.2 (15)
C2—C1—N1—C50.2 (11)O1i—Co1—O1—Co1ii90.7 (2)
C2—C1—N1—Co1178.1 (6)N1—Co1—O1—Co1ii97.7 (2)
O1i—Co1—N1—C54.2 (9)O1ii—Co1—O1—Co1ii9.9 (3)
O1—Co1—N1—C518.6 (5)O2—Co1—O1—Co1ii179.97 (19)
O1ii—Co1—N1—C595.5 (5)Br1—Co1—O1—Co1ii18.0 (17)
O2—Co1—N1—C575.9 (5)O1i—Co1—O2—C7160.9 (6)
Br1—Co1—N1—C5166.4 (5)N1—Co1—O2—C739.9 (6)
O1i—Co1—N1—C1174.3 (6)O1—Co1—O2—C7118.6 (6)
O1—Co1—N1—C1163.0 (6)O1ii—Co1—O2—C7174.5 (9)
O1ii—Co1—N1—C186.1 (6)Br1—Co1—O2—C759.9 (6)
Symmetry codes: (i) y+1/2, x+1/2, z+1/2; (ii) x, y+1, z; (iii) y1/2, x+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···Br1iii0.972.543.217 (5)127
O3—H3A···O3iv0.962.313.030 (9)132
O3—H3A···O4v0.962.573.370 (11)141
Symmetry codes: (iii) y1/2, x+1/2, z+1/2; (iv) y+1/2, x+1/2, z+1/2; (v) y+3/2, x1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co4Br4(C6H6NO)4(CH4O)4]Br4·4C6H7NO4·2H2O
Mr1908.10
Crystal system, space groupTetragonal, I42d
Temperature (K)291
a, c (Å)16.5302 (6), 29.875 (2)
V3)8163.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)4.77
Crystal size (mm)0.30 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.265, 0.350
No. of measured, independent and
observed [I > 2σ(I)] reflections
21461, 4018, 3180
Rint0.056
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.113, 0.99
No. of reflections4018
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.56
Absolute structureFlack (1983), 1822 Friedel pairs
Absolute structure parameter0.025 (18)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···Br1i0.972.543.217 (5)126.9
O3—H3A···O3ii0.962.313.030 (9)131.5
O3—H3A···O4iii0.962.573.370 (11)140.9
Symmetry codes: (i) y1/2, x+1/2, z+1/2; (ii) y+1/2, x+1/2, z+1/2; (iii) y+3/2, x1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Basic Research program of China (2007CB925102), the National Natural Science Foundation of China (NSFC: 20771056), the State Basic Research Project of China (NSFC: 20490218) and the Center of Analysis and Determining of Nanjing University.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, M. L., Zheng, S. L., Shi, J. X., Tong, Y. X., Lee, H. K. & Chen, X. M. (2002). J. Chem. Soc. Dalton Trans. pp. 1727–1734.  Web of Science CSD CrossRef Google Scholar
First citationYang, E. C., Hendrickson, D. N., Wernsdorfer, W., Nakano, M., Zakharov, L. N., Sommer, R. D., Rheingold, A. L., Ledezma-Gairaud, M. & Christou, G. (2002). J. Appl. Phys. 91, 7382–7384.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, H., Bacsa, J. & Dunbar, K. R. (2004). Acta Cryst. E60, m637–m640.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds