organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{2-[2-(1H-Benzimidazol-1-yl)eth­­oxy]eth­yl}-1H-benzimidazol-3-ium hexa­fluoro­phosphate

aSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: qindabincwnu@yahoo.com.cn

(Received 31 March 2010; accepted 20 April 2010; online 24 April 2010)

In the title salt, C18H19N4O+·PF6, the dihedral angle between the benzimidazolium and benzimidazole ring systems is 16.24 (2)°. In the cation, a ππ inter­action is observed between the imidazolium ring and the benzene ring of the benzimidazole ring system [centroid–centroid distance = 3.5713 (11) Å]. The PF6 ion is disordered over two sites, with occupancies of 0.895 (2) and 0.105 (2). In the crystal structure, pairs of N—H⋯N hydrogen bonds link the cations, forming centrosymmetric dimers. The dimers are linked via ππ inter­actions [centroid–centroid distance = 3.5606 (11) Å]. In addition, C—H⋯F hydrogen bonds are observed.

Related literature

For the synthesis, see: Zeng et al. (2008[Zeng, A., Phillips, B. S., Xiao, J.-C. & Jean'ne, M. S. (2008). Chem. Mater. 20, 2719-2726.]). For general background to benzimidazole derivatives, see: Pal et al. (2007[Pal, S., Hwang, W.-S., Lin, I. J. B. & Lee, C.-S. (2007). J. Mol. Catal. A, 269, 197-922.]); Murru et al. (2009[Murru, S., Patel, B. K., Le Bras, J. & Muzart, J. (2009). J. Org. Chem. 74, 2217-2220.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N4O+·PF6

  • Mr = 452.34

  • Monoclinic, P 21 /c

  • a = 10.5347 (18) Å

  • b = 13.771 (2) Å

  • c = 13.353 (2) Å

  • β = 92.507 (2)°

  • V = 1935.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 93 K

  • 0.37 × 0.33 × 0.27 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.923, Tmax = 0.943

  • 11885 measured reflections

  • 3959 independent reflections

  • 3445 reflections with I > 2σ(I)

  • Rint = 0.026

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.080

  • S = 1.00

  • 3959 reflections

  • 303 parameters

  • 21 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N4i 1.05 (2) 1.68 (2) 2.724 (2) 176 (2)
C4—H4⋯F3ii 0.95 2.41 3.130 (2) 133
C7—H7⋯F4iii 0.95 2.23 3.100 (2) 152
C9—H9B⋯F2iii 0.99 2.40 3.340 (2) 159
C11—H11A⋯F2iv 0.99 2.51 3.066 (2) 116
C16—H16⋯F4v 0.95 2.39 3.300 (2) 161
C18—H18⋯F6 0.95 2.38 3.298 (2) 163
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) x+1, y, z.

Data collection: RAPID-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzimidazole derivatives are an important class of heterocycles that are present in a number of biologically active compounds. These derivatives are also used as cyclic N-heterocyclic carbene (NHC) precursors (Murru et al., 2009). A benzimidazole N-donor dinuclear palladacycle complex is used as an efficient Suzuki coupling catalyst (Pal et al., 2007).

Bond lengths and angles in the ionic pairs (Fig. 1) are within normal ranges. The benzimidazolium and benzimidazole ring systems make a dihedral angle of 16.24 (2)°. In the cation, a ππ interaction is observed between N1/C1/C6/N2C7 and C12-C17 rings, with the ring centroids being separated by 3.5713 (11) Å.

In the crystal structure, pairs of N—H···N hydrogen bonds link cations to form centrosymmetric dimers. The dimers are linked via ππ interactions between the N1/C1/C6/N2C7 ring at (x, y, z) and the C12-C17 ring at (1-x, y-1/2, 1/2-z), with their centroids separated by 3.5606 (11) Å. In addition, C—H···F hydrogen bonds are observed (Table 1).

Related literature top

For the synthesis, see: Zeng et al. (2008). For general background to benzimidazole derivatives, see: Pal et al. (2007); Murru et al. (2009).

Experimental top

The title compound was prepared according to the reported procedure of Zeng et al.. (2008). Colourless single crystals suitable for X-ray diffraction were obtained by recrystallization from acetonitrile and ethyl ether.

Refinement top

The PF6- ion is disordered over two sites with occupancies of 0.895 (2) and 0.105 (2). The Uij values of atom pairs F1/F1', F2/F2', F3/F3, F4/F4', F5/F5' and F6/F6' were constrained to be equal. The corresponding distances in the two disorder components were restrained to be the same. Atom H1N was located in a difference map and refined freely. All other H atoms were placed in calculated positions [C–H = 0.95–0.99 Å] and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Structure description top

Benzimidazole derivatives are an important class of heterocycles that are present in a number of biologically active compounds. These derivatives are also used as cyclic N-heterocyclic carbene (NHC) precursors (Murru et al., 2009). A benzimidazole N-donor dinuclear palladacycle complex is used as an efficient Suzuki coupling catalyst (Pal et al., 2007).

Bond lengths and angles in the ionic pairs (Fig. 1) are within normal ranges. The benzimidazolium and benzimidazole ring systems make a dihedral angle of 16.24 (2)°. In the cation, a ππ interaction is observed between N1/C1/C6/N2C7 and C12-C17 rings, with the ring centroids being separated by 3.5713 (11) Å.

In the crystal structure, pairs of N—H···N hydrogen bonds link cations to form centrosymmetric dimers. The dimers are linked via ππ interactions between the N1/C1/C6/N2C7 ring at (x, y, z) and the C12-C17 ring at (1-x, y-1/2, 1/2-z), with their centroids separated by 3.5606 (11) Å. In addition, C—H···F hydrogen bonds are observed (Table 1).

For the synthesis, see: Zeng et al. (2008). For general background to benzimidazole derivatives, see: Pal et al. (2007); Murru et al. (2009).

Computing details top

Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell refinement: RAPID-AUTO (Rigaku/MSC, 2004); data reduction: RAPID-AUTO (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. C-bound H atoms have been omitted. For clarity, only the major disorder component is shown.
1-{2-[2-(1H-Benzimidazol-1-yl)ethoxy]ethyl}-1H- benzimidazol-3-ium hexafluorophosphate top
Crystal data top
C18H19N4O+·PF6F(000) = 928
Mr = 452.34Dx = 1.553 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5714 reflections
a = 10.5347 (18) Åθ = 3.1–27.5°
b = 13.771 (2) ŵ = 0.22 mm1
c = 13.353 (2) ÅT = 93 K
β = 92.507 (2)°Block, colourless
V = 1935.3 (6) Å30.37 × 0.33 × 0.27 mm
Z = 4
Data collection top
Rigaku SPIDER
diffractometer
3959 independent reflections
Radiation source: Rotating Anode3445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1310
Tmin = 0.923, Tmax = 0.943k = 1317
11885 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0259P)2 + 0.968P]
where P = (Fo2 + 2Fc2)/3
3959 reflections(Δ/σ)max = 0.001
303 parametersΔρmax = 0.34 e Å3
21 restraintsΔρmin = 0.28 e Å3
Crystal data top
C18H19N4O+·PF6V = 1935.3 (6) Å3
Mr = 452.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5347 (18) ŵ = 0.22 mm1
b = 13.771 (2) ÅT = 93 K
c = 13.353 (2) Å0.37 × 0.33 × 0.27 mm
β = 92.507 (2)°
Data collection top
Rigaku SPIDER
diffractometer
3959 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3445 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.943Rint = 0.026
11885 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04021 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.34 e Å3
3959 reflectionsΔρmin = 0.28 e Å3
303 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.20360 (11)0.51931 (8)0.18156 (8)0.0247 (3)
N10.53426 (13)0.40531 (10)0.31178 (10)0.0243 (3)
N20.41920 (13)0.39824 (9)0.17089 (10)0.0218 (3)
N30.26475 (13)0.62988 (10)0.35541 (10)0.0253 (3)
N40.39492 (14)0.60700 (10)0.48994 (10)0.0294 (3)
C10.61864 (16)0.39760 (11)0.23507 (12)0.0229 (3)
C20.75022 (16)0.39314 (12)0.23627 (13)0.0285 (4)
H20.80050.39640.29700.034*
C30.80419 (17)0.38372 (13)0.14435 (14)0.0319 (4)
H30.89410.38010.14200.038*
C40.73059 (17)0.37927 (13)0.05438 (13)0.0311 (4)
H40.77180.37300.00720.037*
C50.60018 (16)0.38377 (12)0.05330 (12)0.0262 (4)
H50.54990.38080.00750.031*
C60.54567 (15)0.39293 (11)0.14572 (12)0.0218 (3)
C70.41753 (16)0.40521 (11)0.27069 (12)0.0245 (4)
H70.34240.40950.30730.029*
C80.31129 (15)0.39532 (12)0.09736 (12)0.0242 (4)
H8A0.30300.32880.06980.029*
H8B0.32860.43970.04120.029*
C90.18818 (16)0.42403 (12)0.14171 (13)0.0262 (4)
H9A0.11850.42310.08950.031*
H9B0.16680.37800.19540.031*
C100.10406 (16)0.54786 (12)0.24439 (12)0.0272 (4)
H10A0.08900.49680.29470.033*
H10B0.02430.55840.20390.033*
C110.14574 (16)0.64079 (13)0.29557 (12)0.0277 (4)
H11A0.15680.69160.24420.033*
H11B0.07830.66270.33970.033*
C120.38716 (16)0.64002 (11)0.32253 (12)0.0231 (3)
C130.43309 (16)0.65920 (12)0.22830 (12)0.0262 (4)
H130.37750.66870.17120.031*
C140.56322 (17)0.66369 (12)0.22204 (13)0.0295 (4)
H140.59820.67640.15900.035*
C150.64530 (18)0.64993 (12)0.30653 (14)0.0314 (4)
H150.73450.65390.29940.038*
C160.59940 (17)0.63079 (12)0.39979 (13)0.0294 (4)
H160.65530.62140.45670.035*
C170.46803 (17)0.62576 (11)0.40726 (12)0.0249 (4)
C180.27606 (18)0.61067 (13)0.45479 (12)0.0299 (4)
H180.20530.60080.49530.036*
P10.07196 (5)0.71567 (4)0.57610 (4)0.02117 (17)0.8952 (16)
F10.10379 (15)0.71525 (12)0.45828 (8)0.0350 (3)0.8952 (16)
F20.03912 (12)0.71374 (11)0.69440 (8)0.0393 (4)0.8952 (16)
F30.05729 (13)0.77151 (12)0.55925 (10)0.0540 (4)0.8952 (16)
F40.19885 (12)0.65494 (12)0.59425 (9)0.0479 (4)0.8952 (16)
F50.14535 (18)0.81437 (11)0.58739 (10)0.0589 (5)0.8952 (16)
F60.00255 (14)0.61439 (10)0.56578 (10)0.0509 (4)0.8952 (16)
P1'0.0834 (6)0.7250 (5)0.5725 (5)0.141 (8)0.1048 (16)
F1'0.0918 (11)0.7157 (9)0.4533 (4)0.0350 (3)0.1048 (16)
F2'0.0730 (10)0.7334 (8)0.6921 (5)0.0393 (4)0.1048 (16)
F3'0.0180 (10)0.8283 (6)0.5636 (8)0.0540 (4)0.1048 (16)
F4'0.1434 (9)0.6186 (6)0.5824 (8)0.0479 (4)0.1048 (16)
F5'0.2196 (8)0.7721 (8)0.5714 (8)0.0589 (5)0.1048 (16)
F6'0.0549 (7)0.6755 (8)0.5745 (8)0.0509 (4)0.1048 (16)
H1N0.560 (2)0.4037 (15)0.3887 (16)0.052 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0252 (6)0.0252 (6)0.0238 (6)0.0009 (5)0.0013 (5)0.0021 (5)
N10.0294 (8)0.0246 (7)0.0183 (7)0.0024 (6)0.0043 (6)0.0007 (6)
N20.0255 (7)0.0219 (7)0.0177 (6)0.0001 (6)0.0024 (5)0.0005 (5)
N30.0272 (8)0.0310 (8)0.0175 (7)0.0061 (6)0.0033 (6)0.0007 (6)
N40.0360 (9)0.0325 (8)0.0192 (7)0.0027 (6)0.0050 (6)0.0010 (6)
C10.0294 (9)0.0190 (8)0.0200 (8)0.0016 (6)0.0023 (7)0.0006 (6)
C20.0285 (9)0.0297 (9)0.0266 (9)0.0011 (7)0.0083 (7)0.0012 (7)
C30.0248 (9)0.0350 (10)0.0357 (10)0.0030 (7)0.0004 (8)0.0041 (8)
C40.0323 (10)0.0361 (10)0.0252 (9)0.0054 (8)0.0048 (8)0.0035 (8)
C50.0319 (10)0.0281 (9)0.0184 (8)0.0021 (7)0.0026 (7)0.0003 (7)
C60.0246 (9)0.0180 (8)0.0225 (8)0.0011 (6)0.0026 (7)0.0001 (6)
C70.0301 (9)0.0235 (8)0.0198 (8)0.0017 (7)0.0007 (7)0.0002 (7)
C80.0261 (9)0.0254 (9)0.0204 (8)0.0013 (7)0.0059 (7)0.0011 (7)
C90.0259 (9)0.0268 (9)0.0255 (9)0.0024 (7)0.0030 (7)0.0015 (7)
C100.0230 (9)0.0346 (10)0.0240 (9)0.0024 (7)0.0012 (7)0.0020 (7)
C110.0249 (9)0.0357 (10)0.0222 (8)0.0076 (7)0.0027 (7)0.0003 (7)
C120.0281 (9)0.0199 (8)0.0207 (8)0.0022 (7)0.0044 (7)0.0031 (6)
C130.0329 (10)0.0262 (9)0.0189 (8)0.0019 (7)0.0055 (7)0.0033 (7)
C140.0347 (10)0.0285 (9)0.0254 (9)0.0061 (7)0.0015 (8)0.0051 (7)
C150.0288 (10)0.0287 (9)0.0362 (10)0.0045 (7)0.0039 (8)0.0048 (8)
C160.0332 (10)0.0246 (9)0.0294 (9)0.0008 (7)0.0120 (8)0.0027 (7)
C170.0325 (9)0.0202 (8)0.0212 (8)0.0013 (7)0.0056 (7)0.0019 (6)
C180.0360 (10)0.0346 (10)0.0189 (8)0.0048 (8)0.0004 (7)0.0013 (7)
P10.0156 (3)0.0302 (3)0.0175 (4)0.0041 (2)0.0011 (2)0.0053 (3)
F10.0370 (7)0.0499 (7)0.0182 (5)0.0021 (5)0.0012 (4)0.0020 (5)
F20.0360 (9)0.0587 (9)0.0220 (5)0.0174 (6)0.0105 (5)0.0105 (5)
F30.0427 (9)0.0789 (11)0.0405 (8)0.0350 (8)0.0021 (6)0.0096 (7)
F40.0266 (8)0.0901 (11)0.0269 (6)0.0273 (7)0.0006 (6)0.0019 (7)
F50.0895 (13)0.0551 (10)0.0322 (8)0.0370 (9)0.0014 (8)0.0026 (7)
F60.0558 (9)0.0451 (9)0.0519 (8)0.0174 (7)0.0044 (7)0.0118 (7)
P1'0.167 (16)0.22 (2)0.030 (7)0.026 (15)0.032 (8)0.006 (9)
F1'0.0370 (7)0.0499 (7)0.0182 (5)0.0021 (5)0.0012 (4)0.0020 (5)
F2'0.0360 (9)0.0587 (9)0.0220 (5)0.0174 (6)0.0105 (5)0.0105 (5)
F3'0.0427 (9)0.0789 (11)0.0405 (8)0.0350 (8)0.0021 (6)0.0096 (7)
F4'0.0266 (8)0.0901 (11)0.0269 (6)0.0273 (7)0.0006 (6)0.0019 (7)
F5'0.0895 (13)0.0551 (10)0.0322 (8)0.0370 (9)0.0014 (8)0.0026 (7)
F6'0.0558 (9)0.0451 (9)0.0519 (8)0.0174 (7)0.0044 (7)0.0118 (7)
Geometric parameters (Å, º) top
O1—C91.4224 (19)C10—C111.507 (2)
O1—C101.4266 (19)C10—H10A0.99
N1—C71.325 (2)C10—H10B0.99
N1—C11.389 (2)C11—H11A0.99
N1—H1N1.05 (2)C11—H11B0.99
N2—C71.337 (2)C12—C131.393 (2)
N2—C61.390 (2)C12—C171.400 (2)
N2—C81.470 (2)C13—C141.378 (2)
N3—C181.353 (2)C13—H130.95
N3—C121.387 (2)C14—C151.404 (2)
N3—C111.465 (2)C14—H140.95
N4—C181.319 (2)C15—C161.381 (3)
N4—C171.398 (2)C15—H150.95
C1—C21.387 (2)C16—C171.394 (2)
C1—C61.392 (2)C16—H160.95
C2—C31.381 (2)C18—H180.95
C2—H20.95P1—F51.5742 (14)
C3—C41.402 (3)P1—F31.5883 (13)
C3—H30.95P1—F11.5942 (12)
C4—C51.375 (2)P1—F21.6025 (12)
C4—H40.95P1—F41.6041 (12)
C5—C61.389 (2)P1—F61.6092 (14)
C5—H50.95P1'—F5'1.574 (3)
C7—H70.95P1'—F3'1.588 (3)
C8—C91.502 (2)P1'—F1'1.595 (3)
C8—H8A0.99P1'—F2'1.601 (3)
C8—H8B0.99P1'—F4'1.603 (3)
C9—H9A0.99P1'—F6'1.608 (3)
C9—H9B0.99
C9—O1—C10113.54 (12)C10—C11—H11B109.1
C7—N1—C1107.87 (14)H11A—C11—H11B107.8
C7—N1—H1N126.9 (11)N3—C12—C13132.02 (15)
C1—N1—H1N125.0 (11)N3—C12—C17105.74 (14)
C7—N2—C6107.41 (13)C13—C12—C17122.24 (16)
C7—N2—C8128.63 (14)C14—C13—C12116.68 (16)
C6—N2—C8123.95 (13)C14—C13—H13121.7
C18—N3—C12106.67 (14)C12—C13—H13121.7
C18—N3—C11126.26 (15)C13—C14—C15121.63 (16)
C12—N3—C11127.04 (13)C13—C14—H14119.2
C18—N4—C17105.03 (14)C15—C14—H14119.2
C2—C1—N1131.78 (15)C16—C15—C14121.52 (17)
C2—C1—C6121.47 (15)C16—C15—H15119.2
N1—C1—C6106.75 (14)C14—C15—H15119.2
C3—C2—C1116.36 (16)C15—C16—C17117.52 (16)
C3—C2—H2121.8C15—C16—H16121.2
C1—C2—H2121.8C17—C16—H16121.2
C2—C3—C4122.12 (17)C16—C17—N4130.48 (16)
C2—C3—H3118.9C16—C17—C12120.41 (16)
C4—C3—H3118.9N4—C17—C12109.11 (15)
C5—C4—C3121.46 (16)N4—C18—N3113.45 (16)
C5—C4—H4119.3N4—C18—H18123.3
C3—C4—H4119.3N3—C18—H18123.3
C4—C5—C6116.52 (16)F5—P1—F391.33 (10)
C4—C5—H5121.7F5—P1—F190.84 (8)
C6—C5—H5121.7F3—P1—F190.37 (7)
C5—C6—N2131.09 (15)F5—P1—F290.33 (7)
C5—C6—C1122.08 (15)F3—P1—F289.90 (7)
N2—C6—C1106.83 (14)F1—P1—F2178.79 (8)
N1—C7—N2111.14 (15)F5—P1—F491.13 (10)
N1—C7—H7124.4F3—P1—F4177.42 (10)
N2—C7—H7124.4F1—P1—F490.37 (7)
N2—C8—C9112.67 (13)F2—P1—F489.30 (6)
N2—C8—H8A109.1F5—P1—F6179.35 (8)
C9—C8—H8A109.1F3—P1—F689.03 (8)
N2—C8—H8B109.1F1—P1—F689.69 (8)
C9—C8—H8B109.1F2—P1—F689.14 (8)
H8A—C8—H8B107.8F4—P1—F688.51 (9)
O1—C9—C8107.68 (13)F5'—P1'—F3'91.6 (3)
O1—C9—H9A110.2F5'—P1'—F1'90.8 (3)
C8—C9—H9A110.2F3'—P1'—F1'90.2 (3)
O1—C9—H9B110.2F5'—P1'—F2'90.1 (3)
C8—C9—H9B110.2F3'—P1'—F2'89.9 (3)
H9A—C9—H9B108.5F1'—P1'—F2'179.1 (4)
O1—C10—C11107.08 (13)F5'—P1'—F4'90.8 (3)
O1—C10—H10A110.3F3'—P1'—F4'177.5 (4)
C11—C10—H10A110.3F1'—P1'—F4'90.2 (3)
O1—C10—H10B110.3F2'—P1'—F4'89.6 (3)
C11—C10—H10B110.3F5'—P1'—F6'179.1 (4)
H10A—C10—H10B108.6F3'—P1'—F6'89.2 (3)
N3—C11—C10112.69 (14)F1'—P1'—F6'89.7 (3)
N3—C11—H11A109.1F2'—P1'—F6'89.5 (3)
C10—C11—H11A109.1F4'—P1'—F6'88.4 (3)
N3—C11—H11B109.1
C7—N1—C1—C2179.03 (17)C9—O1—C10—C11169.54 (13)
C7—N1—C1—C60.03 (17)C18—N3—C11—C1094.78 (19)
N1—C1—C2—C3178.85 (16)C12—N3—C11—C1087.35 (19)
C6—C1—C2—C30.1 (2)O1—C10—C11—N358.98 (17)
C1—C2—C3—C40.3 (3)C18—N3—C12—C13179.45 (17)
C2—C3—C4—C50.2 (3)C11—N3—C12—C132.3 (3)
C3—C4—C5—C60.0 (2)C18—N3—C12—C170.01 (17)
C4—C5—C6—N2179.17 (16)C11—N3—C12—C17178.22 (15)
C4—C5—C6—C10.2 (2)N3—C12—C13—C14179.43 (16)
C7—N2—C6—C5179.09 (16)C17—C12—C13—C140.1 (2)
C8—N2—C6—C50.4 (3)C12—C13—C14—C150.2 (2)
C7—N2—C6—C10.31 (17)C13—C14—C15—C160.3 (3)
C8—N2—C6—C1179.76 (13)C14—C15—C16—C170.1 (2)
C2—C1—C6—C50.1 (2)C15—C16—C17—N4179.34 (16)
N1—C1—C6—C5179.29 (14)C15—C16—C17—C120.2 (2)
C2—C1—C6—N2179.35 (14)C18—N4—C17—C16179.82 (17)
N1—C1—C6—N20.17 (17)C18—N4—C17—C120.29 (18)
C1—N1—C7—N20.23 (18)N3—C12—C17—C16179.76 (14)
C6—N2—C7—N10.34 (18)C13—C12—C17—C160.3 (2)
C8—N2—C7—N1179.76 (14)N3—C12—C17—N40.17 (17)
C7—N2—C8—C913.2 (2)C13—C12—C17—N4179.34 (14)
C6—N2—C8—C9167.43 (14)C17—N4—C18—N30.31 (19)
C10—O1—C9—C8167.47 (13)C12—N3—C18—N40.21 (19)
N2—C8—C9—O158.10 (17)C11—N3—C18—N4178.43 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N4i1.05 (2)1.68 (2)2.724 (2)176 (2)
C4—H4···F3ii0.952.413.130 (2)133
C7—H7···F4iii0.952.233.100 (2)152
C9—H9B···F2iii0.992.403.340 (2)159
C11—H11A···F2iv0.992.513.066 (2)116
C16—H16···F4v0.952.393.300 (2)161
C18—H18···F60.952.383.298 (2)163
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y+3/2, z1/2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H19N4O+·PF6
Mr452.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)10.5347 (18), 13.771 (2), 13.353 (2)
β (°) 92.507 (2)
V3)1935.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.37 × 0.33 × 0.27
Data collection
DiffractometerRigaku SPIDER
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.923, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
11885, 3959, 3445
Rint0.026
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.080, 1.00
No. of reflections3959
No. of parameters303
No. of restraints21
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.28

Computer programs: RAPID-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N4i1.05 (2)1.68 (2)2.724 (2)176 (2)
C4—H4···F3ii0.952.413.130 (2)133
C7—H7···F4iii0.952.233.100 (2)152
C9—H9B···F2iii0.992.403.340 (2)159
C11—H11A···F2iv0.992.513.066 (2)116
C16—H16···F4v0.952.393.300 (2)161
C18—H18···F60.952.383.298 (2)163
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y+3/2, z1/2; (v) x+1, y, z.
 

Acknowledgements

The authors thank the Scientific Researching Fund Projects of China West Normal University (grant No. 06B003) and the Youth Fund Projects of Sichuan Educational Department (grant No. 2006B039) for financial support.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMurru, S., Patel, B. K., Le Bras, J. & Muzart, J. (2009). J. Org. Chem. 74, 2217–2220.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPal, S., Hwang, W.-S., Lin, I. J. B. & Lee, C.-S. (2007). J. Mol. Catal. A, 269, 197–922.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, A., Phillips, B. S., Xiao, J.-C. & Jean'ne, M. S. (2008). Chem. Mater. 20, 2719–2726.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds