organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Phenyl-N-(prop-2-en-1-yl)benzene­sulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, bCollege of Chemical Engineering and Biotechnology, Hebei Polytechnic University, Tangshan 063009, People's Republic of China, and cHEJ Research Institute of Chemistry, University of Karachi, Pakistan
*Correspondence e-mail: iukhangcu@126.com

(Received 29 March 2010; accepted 9 April 2010; online 14 April 2010)

In the mol­ecule of the title compound, C15H15NO2S, the dihedral angle between the two phenyl rings is 41.8 (3)°. The S atom has a distorted tetra­hedral environment. In the crystal structure, C—H⋯O hydrogen bonds link the molecules into a ribbon-like structure along [010].

Related literature

For details of the biological activity and pharmaceutical applications of sulfonamide derivatives, see: Kazmierski et al. (2004[Kazmierski, W. M., Aquino, C. J., Bifulco, N., Boros, E. E., Chauder, B. A., Chong, P. Y., Duan, M., Deanda, F. Jr, Koble, C. S., Mclean, E. W., Peckham, J. P., Perkins, A. C., Thompson, J. B. & Vanderwall, D. (2004). WO Patent No. 2004054974.]); Beate et al. (1998[Beate, G., Nadenik, P. & Wagner, H. (1998). WO Patent No. 9855481.]); Skrzipczyk et al. (1994[Skrzipczyk, H. J., Uhlmann, E. & Mayer, A. (1994). EP Patent No. 602 524.]). For related structures, see: Arshad et al. (2009[Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o230.]); Khan et al. (2009[Khan, I. U., Mustafa, G., Arshad, M. N., Shafiq, M. & Sharif, S. (2009). Acta Cryst. E65, o1073.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO2S

  • Mr = 273.35

  • Monoclinic, P 21 /c

  • a = 11.6302 (8) Å

  • b = 5.7041 (4) Å

  • c = 21.9408 (14) Å

  • β = 103.535 (4)°

  • V = 1415.12 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.25 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.978

  • 9448 measured reflections

  • 2467 independent reflections

  • 1803 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.245

  • S = 0.93

  • 2467 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.97 2.57 3.427 (6) 147
C5—H5⋯O2ii 0.93 2.39 3.307 (6) 167
C15—H15⋯O1i 0.93 2.54 3.415 (6) 158
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzenesulfonamide derivatives have been used as starting materials for the preparation of a variety of sulfonamide drugs, such as inhibitors of HIV infection (Kazmierski et al., 2004) and antihypertensive drugs (Beate et al., 1998). In addition, they have also been employed in the preparation of gene probe labelling (Skrzipczyk et al., 1994). As an extension of our previous studies (Arshad et al., 2009; Khan et al., 2009), we report here the crystal structure of the title compound.

The molecular structure of the title compound, (I), is illustrated in Fig. 1. The dihedral angle between the two phenyl rings is 41.8 (3)°. Atom S1 has a distorted tetrahedral environment, with a O1—S1—O2 angle of 120.2 (2)°. The C10—S1—N1—C4 torsion angle in the central part of the molecule is 86.2 (3)°.

In the crystal structure, adjacent molecules are linked via C—H···O hydrogen bonds (Table 1) to form a ribbon-like structure along the b axis (Fig.2).

Related literature top

For details of the biological activity and pharmaceutical applications of sulfonamide derivatives, see: Kazmierski et al. (2004); Beate et al. (1998); Skrzipczyk et al. (1994). For related structures, see: Arshad et al. (2009); Khan et al. (2009).

Experimental top

A mixture of N-phenyl benzenesulfonamide (0.5 g, 2.1552 mmol), sodium hydride (0.2 g, 8.333 mmol) and N,N-dimethylformamide (10 ml) was stirred at room temperature for 30 min and then allyl bromide (0.37 ml, 2.1552 mmol) was added. The stirring was continued further for a period of 3 h and the contents were poured over crushed ice. The precipitated product was isolated, washed and recrystallized from methanol solution.

Refinement top

H atoms were placed in calculated positions, with C–H = 0.93 or 0.97 Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(parent atom).

Structure description top

Benzenesulfonamide derivatives have been used as starting materials for the preparation of a variety of sulfonamide drugs, such as inhibitors of HIV infection (Kazmierski et al., 2004) and antihypertensive drugs (Beate et al., 1998). In addition, they have also been employed in the preparation of gene probe labelling (Skrzipczyk et al., 1994). As an extension of our previous studies (Arshad et al., 2009; Khan et al., 2009), we report here the crystal structure of the title compound.

The molecular structure of the title compound, (I), is illustrated in Fig. 1. The dihedral angle between the two phenyl rings is 41.8 (3)°. Atom S1 has a distorted tetrahedral environment, with a O1—S1—O2 angle of 120.2 (2)°. The C10—S1—N1—C4 torsion angle in the central part of the molecule is 86.2 (3)°.

In the crystal structure, adjacent molecules are linked via C—H···O hydrogen bonds (Table 1) to form a ribbon-like structure along the b axis (Fig.2).

For details of the biological activity and pharmaceutical applications of sulfonamide derivatives, see: Kazmierski et al. (2004); Beate et al. (1998); Skrzipczyk et al. (1994). For related structures, see: Arshad et al. (2009); Khan et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines
N-Phenyl-N-(prop-2-en-1-yl)benzenesulfonamide top
Crystal data top
C15H15NO2SF(000) = 576
Mr = 273.35Dx = 1.283 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3368 reflections
a = 11.6302 (8) Åθ = 2.4–22.3°
b = 5.7041 (4) ŵ = 0.23 mm1
c = 21.9408 (14) ÅT = 295 K
β = 103.535 (4)°Plate, colourless
V = 1415.12 (17) Å30.25 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2467 independent reflections
Radiation source: fine-focus sealed tube1803 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.958, Tmax = 0.978k = 65
9448 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.245H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.1687P)2 + 2.1422P]
where P = (Fo2 + 2Fc2)/3
2467 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C15H15NO2SV = 1415.12 (17) Å3
Mr = 273.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6302 (8) ŵ = 0.23 mm1
b = 5.7041 (4) ÅT = 295 K
c = 21.9408 (14) Å0.25 × 0.12 × 0.08 mm
β = 103.535 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2467 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1803 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.978Rint = 0.046
9448 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.245H-atom parameters constrained
S = 0.93Δρmax = 0.47 e Å3
2467 reflectionsΔρmin = 0.58 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.69888 (9)0.0377 (2)0.71607 (5)0.0425 (4)
N10.6478 (3)0.1073 (6)0.65082 (15)0.0421 (9)
C90.7280 (4)0.0195 (9)0.5639 (2)0.0500 (11)
H90.68240.15450.56150.060*
C100.7692 (3)0.1656 (8)0.77270 (17)0.0398 (10)
C130.8729 (5)0.5034 (11)0.8566 (2)0.0683 (15)
H130.90820.61880.88480.082*
C30.4412 (6)0.5309 (14)0.5687 (3)0.092 (2)
H3A0.46260.66440.59300.111*
H3B0.39180.54360.52880.111*
C40.7260 (4)0.1466 (8)0.60926 (17)0.0407 (10)
C10.5584 (4)0.2901 (9)0.6524 (2)0.0504 (11)
H1A0.51140.24340.68150.060*
H1B0.59820.43560.66750.060*
C110.8892 (4)0.2012 (9)0.7843 (2)0.0525 (12)
H110.93510.11280.76330.063*
C50.7939 (4)0.3460 (8)0.6128 (2)0.0512 (11)
H50.79290.45740.64370.061*
C20.4799 (4)0.3294 (11)0.5901 (2)0.0631 (14)
H20.45690.19940.56450.076*
C150.7010 (4)0.2992 (10)0.80332 (19)0.0548 (13)
H150.61990.27450.79580.066*
C70.8644 (4)0.2144 (11)0.5249 (2)0.0616 (14)
H70.91060.23840.49620.074*
C60.8631 (5)0.3801 (10)0.5706 (2)0.0616 (13)
H60.90900.51480.57280.074*
C140.7545 (5)0.4699 (11)0.8452 (2)0.0686 (16)
H140.70900.56190.86550.082*
O20.7865 (3)0.1951 (6)0.70389 (14)0.0545 (9)
O10.5986 (3)0.1260 (6)0.73525 (15)0.0582 (9)
C80.7983 (5)0.0159 (10)0.5219 (2)0.0616 (14)
H80.80050.09630.49140.074*
C120.9411 (4)0.3693 (11)0.8272 (2)0.0641 (15)
H121.02260.39150.83610.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0455 (7)0.0354 (7)0.0488 (7)0.0000 (5)0.0153 (5)0.0014 (4)
N10.0414 (18)0.042 (2)0.0431 (18)0.0055 (16)0.0106 (14)0.0030 (16)
C90.057 (3)0.046 (3)0.047 (2)0.001 (2)0.014 (2)0.011 (2)
C100.037 (2)0.044 (3)0.041 (2)0.0036 (18)0.0143 (16)0.0044 (18)
C130.070 (4)0.075 (4)0.055 (3)0.012 (3)0.005 (2)0.016 (3)
C30.096 (5)0.112 (6)0.070 (4)0.050 (4)0.020 (3)0.021 (4)
C40.045 (2)0.039 (2)0.037 (2)0.0094 (19)0.0076 (16)0.0005 (17)
C10.044 (2)0.057 (3)0.051 (2)0.010 (2)0.0128 (18)0.005 (2)
C110.040 (2)0.064 (3)0.056 (3)0.000 (2)0.0167 (19)0.002 (2)
C50.059 (3)0.036 (3)0.061 (3)0.005 (2)0.019 (2)0.003 (2)
C20.052 (3)0.079 (4)0.057 (3)0.016 (3)0.010 (2)0.002 (3)
C150.039 (2)0.080 (4)0.045 (2)0.006 (2)0.0099 (18)0.011 (2)
C70.058 (3)0.078 (4)0.053 (3)0.014 (3)0.022 (2)0.015 (3)
C60.066 (3)0.049 (3)0.074 (3)0.002 (3)0.026 (3)0.013 (3)
C140.062 (3)0.086 (4)0.056 (3)0.013 (3)0.008 (2)0.022 (3)
O20.0622 (19)0.0412 (19)0.0631 (19)0.0148 (15)0.0206 (15)0.0029 (15)
O10.0529 (18)0.055 (2)0.070 (2)0.0140 (16)0.0216 (15)0.0053 (17)
C80.074 (3)0.065 (4)0.050 (3)0.012 (3)0.022 (2)0.008 (2)
C120.039 (2)0.091 (4)0.061 (3)0.018 (3)0.009 (2)0.003 (3)
Geometric parameters (Å, º) top
S1—O11.422 (3)C1—C21.473 (6)
S1—O21.429 (3)C1—H1A0.97
S1—N11.640 (3)C1—H1B0.97
S1—C101.756 (4)C11—C121.380 (7)
N1—C41.448 (5)C11—H110.93
N1—C11.479 (5)C5—C61.377 (7)
C9—C41.379 (6)C5—H50.93
C9—C81.382 (7)C2—H20.93
C9—H90.93C15—C141.382 (7)
C10—C111.374 (6)C15—H150.93
C10—C151.382 (6)C7—C81.361 (8)
C13—C141.354 (8)C7—C61.379 (7)
C13—C121.368 (8)C7—H70.93
C13—H130.93C6—H60.93
C3—C21.283 (8)C14—H140.93
C3—H3A0.93C8—H80.93
C3—H3B0.93C12—H120.93
C4—C51.376 (6)
O1—S1—O2120.2 (2)H1A—C1—H1B107.9
O1—S1—N1106.41 (19)C10—C11—C12119.4 (4)
O2—S1—N1106.38 (18)C10—C11—H11120.3
O1—S1—C10107.66 (19)C12—C11—H11120.3
O2—S1—C10108.22 (19)C4—C5—C6119.8 (5)
N1—S1—C10107.3 (2)C4—C5—H5120.1
C4—N1—C1117.0 (3)C6—C5—H5120.1
C4—N1—S1118.4 (3)C3—C2—C1124.3 (6)
C1—N1—S1116.6 (3)C3—C2—H2117.8
C4—C9—C8119.6 (5)C1—C2—H2117.8
C4—C9—H9120.2C14—C15—C10119.4 (4)
C8—C9—H9120.2C14—C15—H15120.3
C11—C10—C15120.2 (4)C10—C15—H15120.3
C11—C10—S1120.9 (3)C8—C7—C6120.2 (5)
C15—C10—S1118.9 (3)C8—C7—H7119.9
C14—C13—C12120.7 (5)C6—C7—H7119.9
C14—C13—H13119.6C5—C6—C7120.0 (5)
C12—C13—H13119.6C5—C6—H6120.0
C2—C3—H3A120.0C7—C6—H6120.0
C2—C3—H3B120.0C13—C14—C15120.1 (5)
H3A—C3—H3B120.0C13—C14—H14119.9
C5—C4—C9120.2 (4)C15—C14—H14119.9
C5—C4—N1121.9 (4)C7—C8—C9120.3 (5)
C9—C4—N1117.9 (4)C7—C8—H8119.9
C2—C1—N1111.8 (4)C9—C8—H8119.9
C2—C1—H1A109.3C13—C12—C11120.1 (4)
N1—C1—H1A109.3C13—C12—H12120.0
C2—C1—H1B109.3C11—C12—H12120.0
N1—C1—H1B109.3
O1—S1—N1—C4158.8 (3)C4—N1—C1—C258.4 (5)
O2—S1—N1—C429.5 (4)S1—N1—C1—C2153.1 (4)
C10—S1—N1—C486.2 (3)C15—C10—C11—C120.8 (7)
O1—S1—N1—C153.2 (4)S1—C10—C11—C12177.3 (4)
O2—S1—N1—C1177.5 (3)C9—C4—C5—C60.5 (7)
C10—S1—N1—C161.9 (3)N1—C4—C5—C6177.3 (4)
O1—S1—C10—C11150.3 (4)N1—C1—C2—C3141.8 (6)
O2—S1—C10—C1119.0 (4)C11—C10—C15—C140.5 (7)
N1—S1—C10—C1195.5 (4)S1—C10—C15—C14176.1 (4)
O1—S1—C10—C1533.1 (4)C4—C5—C6—C70.1 (7)
O2—S1—C10—C15164.5 (4)C8—C7—C6—C50.7 (8)
N1—S1—C10—C1581.1 (4)C12—C13—C14—C150.1 (9)
C8—C9—C4—C50.2 (7)C10—C15—C14—C130.9 (8)
C8—C9—C4—N1177.7 (4)C6—C7—C8—C91.0 (8)
C1—N1—C4—C555.6 (5)C4—C9—C8—C70.6 (7)
S1—N1—C4—C592.3 (4)C14—C13—C12—C111.5 (9)
C1—N1—C4—C9122.2 (4)C10—C11—C12—C131.8 (8)
S1—N1—C4—C989.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.972.573.427 (6)147
C5—H5···O2ii0.932.393.307 (6)167
C15—H15···O1i0.932.543.415 (6)158
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H15NO2S
Mr273.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.6302 (8), 5.7041 (4), 21.9408 (14)
β (°) 103.535 (4)
V3)1415.12 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.25 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.958, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
9448, 2467, 1803
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.245, 0.93
No. of reflections2467
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.58

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.972.573.427 (6)147
C5—H5···O2ii0.932.393.307 (6)167
C15—H15···O1i0.932.543.415 (6)158
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1, z.
 

Acknowledgements

The authors thank Government College University and Hebei Polytechnic University for support of this work.

References

First citationArshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBeate, G., Nadenik, P. & Wagner, H. (1998). WO Patent No. 9855481.  Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKazmierski, W. M., Aquino, C. J., Bifulco, N., Boros, E. E., Chauder, B. A., Chong, P. Y., Duan, M., Deanda, F. Jr, Koble, C. S., Mclean, E. W., Peckham, J. P., Perkins, A. C., Thompson, J. B. & Vanderwall, D. (2004). WO Patent No. 2004054974.  Google Scholar
First citationKhan, I. U., Mustafa, G., Arshad, M. N., Shafiq, M. & Sharif, S. (2009). Acta Cryst. E65, o1073.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkrzipczyk, H. J., Uhlmann, E. & Mayer, A. (1994). EP Patent No. 602 524.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds