organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Dihydr­­oxy-N′-(2-hydr­­oxy-4-meth­oxy­benzyl­­idene)benzohydrazide

aDepartment of Chemistry and Life Sciences, Chuzhou University, Chuzhou, Anhui 239000, People's Republic of China
*Correspondence e-mail: hanyouyue@126.com

(Received 30 March 2010; accepted 1 April 2010; online 10 April 2010)

In the title compound, C15H14N2O5, the dihedral angle between the two benzene rings is 4.3 (3)° and the mol­ecule adopts an E configuration with respect to the C=N bond. Intra­molecular O—H⋯N and N—H⋯O hydrogen bonds are observed. In the crystal structure, the mol­ecules are linked through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds to form layers parallel to the ac plane.

Related literature

For the biological properties of hydrazone compounds, see: Patil et al. (2010[Patil, S. A., Naik, V. H., Kulkarni, A. D., Kamble, U., Bagihalli, G. B. & Badami, P. S. (2010). J. Coord. Chem. 63, 688-699.]); Cukurovali et al. (2006[Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201-207.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190.]); Lin & Sang (2009[Lin, X.-S. & Sang, Y.-L. (2009). Acta Cryst. E65, o1650.]); Suleiman Gwaram et al. (2010[Suleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.]); Li & Ban (2009[Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969.]); Ning & Xu (2009[Ning, J.-H. & Xu, X.-W. (2009). Acta Cryst. E65, o905-o906.]); Zhu et al. (2009[Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O5

  • Mr = 302.28

  • Monoclinic, P 21 /n

  • a = 10.560 (3) Å

  • b = 12.752 (3) Å

  • c = 11.313 (2) Å

  • β = 112.853 (3)°

  • V = 1403.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.30 × 0.27 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.973

  • 7972 measured reflections

  • 3030 independent reflections

  • 1023 reflections with I > 2σ(I)

  • Rint = 0.127

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.182

  • S = 0.74

  • 3030 reflections

  • 206 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.92 2.635 (3) 145
N2—H2⋯O4 0.91 (1) 2.03 (3) 2.670 (3) 126 (3)
N2—H2⋯O1i 0.91 (1) 2.43 (2) 3.240 (4) 149 (3)
O5—H5⋯O2ii 0.82 2.05 2.865 (4) 172
O4—H4⋯O3i 0.82 1.79 2.607 (3) 174
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds have been widely investigated for their biological properties (Patil et al., 2010; Cukurovali et al., 2006). Furthermore, the crystal structures of hydrazone compounds have also attracted much attention in recent years (Mohd Lair et al., 2009; Lin & Sang, 2009; Suleiman Gwaram et al., 2010). In the present work, the title new hydrazone compound is reported.

In the molecule of the title compound (Fig. 1), the dihedral angle between the two benzene rings is 4.3 (3)°. The molecule adopts an E configuration with respect to the CN bond. There are intramolecular O–H···N and N–H···O hydrogen bonds (Table 1) in the molecule. All the bond lengths are within normal ranges (Allen et al., 1987) and are comparable with those observed in related structures (Li & Ban, 2009; Lo & Ng, 2009; Ning & Xu, 2009; Zhu et al., 2009).

In the crystal structure, molecules are linked through intermolecular N—H···O and O–H···O hydrogen bonds (Table 1) to form layers parallel to the ac plane (Fig. 2).

Related literature top

For the biological properties of hydrazone compounds, see: Patil et al. (2010); Cukurovali et al. (2006). For bond-length data, see: Allen et al. (1987). For related structures, see: Mohd Lair et al. (2009); Lin & Sang (2009); Suleiman Gwaram et al. (2010); Li & Ban (2009); Lo & Ng (2009); Ning & Xu (2009); Zhu et al. (2009).

Experimental top

A mixture of 2-hydroxy-4-methoxybenzaldehyde (0.152 g, 1 mmol) and 2,4-dihydroxybenzohydrazide (0.168 g, 1 mmol) in methanol (50 ml) was stirred at room temperature for 1 h. The mixture was filtered to remove impurities, and then left at room temperature. After a few days, single crystals of the title compound, suitable for X-ray diffraction, were formed.

Refinement top

Atom H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. Other H atoms were positioned geometrically and refined using the riding-model approximation, with C–H = 0.93 or 0.96 Å, O–H = 0.82 Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl C and O). The ratio of observed to unique reflections is low (34%), and the value of Rint is greater (0.127) probably due to the poor diffraction quality of the crystal.

Structure description top

Hydrazone compounds have been widely investigated for their biological properties (Patil et al., 2010; Cukurovali et al., 2006). Furthermore, the crystal structures of hydrazone compounds have also attracted much attention in recent years (Mohd Lair et al., 2009; Lin & Sang, 2009; Suleiman Gwaram et al., 2010). In the present work, the title new hydrazone compound is reported.

In the molecule of the title compound (Fig. 1), the dihedral angle between the two benzene rings is 4.3 (3)°. The molecule adopts an E configuration with respect to the CN bond. There are intramolecular O–H···N and N–H···O hydrogen bonds (Table 1) in the molecule. All the bond lengths are within normal ranges (Allen et al., 1987) and are comparable with those observed in related structures (Li & Ban, 2009; Lo & Ng, 2009; Ning & Xu, 2009; Zhu et al., 2009).

In the crystal structure, molecules are linked through intermolecular N—H···O and O–H···O hydrogen bonds (Table 1) to form layers parallel to the ac plane (Fig. 2).

For the biological properties of hydrazone compounds, see: Patil et al. (2010); Cukurovali et al. (2006). For bond-length data, see: Allen et al. (1987). For related structures, see: Mohd Lair et al. (2009); Lin & Sang (2009); Suleiman Gwaram et al. (2010); Li & Ban (2009); Lo & Ng (2009); Ning & Xu (2009); Zhu et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
2,4-Dihydroxy-N'-(2-hydroxy-4-methoxybenzylidene)benzohydrazide top
Crystal data top
C15H14N2O5F(000) = 632
Mr = 302.28Dx = 1.430 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 691 reflections
a = 10.560 (3) Åθ = 2.5–24.5°
b = 12.752 (3) ŵ = 0.11 mm1
c = 11.313 (2) ÅT = 298 K
β = 112.853 (3)°Block, colourless
V = 1403.8 (6) Å30.30 × 0.27 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3030 independent reflections
Radiation source: fine-focus sealed tube1023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.127
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1113
Tmin = 0.968, Tmax = 0.973k = 1616
7972 measured reflectionsl = 149
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 0.74 w = 1/[σ2(Fo2) + (0.0795P)2]
where P = (Fo2 + 2Fc2)/3
3030 reflections(Δ/σ)max = 0.001
206 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C15H14N2O5V = 1403.8 (6) Å3
Mr = 302.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.560 (3) ŵ = 0.11 mm1
b = 12.752 (3) ÅT = 298 K
c = 11.313 (2) Å0.30 × 0.27 × 0.25 mm
β = 112.853 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3030 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1023 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.973Rint = 0.127
7972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 0.74Δρmax = 0.24 e Å3
3030 reflectionsΔρmin = 0.28 e Å3
206 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6400 (2)0.2494 (2)0.3907 (3)0.0457 (8)
N20.4991 (3)0.2654 (2)0.3472 (3)0.0472 (8)
O10.8985 (2)0.2824 (2)0.5431 (3)0.0609 (8)
H10.81620.29610.51040.091*
O21.2425 (2)0.08925 (18)0.4832 (2)0.0563 (7)
O30.5297 (2)0.36628 (17)0.5199 (2)0.0504 (7)
O40.23759 (19)0.21715 (19)0.2060 (2)0.0505 (7)
H40.17050.19520.14550.076*
O50.1093 (2)0.4346 (2)0.2541 (3)0.0650 (8)
H50.15180.42180.17780.097*
C10.8268 (3)0.1629 (3)0.3636 (3)0.0391 (9)
C20.9293 (3)0.2101 (3)0.4705 (3)0.0407 (9)
C31.0660 (3)0.1834 (3)0.5062 (3)0.0446 (9)
H31.13270.21470.57750.054*
C41.1035 (3)0.1099 (3)0.4356 (3)0.0432 (9)
C51.0068 (3)0.0628 (3)0.3298 (4)0.0478 (10)
H5A1.03250.01400.28220.057*
C60.8696 (3)0.0899 (3)0.2955 (4)0.0492 (10)
H60.80380.05800.22420.059*
C71.2890 (3)0.0103 (3)0.4192 (4)0.0709 (13)
H7A1.24190.05430.41790.106*
H7B1.38610.00020.46390.106*
H7C1.27000.03220.33280.106*
C80.6814 (3)0.1853 (3)0.3265 (3)0.0435 (9)
H80.61740.15240.25480.052*
C90.4506 (3)0.3273 (3)0.4183 (4)0.0415 (9)
C100.3002 (3)0.3483 (2)0.3673 (3)0.0374 (9)
C110.1983 (3)0.2962 (3)0.2647 (3)0.0370 (8)
C120.0617 (3)0.3252 (2)0.2260 (3)0.0419 (9)
H120.00520.29160.15690.050*
C130.0249 (3)0.4037 (3)0.2898 (4)0.0437 (9)
C140.1218 (3)0.4546 (3)0.3917 (4)0.0519 (10)
H140.09580.50760.43430.062*
C150.2581 (3)0.4264 (2)0.4305 (4)0.0457 (9)
H150.32350.46030.50040.055*
H20.443 (3)0.241 (3)0.2685 (18)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0189 (15)0.0627 (19)0.050 (2)0.0027 (12)0.0073 (13)0.0013 (16)
N20.0205 (15)0.068 (2)0.048 (2)0.0037 (13)0.0070 (14)0.0070 (17)
O10.0297 (13)0.0741 (17)0.0720 (19)0.0085 (13)0.0121 (13)0.0242 (16)
O20.0291 (13)0.0700 (17)0.0685 (19)0.0128 (11)0.0176 (12)0.0086 (15)
O30.0308 (12)0.0562 (15)0.0506 (17)0.0006 (11)0.0010 (12)0.0063 (14)
O40.0261 (12)0.0640 (16)0.0546 (18)0.0019 (12)0.0083 (12)0.0129 (14)
O50.0297 (13)0.0760 (18)0.082 (2)0.0135 (13)0.0131 (13)0.0088 (17)
C10.0244 (17)0.049 (2)0.042 (2)0.0017 (15)0.0103 (16)0.0014 (19)
C20.0298 (18)0.045 (2)0.049 (2)0.0039 (16)0.0172 (17)0.0038 (19)
C30.0260 (18)0.057 (2)0.047 (2)0.0004 (16)0.0100 (16)0.008 (2)
C40.0302 (18)0.051 (2)0.054 (2)0.0027 (16)0.0217 (18)0.003 (2)
C50.042 (2)0.051 (2)0.054 (3)0.0009 (17)0.0217 (19)0.010 (2)
C60.033 (2)0.058 (2)0.054 (2)0.0082 (17)0.0142 (18)0.010 (2)
C70.050 (3)0.082 (3)0.085 (3)0.024 (2)0.031 (2)0.002 (3)
C80.0288 (19)0.053 (2)0.043 (2)0.0066 (15)0.0084 (17)0.0018 (19)
C90.0279 (18)0.045 (2)0.045 (2)0.0013 (15)0.0074 (18)0.0103 (19)
C100.0237 (17)0.044 (2)0.043 (2)0.0015 (15)0.0110 (16)0.0066 (18)
C110.0264 (17)0.0429 (19)0.041 (2)0.0007 (15)0.0123 (16)0.0046 (18)
C120.0237 (17)0.047 (2)0.049 (2)0.0006 (15)0.0072 (16)0.0019 (19)
C130.0239 (17)0.048 (2)0.056 (2)0.0062 (15)0.0119 (17)0.006 (2)
C140.040 (2)0.049 (2)0.067 (3)0.0041 (17)0.021 (2)0.008 (2)
C150.0331 (19)0.045 (2)0.053 (2)0.0009 (16)0.0104 (17)0.004 (2)
Geometric parameters (Å, º) top
N1—C81.278 (4)C4—C51.374 (4)
N1—N21.389 (3)C5—C61.390 (4)
N2—C91.362 (4)C5—H5A0.93
N2—H20.911 (10)C6—H60.93
O1—C21.355 (4)C7—H7A0.96
O1—H10.82C7—H7B0.96
O2—C41.378 (3)C7—H7C0.96
O2—C71.434 (4)C8—H80.93
O3—C91.232 (4)C9—C101.488 (4)
O4—C111.357 (4)C10—C151.397 (4)
O4—H40.82C10—C111.406 (4)
O5—C131.372 (3)C11—C121.386 (4)
O5—H50.82C12—C131.375 (4)
C1—C61.390 (4)C12—H120.93
C1—C21.407 (4)C13—C141.372 (4)
C1—C81.455 (4)C14—C151.380 (4)
C2—C31.382 (4)C14—H140.93
C3—C41.385 (4)C15—H150.93
C3—H30.93
C8—N1—N2116.6 (3)H7A—C7—H7B109.5
C9—N2—N1118.2 (3)O2—C7—H7C109.5
C9—N2—H2122 (2)H7A—C7—H7C109.5
N1—N2—H2120 (2)H7B—C7—H7C109.5
C2—O1—H1109.5N1—C8—C1121.1 (3)
C4—O2—C7117.3 (3)N1—C8—H8119.4
C11—O4—H4109.5C1—C8—H8119.4
C13—O5—H5109.5O3—C9—N2120.7 (3)
C6—C1—C2117.1 (3)O3—C9—C10121.6 (3)
C6—C1—C8120.3 (3)N2—C9—C10117.7 (3)
C2—C1—C8122.5 (3)C15—C10—C11117.8 (3)
O1—C2—C3117.4 (3)C15—C10—C9115.7 (3)
O1—C2—C1121.7 (3)C11—C10—C9126.5 (3)
C3—C2—C1120.9 (3)O4—C11—C12121.5 (3)
C2—C3—C4119.9 (3)O4—C11—C10118.3 (3)
C2—C3—H3120.0C12—C11—C10120.2 (3)
C4—C3—H3120.0C13—C12—C11120.0 (3)
C5—C4—O2125.1 (3)C13—C12—H12120.0
C5—C4—C3121.0 (3)C11—C12—H12120.0
O2—C4—C3113.8 (3)O5—C13—C14117.4 (3)
C4—C5—C6118.4 (3)O5—C13—C12121.6 (3)
C4—C5—H5A120.8C14—C13—C12121.0 (3)
C6—C5—H5A120.8C13—C14—C15119.3 (3)
C5—C6—C1122.7 (3)C13—C14—H14120.4
C5—C6—H6118.7C15—C14—H14120.4
C1—C6—H6118.7C14—C15—C10121.6 (3)
O2—C7—H7A109.5C14—C15—H15119.2
O2—C7—H7B109.5C10—C15—H15119.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.635 (3)145
N2—H2···O40.91 (1)2.03 (3)2.670 (3)126 (3)
N2—H2···O1i0.91 (1)2.43 (2)3.240 (4)149 (3)
O5—H5···O2ii0.822.052.865 (4)172
O4—H4···O3i0.821.792.607 (3)174
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x3/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O5
Mr302.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.560 (3), 12.752 (3), 11.313 (2)
β (°) 112.853 (3)
V3)1403.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.27 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.968, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
7972, 3030, 1023
Rint0.127
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.182, 0.74
No. of reflections3030
No. of parameters206
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.635 (3)145
N2—H2···O40.91 (1)2.03 (3)2.670 (3)126 (3)
N2—H2···O1i0.91 (1)2.43 (2)3.240 (4)149 (3)
O5—H5···O2ii0.822.052.865 (4)172
O4—H4···O3i0.821.792.607 (3)174
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x3/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Applied Chemistry Key Subject of Anhui Province (grant No. 200802187 C). The authors thank Mr Gang Wu of Chuzhou University for his help with the crystal growth.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201–207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, X.-S. & Sang, Y.-L. (2009). Acta Cryst. E65, o1650.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNing, J.-H. & Xu, X.-W. (2009). Acta Cryst. E65, o905–o906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, S. A., Naik, V. H., Kulkarni, A. D., Kamble, U., Bagihalli, G. B. & Badami, P. S. (2010). J. Coord. Chem. 63, 688–699.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds