organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Oxa-6-aza­spiro­[3.3]hept-6-yl)­benzo­nitrile

aDepartment of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: hxyylj@163.com

(Received 19 March 2010; accepted 7 April 2010; online 28 April 2010)

In the title compound, C12H12N2O, the azetidine ring (r.m.s. deviation = 0.021 Å) and the oxetane ring (r.m.s. deviation = 0.014 Å) are nearly perpendicular to each other [dihedral angle = 89.7 (1)°]. The azetidine ring is twisted out of the plane of the benzene ring by 18.3 (1)°. In the crystal structure, mol­ecules are linked to form chains along the c axis by C—H⋯O hydrogen bonds.

Related literature

The title compound is a key inter­mediate to synthesize (pyrrolo[3,4-c]pyrazol-3-yl)benzamide derivatives. For the anti-tumor effect of these derivatives, see: Fancelli et al. (2005[Fancelli, D., Berta, D., Bindi, S., Cameron, A., Cappella, P., Carpinelli, P., Catana, C., Forte, B., Giordano, P., Giorgini, M. L., Mantegani, S., Marsiglio, A., Meroni, M., Moll, J., Pittal\'a, V., Roletto, F., Severino, D., Soncini, C., Storici, P., Tonani, R., Varasi, M., Vulpetti, A. & Vianello, P.et al. (2005). J. Med. Chem. 48, 3080-3084.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O

  • Mr = 200.24

  • Monoclinic, P 21 /n

  • a = 9.484 (4) Å

  • b = 11.033 (4) Å

  • c = 10.419 (4) Å

  • β = 113.186 (5)°

  • V = 1002.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 K

  • 0.60 × 0.60 × 0.27 mm

Data collection
  • Rigaku AFC10/Saturn 724-Plus diffractometer

  • 7662 measured reflections

  • 2234 independent reflections

  • 1872 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.099

  • S = 1.00

  • 2234 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.47 3.371 (2) 159
Symmetry code: (i) x, y, z+1.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Related literature top

The title compound is a key intermediate to synthesize (pyrrolo[3,4-c]pyrazol-3-yl)benzamide derivatives. For the anti-proliferation effect of these derivatives, see: Fancelli et al. (2005).

Experimental top

A DMSO solution of 2-oxa-6-azaspiro[3,3]heptane (0.99 g, 0.01 mol) with 4-fluorobenzonitrile (1.21 g, 0.01 mol) was heated to reflux for 5 h, then water (100 ml) was added into the solution. The mixture was extracted with CH2Cl2. Then the solvent was removed to give a red powder. Single crystals were obtained from a CH2Cl2 solution after 3 days.

Refinement top

H atoms were placed in the calculated positions (C—H = 0.95–0.99 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound is a key intermediate to synthesize (pyrrolo[3,4-c]pyrazol-3-yl)benzamide derivatives. For the anti-proliferation effect of these derivatives, see: Fancelli et al. (2005).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1.  
4-(2-Oxa-6-azaspiro[3.3]hept-6-yl)benzonitrile top
Crystal data top
C12H12N2OF(000) = 424
Mr = 200.24Dx = 1.327 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.484 (4) ÅCell parameters from 2956 reflections
b = 11.033 (4) Åθ = 3.1–27.5°
c = 10.419 (4) ŵ = 0.09 mm1
β = 113.186 (5)°T = 113 K
V = 1002.2 (7) Å3Prism, colourless
Z = 40.60 × 0.60 × 0.27 mm
Data collection top
Rigaku AFC10/Saturn 724-Plus
diffractometer
1872 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.029
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 28.5714 pixels mm-1h = 1212
φ and ω scansk = 1411
7662 measured reflectionsl = 1212
2234 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.36P]
where P = (Fo2 + 2Fc2)/3
2234 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C12H12N2OV = 1002.2 (7) Å3
Mr = 200.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.484 (4) ŵ = 0.09 mm1
b = 11.033 (4) ÅT = 113 K
c = 10.419 (4) Å0.60 × 0.60 × 0.27 mm
β = 113.186 (5)°
Data collection top
Rigaku AFC10/Saturn 724-Plus
diffractometer
1872 reflections with I > 2σ(I)
7662 measured reflectionsRint = 0.029
2234 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.00Δρmax = 0.30 e Å3
2234 reflectionsΔρmin = 0.16 e Å3
136 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53098 (12)0.21116 (9)0.00129 (10)0.0272 (3)
N10.81838 (14)0.46062 (12)1.07793 (13)0.0275 (3)
N20.58259 (13)0.37004 (10)0.38573 (11)0.0186 (3)
C10.74599 (15)0.47583 (12)0.59326 (14)0.0178 (3)
H10.79330.51920.54210.021*
C20.79050 (15)0.49646 (12)0.73352 (14)0.0186 (3)
H20.86790.55470.77880.022*
C30.72270 (15)0.43219 (12)0.81086 (14)0.0177 (3)
C40.60810 (15)0.34638 (12)0.74350 (14)0.0183 (3)
H40.56240.30220.79540.022*
C50.56183 (15)0.32601 (12)0.60278 (14)0.0178 (3)
H50.48350.26830.55770.021*
C60.62984 (14)0.39026 (12)0.52463 (13)0.0165 (3)
C70.49702 (15)0.26581 (12)0.30534 (14)0.0178 (3)
H7A0.38420.27510.27020.021*
H7B0.53030.18710.35340.021*
C80.56407 (14)0.29329 (12)0.19522 (14)0.0167 (3)
C90.65782 (15)0.39702 (12)0.28976 (13)0.0177 (3)
H9A0.76990.38270.33020.021*
H9B0.63310.47820.24610.021*
C100.45979 (16)0.31151 (12)0.04116 (14)0.0204 (3)
H10A0.34990.29790.02080.024*
H10B0.47490.39070.00370.024*
C110.63751 (16)0.19237 (13)0.14221 (14)0.0226 (3)
H11A0.74550.20920.15750.027*
H11B0.62810.11140.17900.027*
C120.77569 (15)0.44870 (12)0.95891 (15)0.0202 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0353 (6)0.0266 (6)0.0202 (5)0.0027 (5)0.0113 (5)0.0041 (4)
N10.0257 (7)0.0323 (7)0.0231 (7)0.0015 (5)0.0082 (5)0.0038 (6)
N20.0203 (6)0.0187 (6)0.0180 (6)0.0073 (4)0.0086 (5)0.0027 (5)
C10.0179 (6)0.0147 (6)0.0217 (7)0.0007 (5)0.0086 (5)0.0028 (5)
C20.0156 (6)0.0151 (6)0.0223 (7)0.0007 (5)0.0043 (5)0.0017 (5)
C30.0165 (6)0.0176 (6)0.0177 (7)0.0041 (5)0.0054 (5)0.0004 (5)
C40.0177 (6)0.0181 (6)0.0212 (7)0.0025 (5)0.0098 (5)0.0022 (5)
C50.0157 (6)0.0163 (6)0.0212 (7)0.0017 (5)0.0069 (5)0.0012 (5)
C60.0151 (6)0.0147 (6)0.0188 (7)0.0023 (5)0.0058 (5)0.0008 (5)
C70.0184 (6)0.0157 (6)0.0195 (7)0.0029 (5)0.0076 (5)0.0014 (5)
C80.0161 (6)0.0149 (6)0.0193 (7)0.0004 (5)0.0071 (5)0.0002 (5)
C90.0171 (6)0.0186 (6)0.0172 (6)0.0020 (5)0.0065 (5)0.0004 (5)
C100.0210 (7)0.0184 (6)0.0195 (7)0.0010 (5)0.0057 (5)0.0002 (6)
C110.0257 (7)0.0215 (7)0.0227 (7)0.0046 (6)0.0117 (6)0.0016 (6)
C120.0175 (6)0.0195 (6)0.0235 (8)0.0024 (5)0.0079 (5)0.0010 (6)
Geometric parameters (Å, º) top
O1—C111.4525 (17)C5—C61.4125 (19)
O1—C101.4534 (17)C5—H50.95
N1—C121.1504 (18)C7—C81.5451 (18)
N2—C61.3544 (17)C7—H7A0.99
N2—C71.4653 (17)C7—H7B0.99
N2—C91.4695 (17)C8—C111.5274 (18)
C1—C21.3711 (19)C8—C101.5314 (18)
C1—C61.4127 (18)C8—C91.5431 (18)
C1—H10.95C9—H9A0.99
C2—C31.4049 (19)C9—H9B0.99
C2—H20.95C10—H10A0.99
C3—C41.4034 (19)C10—H10B0.99
C3—C121.4335 (19)C11—H11A0.99
C4—C51.3734 (19)C11—H11B0.99
C4—H40.95
C11—O1—C1090.79 (9)H7A—C7—H7B111.1
C6—N2—C7128.02 (11)C11—C8—C1085.12 (10)
C6—N2—C9130.44 (11)C11—C8—C9122.78 (11)
C7—N2—C994.47 (10)C10—C8—C9122.94 (11)
C2—C1—C6120.13 (12)C11—C8—C7120.34 (11)
C2—C1—H1119.9C10—C8—C7121.30 (11)
C6—C1—H1119.9C9—C8—C788.49 (10)
C1—C2—C3120.61 (12)N2—C9—C888.40 (10)
C1—C2—H2119.7N2—C9—H9A113.9
C3—C2—H2119.7C8—C9—H9A113.9
C4—C3—C2119.53 (12)N2—C9—H9B113.9
C4—C3—C12119.89 (12)C8—C9—H9B113.9
C2—C3—C12120.49 (12)H9A—C9—H9B111.1
C5—C4—C3120.22 (12)O1—C10—C891.91 (10)
C5—C4—H4119.9O1—C10—H10A113.3
C3—C4—H4119.9C8—C10—H10A113.3
C4—C5—C6120.45 (12)O1—C10—H10B113.3
C4—C5—H5119.8C8—C10—H10B113.3
C6—C5—H5119.8H10A—C10—H10B110.6
N2—C6—C5119.95 (12)O1—C11—C892.11 (10)
N2—C6—C1121.00 (12)O1—C11—H11A113.3
C5—C6—C1119.05 (12)C8—C11—H11A113.3
N2—C7—C888.47 (10)O1—C11—H11B113.3
N2—C7—H7A113.9C8—C11—H11B113.3
C8—C7—H7A113.9H11A—C11—H11B110.6
N2—C7—H7B113.9N1—C12—C3179.26 (15)
C8—C7—H7B113.9
C6—C1—C2—C30.67 (19)N2—C7—C8—C11130.78 (12)
C1—C2—C3—C40.17 (18)N2—C7—C8—C10125.31 (12)
C1—C2—C3—C12176.30 (12)N2—C7—C8—C93.04 (9)
C2—C3—C4—C50.45 (19)C6—N2—C9—C8154.66 (13)
C12—C3—C4—C5176.95 (12)C7—N2—C9—C83.21 (10)
C3—C4—C5—C60.57 (19)C11—C8—C9—N2128.76 (12)
C7—N2—C6—C518.4 (2)C10—C8—C9—N2123.99 (12)
C9—N2—C6—C5161.23 (13)C7—C8—C9—N23.04 (9)
C7—N2—C6—C1162.08 (12)C11—O1—C10—C82.22 (10)
C9—N2—C6—C119.3 (2)C11—C8—C10—O12.12 (10)
C4—C5—C6—N2179.56 (12)C9—C8—C10—O1128.42 (12)
C4—C5—C6—C10.07 (19)C7—C8—C10—O1120.66 (12)
C2—C1—C6—N2178.93 (12)C10—O1—C11—C82.22 (10)
C2—C1—C6—C50.55 (19)C10—C8—C11—O12.12 (10)
C6—N2—C7—C8155.71 (13)C9—C8—C11—O1128.56 (12)
C9—N2—C7—C83.21 (10)C7—C8—C11—O1121.54 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.473.371 (2)159
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H12N2O
Mr200.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)9.484 (4), 11.033 (4), 10.419 (4)
β (°) 113.186 (5)
V3)1002.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.60 × 0.27
Data collection
DiffractometerRigaku AFC10/Saturn 724-Plus
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7662, 2234, 1872
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.099, 1.00
No. of reflections2234
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.16

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.473.371 (2)159
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank Mr Kai-bei Yu of Beijing Institute of Technology for the X-ray data collection.

References

First citationFancelli, D., Berta, D., Bindi, S., Cameron, A., Cappella, P., Carpinelli, P., Catana, C., Forte, B., Giordano, P., Giorgini, M. L., Mantegani, S., Marsiglio, A., Meroni, M., Moll, J., Pittal\'a, V., Roletto, F., Severino, D., Soncini, C., Storici, P., Tonani, R., Varasi, M., Vulpetti, A. & Vianello, P.et al. (2005). J. Med. Chem. 48, 3080–3084.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds