metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(4-methyl­benzoato-κO)bis­­(nicotinamide-κN1)manganese(II)

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Karabük University, 78050 Karabük, Turkey, cDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 25 March 2010; accepted 29 March 2010; online 10 April 2010)

In the mononuclear title complex, [Mn(C8H7O2)2(C6H6N2O)2(H2O)2], the MnII ion is located on a crystallographic inversion center. The asymmetric unit contains one 4-methyl­benzoate anion, one nicotinamide (NA) ligand and one coordinated water mol­ecule. The four O atoms in the equatorial plane around the MnII ion form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by the two pyridine N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxyl­ate group and the attached benzene ring is 9.01 (7)°, while the pyridine and benzene rings are oriented at a dihedral angle of 42.44 (5)°. In the crystal structure, inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, and O—H⋯π and C—H⋯π inter­actions link the mol­ecules into a two-dimensional network parallel to (001).

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]), and for the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1996[Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470-2473.], 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m513-m514.],c[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m607-m608.]); Hökelek & Necefoğlu (1998[Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242-1244.]); Necefoğlu et al. (2010[Necefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, m361-m362.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H7O2)2(C6H6N2O)2(H2O)2]

  • Mr = 605.51

  • Triclinic, [P \overline 1]

  • a = 7.3289 (2) Å

  • b = 10.1768 (3) Å

  • c = 10.6292 (3) Å

  • α = 66.852 (2)°

  • β = 78.232 (4)°

  • γ = 70.206 (3)°

  • V = 683.58 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 100 K

  • 0.38 × 0.25 × 0.19 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.649, Tmax = 0.698

  • 11619 measured reflections

  • 3297 independent reflections

  • 3022 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.099

  • S = 1.08

  • 3297 reflections

  • 204 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O2 2.1036 (11)
Mn1—O4 2.1924 (12)
Mn1—N1 2.2947 (13)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2-C7 andN1/C9-C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1i 0.88 (3) 1.97 (3) 2.8456 (19) 174 (2)
N2—H22⋯O3ii 0.86 (3) 2.09 (3) 2.952 (2) 172 (3)
O4—H42⋯O3iii 0.90 (3) 1.83 (3) 2.7071 (19) 164 (3)
C11—H11⋯O1i 0.93 2.33 3.200 (2) 156
O4—H41⋯Cg1iv 0.91 (2) 2.33 (2) 3.141 (2) 149 (3)
C4—H4⋯Cg2iv 0.93 2.80 3.490 (2) 132
Symmetry codes: (i) -x+1, -y-1, -z; (ii) -x+2, -y-1, -z; (iii) -x+1, -y, -z; (iv) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), is a centrosymmetric mononuclear complex, consisting of two nicotinamide (NA) and two 4-methylbenzoate (PMB) ligands and two coordinated water molecules; the MnII ion lies on a centre of symmetry (Fig. 1). The crystal structures of some PMB and/or NA complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2], (II) (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2], (III) (Hökelek & Necefoğlu, 1998), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2], (IV) (Hökelek et al., 2009a), [Ni(C8H7O2)2(C6H6N2O)2(H2O)2], (V) (Necefoğlu et al., 2010), [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], (VI) (Hökelek et al., 2009b) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2], (VII) (Hökelek et al., 2009c) have also been reported. In (II), the two benzoate ions are coordinated to the Cu atom as bidentate ligands, while in other structures all ligands being monodentate.

In the title compound, all ligands are monodentate. The four O atoms (O2, O4, and the symmetry-related atoms, O2', O4') in the equatorial plane around the MnII atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands (N1, N1') in the axial positions (Fig. 1). The near equality of the C1—O1 [1.2466 (19) Å] and C1—O2 [1.2690 (18) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The average Mn—O bond length is 2.148 (1) Å (Table 1). The dihedral angle between the planar carboxylate group (O1/O2/C1) and the benzene ring A (C2—C7) is 9.01 (7)°, while that between rings A and B (N1/C9—C13) is 42.44 (5)°.

In the crystal structure, intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a two-dimensional network parallel to the (001). Weak O—H···π and C—H···π interactions involving the pyridine and benzene rings are also observed (Table 2).

Related literature top

For niacin, see: Krishnamachari (1974), and for the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b,c); Hökelek & Necefoğlu (1998); Necefoğlu et al. (2010).

Experimental top

The title compound was prepared by the reaction of MnSO4.H2O (0.84 g, 5 mmol) in H2O (10 ml) and NA (1.22 g, 10 mmol) in H2O (10 ml) with sodium 4-methylbenzoate (1.58 g, 10 mmol) in H2O (150 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one month, giving colourless single crystals.

Refinement top

H atoms of the NH2 group (H21 and H22) and water molecules (H41 and H42) were located in a difference Fourier map and refined isotropically; the water H atoms were refined with O–H and H···H distance restraints. The remaining H atoms were positioned geometrically with C–H = 0.93 and 0.96 Å, for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), is a centrosymmetric mononuclear complex, consisting of two nicotinamide (NA) and two 4-methylbenzoate (PMB) ligands and two coordinated water molecules; the MnII ion lies on a centre of symmetry (Fig. 1). The crystal structures of some PMB and/or NA complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2], (II) (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2], (III) (Hökelek & Necefoğlu, 1998), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2], (IV) (Hökelek et al., 2009a), [Ni(C8H7O2)2(C6H6N2O)2(H2O)2], (V) (Necefoğlu et al., 2010), [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], (VI) (Hökelek et al., 2009b) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2], (VII) (Hökelek et al., 2009c) have also been reported. In (II), the two benzoate ions are coordinated to the Cu atom as bidentate ligands, while in other structures all ligands being monodentate.

In the title compound, all ligands are monodentate. The four O atoms (O2, O4, and the symmetry-related atoms, O2', O4') in the equatorial plane around the MnII atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands (N1, N1') in the axial positions (Fig. 1). The near equality of the C1—O1 [1.2466 (19) Å] and C1—O2 [1.2690 (18) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The average Mn—O bond length is 2.148 (1) Å (Table 1). The dihedral angle between the planar carboxylate group (O1/O2/C1) and the benzene ring A (C2—C7) is 9.01 (7)°, while that between rings A and B (N1/C9—C13) is 42.44 (5)°.

In the crystal structure, intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a two-dimensional network parallel to the (001). Weak O—H···π and C—H···π interactions involving the pyridine and benzene rings are also observed (Table 2).

For niacin, see: Krishnamachari (1974), and for the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b,c); Hökelek & Necefoğlu (1998); Necefoğlu et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator:(') -x, -y, - z.
Diaquabis(4-methylbenzoato-κO)bis(nicotinamide- κN1)manganese(II) top
Crystal data top
[Mn(C8H7O2)2(C6H6N2O)2(H2O)2]Z = 1
Mr = 605.51F(000) = 315
Triclinic, P1Dx = 1.471 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3289 (2) ÅCell parameters from 8087 reflections
b = 10.1768 (3) Åθ = 2.5–28.4°
c = 10.6292 (3) ŵ = 0.54 mm1
α = 66.852 (2)°T = 100 K
β = 78.232 (4)°Block, colourless
γ = 70.206 (3)°0.38 × 0.25 × 0.19 mm
V = 683.58 (4) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3297 independent reflections
Radiation source: fine-focus sealed tube3022 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.649, Tmax = 0.698k = 1113
11619 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.058P)2 + 0.3059P]
where P = (Fo2 + 2Fc2)/3
3297 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.73 e Å3
3 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Mn(C8H7O2)2(C6H6N2O)2(H2O)2]γ = 70.206 (3)°
Mr = 605.51V = 683.58 (4) Å3
Triclinic, P1Z = 1
a = 7.3289 (2) ÅMo Kα radiation
b = 10.1768 (3) ŵ = 0.54 mm1
c = 10.6292 (3) ÅT = 100 K
α = 66.852 (2)°0.38 × 0.25 × 0.19 mm
β = 78.232 (4)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3297 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3022 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.698Rint = 0.028
11619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.73 e Å3
3297 reflectionsΔρmin = 0.38 e Å3
204 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.00000.00000.01276 (11)
O10.24237 (17)0.33733 (12)0.25988 (12)0.0207 (2)
O20.16077 (17)0.08763 (12)0.17238 (12)0.0201 (2)
O30.78404 (16)0.34130 (13)0.01469 (13)0.0210 (3)
O40.18323 (19)0.15102 (14)0.09400 (13)0.0232 (3)
H410.208 (4)0.190 (3)0.1860 (17)0.064 (9)*
H420.218 (4)0.205 (3)0.058 (2)0.042 (7)*
N10.21166 (18)0.15932 (14)0.10409 (13)0.0143 (3)
N20.84692 (19)0.50868 (14)0.11834 (14)0.0167 (3)
H210.810 (3)0.555 (3)0.159 (2)0.028 (5)*
H220.958 (4)0.545 (3)0.084 (2)0.032 (6)*
C10.2620 (2)0.21470 (17)0.24423 (15)0.0151 (3)
C20.4196 (2)0.21314 (16)0.31505 (15)0.0145 (3)
C30.4331 (2)0.07942 (16)0.31453 (15)0.0164 (3)
H30.34260.00990.27140.020*
C40.5805 (2)0.07856 (18)0.37770 (16)0.0181 (3)
H40.58710.01150.37670.022*
C50.7191 (2)0.21079 (19)0.44279 (16)0.0190 (3)
C60.7063 (2)0.34413 (18)0.44183 (16)0.0203 (3)
H60.79790.43330.48390.024*
C70.5589 (2)0.34546 (17)0.37902 (16)0.0177 (3)
H70.55280.43550.37950.021*
C80.8783 (3)0.2097 (2)0.51214 (18)0.0257 (4)
H8A0.89470.11150.47630.039*
H8B0.99770.27970.49510.039*
H8C0.84370.23710.60920.039*
C90.3975 (2)0.22336 (16)0.07444 (15)0.0132 (3)
H90.44180.19710.01420.016*
C100.5280 (2)0.32707 (16)0.12893 (15)0.0134 (3)
C110.4623 (2)0.36415 (17)0.22143 (16)0.0170 (3)
H110.54530.43280.26020.020*
C120.2710 (2)0.29647 (18)0.25420 (17)0.0198 (3)
H120.22390.31820.31640.024*
C130.1508 (2)0.19621 (17)0.19343 (16)0.0172 (3)
H130.02210.15230.21530.021*
C140.7300 (2)0.39401 (16)0.08365 (15)0.0142 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01065 (17)0.01054 (16)0.01760 (17)0.00071 (11)0.00334 (11)0.00758 (12)
O10.0252 (6)0.0149 (5)0.0241 (6)0.0030 (4)0.0062 (5)0.0092 (5)
O20.0216 (6)0.0138 (5)0.0243 (6)0.0035 (4)0.0106 (5)0.0092 (4)
O30.0160 (5)0.0184 (5)0.0343 (6)0.0021 (4)0.0096 (5)0.0174 (5)
O40.0308 (7)0.0236 (6)0.0233 (6)0.0146 (5)0.0056 (5)0.0147 (5)
N10.0126 (6)0.0117 (6)0.0177 (6)0.0003 (4)0.0030 (5)0.0061 (5)
N20.0120 (6)0.0146 (6)0.0258 (7)0.0020 (5)0.0057 (5)0.0125 (5)
C10.0149 (7)0.0150 (7)0.0155 (7)0.0004 (5)0.0019 (5)0.0091 (6)
C20.0147 (7)0.0137 (7)0.0140 (6)0.0008 (5)0.0017 (5)0.0061 (5)
C30.0175 (7)0.0129 (7)0.0164 (7)0.0004 (5)0.0029 (6)0.0055 (6)
C40.0209 (8)0.0181 (7)0.0173 (7)0.0059 (6)0.0014 (6)0.0080 (6)
C50.0170 (7)0.0245 (8)0.0158 (7)0.0045 (6)0.0017 (6)0.0083 (6)
C60.0182 (7)0.0177 (7)0.0196 (7)0.0026 (6)0.0066 (6)0.0053 (6)
C70.0203 (7)0.0124 (7)0.0186 (7)0.0006 (5)0.0041 (6)0.0056 (6)
C80.0199 (8)0.0352 (10)0.0240 (8)0.0067 (7)0.0061 (6)0.0114 (7)
C90.0137 (7)0.0105 (6)0.0160 (6)0.0017 (5)0.0027 (5)0.0060 (5)
C100.0118 (7)0.0101 (6)0.0174 (7)0.0007 (5)0.0031 (5)0.0051 (5)
C110.0146 (7)0.0149 (7)0.0224 (7)0.0015 (5)0.0042 (6)0.0110 (6)
C120.0181 (8)0.0194 (7)0.0258 (8)0.0016 (6)0.0092 (6)0.0142 (7)
C130.0137 (7)0.0150 (7)0.0229 (7)0.0008 (5)0.0059 (6)0.0087 (6)
C140.0127 (7)0.0113 (6)0.0184 (7)0.0007 (5)0.0033 (5)0.0063 (5)
Geometric parameters (Å, º) top
Mn1—O22.1036 (11)C4—C31.387 (2)
Mn1—O2i2.1036 (11)C4—C51.396 (2)
Mn1—O42.1924 (12)C4—H40.93
Mn1—O4i2.1924 (12)C5—C81.507 (2)
Mn1—N12.2947 (13)C6—C51.396 (2)
Mn1—N1i2.2947 (13)C6—C71.387 (2)
O1—C11.2466 (19)C6—H60.93
O2—C11.2690 (18)C7—H70.93
O3—C141.2464 (18)C8—H8A0.96
O4—H410.905 (16)C8—H8B0.96
O4—H420.906 (16)C8—H8C0.96
N1—C91.3386 (18)C9—C101.391 (2)
N1—C131.345 (2)C9—H90.93
N2—C141.3283 (19)C11—C101.396 (2)
N2—H210.89 (2)C11—C121.385 (2)
N2—H220.86 (2)C11—H110.93
C1—C21.509 (2)C12—H120.93
C2—C31.395 (2)C13—C121.383 (2)
C2—C71.397 (2)C13—H130.93
C3—H30.93C14—C101.4956 (19)
O2—Mn1—O2i180.00 (4)C3—C4—H4119.5
O2—Mn1—O486.18 (5)C5—C4—H4119.5
O2i—Mn1—O493.82 (5)C4—C5—C8120.94 (15)
O2—Mn1—O4i93.82 (5)C6—C5—C4118.20 (14)
O2i—Mn1—O4i86.18 (5)C6—C5—C8120.86 (15)
O2—Mn1—N1i86.02 (4)C5—C6—H6119.5
O2i—Mn1—N1i93.98 (4)C7—C6—C5120.91 (14)
O2—Mn1—N193.98 (4)C7—C6—H6119.5
O2i—Mn1—N186.02 (4)C2—C7—H7119.6
O4—Mn1—O4i180.00 (5)C6—C7—C2120.74 (14)
O4—Mn1—N1i91.32 (4)C6—C7—H7119.6
O4i—Mn1—N1i88.68 (4)C5—C8—H8A109.5
O4—Mn1—N188.68 (4)C5—C8—H8B109.5
O4i—Mn1—N191.32 (4)C5—C8—H8C109.5
N1i—Mn1—N1180.00 (9)H8A—C8—H8B109.5
C1—O2—Mn1136.86 (10)H8A—C8—H8C109.5
Mn1—O4—H41122.2 (18)H8B—C8—H8C109.5
Mn1—O4—H42129.2 (16)N1—C9—C10123.52 (13)
H42—O4—H41107 (2)N1—C9—H9118.2
C9—N1—Mn1121.52 (10)C10—C9—H9118.2
C9—N1—C13117.56 (13)C9—C10—C11118.15 (13)
C13—N1—Mn1120.88 (10)C9—C10—C14118.12 (13)
C14—N2—H21124.4 (15)C11—C10—C14123.72 (13)
C14—N2—H22113.3 (16)C10—C11—H11120.7
H21—N2—H22121 (2)C12—C11—C10118.59 (14)
O1—C1—O2125.89 (14)C12—C11—H11120.7
O1—C1—C2118.59 (13)C11—C12—H12120.4
O2—C1—C2115.51 (13)C13—C12—C11119.26 (14)
C3—C2—C1120.90 (13)C13—C12—H12120.4
C3—C2—C7118.51 (14)N1—C13—C12122.90 (14)
C7—C2—C1120.56 (13)N1—C13—H13118.6
C2—C3—H3119.7C12—C13—H13118.6
C4—C3—C2120.59 (14)O3—C14—N2121.84 (14)
C4—C3—H3119.7O3—C14—C10119.46 (13)
C3—C4—C5121.05 (14)N2—C14—C10118.71 (13)
O4—Mn1—O2—C1124.12 (16)O2—C1—C2—C7169.99 (14)
O4i—Mn1—O2—C155.88 (16)C1—C2—C3—C4178.83 (14)
N1i—Mn1—O2—C1144.28 (16)C7—C2—C3—C40.8 (2)
N1—Mn1—O2—C135.72 (16)C1—C2—C7—C6178.70 (15)
O2—Mn1—N1—C923.31 (12)C3—C2—C7—C60.6 (2)
O2i—Mn1—N1—C9156.69 (12)C5—C4—C3—C20.2 (2)
O2—Mn1—N1—C13154.04 (12)C3—C4—C5—C60.4 (2)
O2i—Mn1—N1—C1325.96 (12)C3—C4—C5—C8179.60 (15)
O4—Mn1—N1—C962.76 (11)C5—C6—C7—C20.0 (2)
O4i—Mn1—N1—C9117.24 (11)C7—C6—C5—C40.6 (2)
O4—Mn1—N1—C13119.89 (12)C7—C6—C5—C8179.46 (15)
O4i—Mn1—N1—C1360.11 (12)N1—C9—C10—C111.2 (2)
Mn1—O2—C1—O126.6 (3)N1—C9—C10—C14177.98 (13)
Mn1—O2—C1—C2153.01 (12)C12—C11—C10—C90.1 (2)
Mn1—N1—C9—C10176.18 (11)C12—C11—C10—C14179.01 (15)
C13—N1—C9—C101.3 (2)C10—C11—C12—C130.8 (2)
Mn1—N1—C13—C12177.22 (13)N1—C13—C12—C110.8 (3)
C9—N1—C13—C120.2 (2)O3—C14—C10—C99.9 (2)
O1—C1—C2—C3172.31 (14)O3—C14—C10—C11170.95 (15)
O1—C1—C2—C79.7 (2)N2—C14—C10—C9170.04 (14)
O2—C1—C2—C38.0 (2)N2—C14—C10—C119.1 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2-C7 andN1/C9-C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H21···O1ii0.88 (3)1.97 (3)2.8456 (19)174 (2)
N2—H22···O3iii0.86 (3)2.09 (3)2.952 (2)172 (3)
O4—H42···O3iv0.90 (3)1.83 (3)2.7071 (19)164 (3)
C11—H11···O1ii0.932.333.200 (2)156
O4—H41···Cg1v0.91 (2)2.33 (2)3.141 (2)149 (3)
C4—H4···Cg2v0.932.803.490 (2)132
Symmetry codes: (ii) x+1, y1, z; (iii) x+2, y1, z; (iv) x+1, y, z; (v) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Mn(C8H7O2)2(C6H6N2O)2(H2O)2]
Mr605.51
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3289 (2), 10.1768 (3), 10.6292 (3)
α, β, γ (°)66.852 (2), 78.232 (4), 70.206 (3)
V3)683.58 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.38 × 0.25 × 0.19
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.649, 0.698
No. of measured, independent and
observed [I > 2σ(I)] reflections
11619, 3297, 3022
Rint0.028
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.099, 1.08
No. of reflections3297
No. of parameters204
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.38

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Mn1—O22.1036 (11)Mn1—N12.2947 (13)
Mn1—O42.1924 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2-C7 andN1/C9-C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H21···O1i0.88 (3)1.97 (3)2.8456 (19)174 (2)
N2—H22···O3ii0.86 (3)2.09 (3)2.952 (2)172 (3)
O4—H42···O3iii0.90 (3)1.83 (3)2.7071 (19)164 (3)
C11—H11···O1i0.932.333.200 (2)156
O4—H41···Cg1iv0.91 (2)2.33 (2)3.141 (2)149 (3)
C4—H4···Cg2iv0.932.803.490 (2)132
Symmetry codes: (i) x+1, y1, z; (ii) x+2, y1, z; (iii) x+1, y, z; (iv) x+1, y+2, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 108 T657).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m513–m514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, m361–m362.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds