organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4Z)-4-[(Cyclo­propyl­amino)(phen­yl)methyl­ene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aCollege of Chemistry, Tianjin Normal University, 393 Binshuixi Road, Xiqing District, Tianjin 300387, People's Republic of China, bNankai High School, 100 Sima Road, Nankai District, Tianjin 300100, People's Republic of China, and cState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: hsxyxhz@mail.tjnu.edu.cn, zyq8165@nankai.edu.cn

(Received 5 April 2010; accepted 14 April 2010; online 21 April 2010)

In the title compound, C20H19N3O, the dihedral angles formed by the pyrazolone ring with the two phenyl rings are 64.27 (6) and 17.00 (6)°. The mol­ecular structure is stabilized by intra­molecular N—H⋯O and C—H⋯O hydrogen bonds. In the crystal, the mol­ecules are linked into chains along the b axis by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the anti­bacterial, biological and analgesic activity of metal complexes of 1-phenyl-3-methyl-4-benzoyl­pyrazolon-5-one, see: Li et al. (1997[Li, J.-Z., Yu, W.-J. & Du, X.-Y. (1997). Chin. J. Appl. Chem. 14, 98-100.]); Liu et al. (1980[Liu, J.-M., Yang, R.-D. & Ma, T.-R. (1980). Chem. J. Chin. Univ. 1, 23-29.]); Zhou et al. (1999[Zhou, Y.-P., Yang, Zh.-Y., Yu, H.-J. & Yang, R.-D. (1999). Chin. J. Appl. Chem. 16, 37-41.]). For a related structure, see: Wang et al. (2003[Wang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430-o432.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19N3O

  • Mr = 317.38

  • Orthorhombic, P b c a

  • a = 8.9790 (18) Å

  • b = 18.500 (4) Å

  • c = 20.050 (4) Å

  • V = 3330.5 (12) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 113 K

  • 0.24 × 0.21 × 0.20 mm

Data collection
  • Rigaku Saturn70 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.863, Tmax = 0.884

  • 34928 measured reflections

  • 3262 independent reflections

  • 2946 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.06

  • 3262 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O1 0.92 (2) 1.88 (2) 2.6726 (15) 143 (2)
C20—H20⋯O1 0.95 2.36 2.9453 (16) 120
C10—H10⋯O1i 0.95 2.30 3.1809 (17) 154
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

1-Phenyl-3-methyl-4-benzoylpyrazolon-5-one (HPMBP), an effective β-diketonate, is widely used and well known for its extractive ability. In recent years, HPMBP and its metal complexes have also been found to have good antibacterial and biological properties. Its metal complexes have analgesic activity (Liu et al., 1980; Li et al., 1997; Zhou et al., 1999). In order to develop new medicines, we have synthesized the title compound and its crystal structure is reported here.

The structure of the title molecule is shown in Fig. 1. The dihedral angles formed by the pyrazolone ring with the C6–C11 and C15–C20 phenyl rings and cyclopropane ring are 64.27 (6)°, 17.00 (6)° and 71.28 (11)°, respectively. The O atom of the 3-methyl-1-phenylpyrazol-5-one moiety and the N atom of the amino group are available for coordination with metals. Atoms O1, C1, C2, C5 and N3 are coplanar (r.m.s. deviation = 0.028 Å). The dihedral angle between this plane and the pyrazoline ring is 4.34 (7)°, close to the value of 3.56 (3)° found in 4-{[3,4-dihydro-5-methyl-3-oxo-2-phenyl-2H-pyrazol-4-ylidene(phenyl) methylamino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (Wang et al., 2003). The bond lengths within this part of the molecule lie between classical single- and double-bond lengths, indicating extensive conjugation. A strong intramolecular N3—H1···O1 hydrogen bond (Table 1) is observed, leading to a keto-enamine form. The molecule is further stabilized by a C—H···O weak intramolecular hydrogen bond (Table 1).

The crystal structure also involves weak intermolecular C—H···O hydrogen-bond interactions (Fig. 2).

Related literature top

For the antibacterial, biological and analgesic activity of metal complexes of 1-phenyl-3-methyl-4-benzoylpyrazolon-5-one, see: Li et al. (1997); Liu et al. (1980); Zhou et al. (1999). For a related structure, see: Wang et al. (2003).

Experimental top

The title compound was synthesized by refluxing a mixture of 1-phenyl-3- methyl-4-benzoylpyrazol-5-one (10 mmol) and cyclopropanamine (10 mmol) in ethanol (80 ml) over a steam bath for about 16 h. Excess solvent was removed by evaporation and the solution was cooled to room temperature. After 2 d, a colourless solid was obtained and this was dried in air. The product was recrystallized from ethanol, to afford colourless crystals of the title compound suitable for X-ray analysis.

Refinement top

C-bonded H atoms were positioned geometrically, with C–H = 0.95–1.00 Å and the amine H atom (H1) was found in a difference map. The amine H atom was refined freely, while C-bonded H atoms were included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(CH2 and CH) or 1.5Ueq(CH3).

Structure description top

1-Phenyl-3-methyl-4-benzoylpyrazolon-5-one (HPMBP), an effective β-diketonate, is widely used and well known for its extractive ability. In recent years, HPMBP and its metal complexes have also been found to have good antibacterial and biological properties. Its metal complexes have analgesic activity (Liu et al., 1980; Li et al., 1997; Zhou et al., 1999). In order to develop new medicines, we have synthesized the title compound and its crystal structure is reported here.

The structure of the title molecule is shown in Fig. 1. The dihedral angles formed by the pyrazolone ring with the C6–C11 and C15–C20 phenyl rings and cyclopropane ring are 64.27 (6)°, 17.00 (6)° and 71.28 (11)°, respectively. The O atom of the 3-methyl-1-phenylpyrazol-5-one moiety and the N atom of the amino group are available for coordination with metals. Atoms O1, C1, C2, C5 and N3 are coplanar (r.m.s. deviation = 0.028 Å). The dihedral angle between this plane and the pyrazoline ring is 4.34 (7)°, close to the value of 3.56 (3)° found in 4-{[3,4-dihydro-5-methyl-3-oxo-2-phenyl-2H-pyrazol-4-ylidene(phenyl) methylamino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (Wang et al., 2003). The bond lengths within this part of the molecule lie between classical single- and double-bond lengths, indicating extensive conjugation. A strong intramolecular N3—H1···O1 hydrogen bond (Table 1) is observed, leading to a keto-enamine form. The molecule is further stabilized by a C—H···O weak intramolecular hydrogen bond (Table 1).

The crystal structure also involves weak intermolecular C—H···O hydrogen-bond interactions (Fig. 2).

For the antibacterial, biological and analgesic activity of metal complexes of 1-phenyl-3-methyl-4-benzoylpyrazolon-5-one, see: Li et al. (1997); Liu et al. (1980); Zhou et al. (1999). For a related structure, see: Wang et al. (2003).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2005); software used to prepare material for publication: CrystalStructure (Rigaku, 2005).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Part of hydrogen-bonded (dashed line) chains in the title compound.
(4Z)-4-[(Cyclopropylamino)(phenyl)methylene]-3-methyl-1-phenyl- 1H-pyrazol-5(4H)-one top
Crystal data top
C20H19N3OF(000) = 1344
Mr = 317.38Dx = 1.266 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ac 2abCell parameters from 2126 reflections
a = 8.9790 (18) Åθ = 2.2–45.5°
b = 18.500 (4) ŵ = 0.63 mm1
c = 20.050 (4) ÅT = 113 K
V = 3330.5 (12) Å3Prism, colourless
Z = 80.24 × 0.21 × 0.20 mm
Data collection top
Rigaku Saturn70
diffractometer
3262 independent reflections
Radiation source: fine-focus sealed tube2946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 72.5°, θmin = 4.4°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 810
Tmin = 0.863, Tmax = 0.884k = 2222
34928 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.7718P]
where P = (Fo2 + 2Fc2)/3
3262 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H19N3OV = 3330.5 (12) Å3
Mr = 317.38Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 8.9790 (18) ŵ = 0.63 mm1
b = 18.500 (4) ÅT = 113 K
c = 20.050 (4) Å0.24 × 0.21 × 0.20 mm
Data collection top
Rigaku Saturn70
diffractometer
3262 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2946 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.884Rint = 0.060
34928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.18 e Å3
3262 reflectionsΔρmin = 0.24 e Å3
222 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67690 (13)0.11712 (5)0.26555 (4)0.0415 (3)
N10.73850 (11)0.08273 (5)0.15606 (5)0.0274 (2)
N20.82349 (11)0.02871 (5)0.12501 (5)0.0262 (2)
N30.79592 (14)0.02403 (5)0.35244 (5)0.0336 (3)
C10.73711 (15)0.07497 (6)0.22477 (6)0.0299 (3)
C20.82015 (14)0.00961 (6)0.23704 (5)0.0266 (3)
C30.87030 (13)0.01421 (6)0.17276 (5)0.0248 (2)
C40.96427 (14)0.07788 (7)0.15470 (6)0.0313 (3)
H4A0.90700.12240.16130.038*
H4B1.05310.07890.18310.038*
H4C0.99440.07420.10790.038*
C50.84118 (13)0.01694 (6)0.30210 (5)0.0260 (3)
C60.90512 (12)0.08952 (6)0.31601 (5)0.0246 (2)
C71.03261 (14)0.09759 (8)0.35553 (6)0.0344 (3)
H71.08060.05620.37360.041*
C81.08875 (16)0.16611 (9)0.36826 (7)0.0454 (4)
H81.17540.17150.39500.054*
C91.01929 (17)0.22661 (8)0.34232 (7)0.0465 (4)
H91.05860.27330.35120.056*
C100.89239 (16)0.21934 (7)0.30344 (6)0.0379 (3)
H100.84430.26100.28600.045*
C110.83581 (13)0.15080 (6)0.29005 (6)0.0269 (3)
H110.74950.14580.26310.032*
C120.78672 (15)0.00510 (6)0.42190 (6)0.0319 (3)
H120.79870.04720.43310.038*
C130.84272 (17)0.05784 (9)0.47193 (6)0.0446 (4)
H13A0.88990.03840.51280.053*
H13B0.88630.10350.45520.053*
C140.68020 (16)0.04703 (8)0.46359 (6)0.0378 (3)
H14A0.62260.08600.44170.045*
H14B0.62630.02090.49930.045*
C150.67274 (13)0.13754 (6)0.11655 (6)0.0269 (3)
C160.72259 (13)0.14729 (6)0.05108 (6)0.0290 (3)
H160.80040.11800.03380.035*
C170.65736 (14)0.20020 (7)0.01143 (6)0.0346 (3)
H170.69030.20640.03320.042*
C180.54501 (15)0.24393 (7)0.03623 (7)0.0369 (3)
H180.50170.28030.00900.044*
C190.49628 (15)0.23398 (7)0.10137 (7)0.0364 (3)
H190.41940.26390.11850.044*
C200.55835 (14)0.18084 (6)0.14184 (6)0.0322 (3)
H200.52340.17410.18610.039*
H10.7554 (18)0.0673 (10)0.3395 (8)0.048 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0784 (7)0.0231 (4)0.0230 (4)0.0114 (4)0.0030 (4)0.0021 (3)
N10.0387 (6)0.0230 (5)0.0204 (5)0.0014 (4)0.0011 (4)0.0008 (3)
N20.0302 (5)0.0259 (5)0.0226 (5)0.0004 (4)0.0001 (4)0.0016 (4)
N30.0610 (7)0.0201 (5)0.0197 (5)0.0004 (4)0.0005 (4)0.0003 (4)
C10.0472 (7)0.0215 (5)0.0210 (5)0.0018 (5)0.0007 (5)0.0012 (4)
C20.0376 (6)0.0207 (5)0.0216 (6)0.0036 (4)0.0013 (4)0.0009 (4)
C30.0266 (6)0.0253 (5)0.0225 (5)0.0039 (4)0.0013 (4)0.0006 (4)
C40.0315 (6)0.0358 (6)0.0267 (6)0.0052 (5)0.0025 (5)0.0019 (5)
C50.0341 (6)0.0221 (5)0.0217 (5)0.0075 (4)0.0014 (4)0.0011 (4)
C60.0268 (6)0.0264 (5)0.0204 (5)0.0019 (4)0.0012 (4)0.0017 (4)
C70.0273 (6)0.0524 (8)0.0235 (5)0.0080 (5)0.0008 (5)0.0058 (5)
C80.0305 (7)0.0732 (10)0.0325 (7)0.0154 (6)0.0044 (5)0.0204 (7)
C90.0528 (9)0.0464 (8)0.0403 (7)0.0257 (7)0.0173 (6)0.0171 (6)
C100.0528 (8)0.0255 (6)0.0353 (6)0.0064 (5)0.0129 (6)0.0016 (5)
C110.0297 (6)0.0241 (5)0.0269 (6)0.0004 (4)0.0018 (4)0.0016 (4)
C120.0509 (8)0.0256 (6)0.0191 (5)0.0011 (5)0.0004 (5)0.0013 (4)
C130.0500 (8)0.0613 (9)0.0223 (6)0.0220 (7)0.0007 (5)0.0058 (6)
C140.0435 (8)0.0431 (7)0.0268 (6)0.0033 (6)0.0029 (5)0.0014 (5)
C150.0332 (6)0.0225 (5)0.0249 (5)0.0050 (4)0.0058 (4)0.0005 (4)
C160.0289 (6)0.0309 (6)0.0273 (6)0.0038 (4)0.0025 (4)0.0033 (5)
C170.0336 (7)0.0391 (7)0.0310 (6)0.0064 (5)0.0050 (5)0.0102 (5)
C180.0370 (7)0.0328 (6)0.0410 (7)0.0004 (5)0.0110 (5)0.0084 (5)
C190.0372 (7)0.0323 (6)0.0397 (7)0.0035 (5)0.0076 (5)0.0035 (5)
C200.0394 (7)0.0293 (6)0.0280 (6)0.0006 (5)0.0035 (5)0.0033 (5)
Geometric parameters (Å, º) top
O1—C11.2525 (15)C9—H90.95
N1—C11.3852 (15)C10—C111.3921 (17)
N1—N21.4029 (13)C10—H100.95
N1—C151.4158 (14)C11—H110.95
N2—C31.3130 (15)C12—C131.4869 (17)
N3—C51.3260 (15)C12—C141.4885 (18)
N3—C121.4382 (15)C12—H121.00
N3—H10.917 (18)C13—C141.482 (2)
C1—C21.4417 (16)C13—H13A0.99
C2—C51.4066 (15)C13—H13B0.99
C2—C31.4345 (15)C14—H14A0.99
C3—C41.4935 (16)C14—H14B0.99
C4—H4A0.98C15—C201.3978 (17)
C4—H4B0.98C15—C161.3984 (17)
C4—H4C0.98C16—C171.3904 (17)
C5—C61.4868 (16)C16—H160.95
C6—C111.3940 (16)C17—C181.3854 (19)
C6—C71.4001 (16)C17—H170.95
C7—C81.388 (2)C18—C191.3898 (19)
C7—H70.95C18—H180.95
C8—C91.383 (2)C19—C201.3912 (17)
C8—H80.95C19—H190.95
C9—C101.387 (2)C20—H200.95
C1—N1—N2111.86 (9)C10—C11—C6120.38 (12)
C1—N1—C15128.83 (10)C10—C11—H11119.8
N2—N1—C15119.26 (9)C6—C11—H11119.8
C3—N2—N1106.35 (9)N3—C12—C13118.30 (11)
C5—N3—C12127.99 (10)N3—C12—C14116.99 (11)
C5—N3—H1113.9 (10)C13—C12—C1459.76 (9)
C12—N3—H1117.6 (10)N3—C12—H12116.6
O1—C1—N1126.06 (11)C13—C12—H12116.6
O1—C1—C2129.34 (11)C14—C12—H12116.6
N1—C1—C2104.59 (10)C14—C13—C1260.17 (9)
C5—C2—C3133.14 (11)C14—C13—H13A117.8
C5—C2—C1121.37 (10)C12—C13—H13A117.8
C3—C2—C1105.47 (9)C14—C13—H13B117.8
N2—C3—C2111.64 (10)C12—C13—H13B117.8
N2—C3—C4118.76 (10)H13A—C13—H13B114.9
C2—C3—C4129.60 (10)C13—C14—C1260.07 (9)
C3—C4—H4A109.5C13—C14—H14A117.8
C3—C4—H4B109.5C12—C14—H14A117.8
H4A—C4—H4B109.5C13—C14—H14B117.8
C3—C4—H4C109.5C12—C14—H14B117.8
H4A—C4—H4C109.5H14A—C14—H14B114.9
H4B—C4—H4C109.5C20—C15—C16120.12 (11)
N3—C5—C2117.73 (11)C20—C15—N1120.92 (10)
N3—C5—C6119.45 (10)C16—C15—N1118.95 (11)
C2—C5—C6122.76 (10)C17—C16—C15119.52 (12)
C11—C6—C7119.31 (11)C17—C16—H16120.2
C11—C6—C5119.47 (10)C15—C16—H16120.2
C7—C6—C5121.21 (10)C18—C17—C16120.84 (12)
C8—C7—C6119.90 (12)C18—C17—H17119.6
C8—C7—H7120.0C16—C17—H17119.6
C6—C7—H7120.0C17—C18—C19119.29 (11)
C9—C8—C7120.41 (13)C17—C18—H18120.4
C9—C8—H8119.8C19—C18—H18120.4
C7—C8—H8119.8C18—C19—C20121.04 (12)
C8—C9—C10120.22 (12)C18—C19—H19119.5
C8—C9—H9119.9C20—C19—H19119.5
C10—C9—H9119.9C19—C20—C15119.19 (12)
C9—C10—C11119.77 (13)C19—C20—H20120.4
C9—C10—H10120.1C15—C20—H20120.4
C11—C10—H10120.1
C1—N1—N2—C32.41 (13)C2—C5—C6—C7122.97 (13)
C15—N1—N2—C3179.94 (10)C11—C6—C7—C80.19 (17)
N2—N1—C1—O1176.20 (12)C5—C6—C7—C8179.28 (11)
C15—N1—C1—O11.0 (2)C6—C7—C8—C90.20 (19)
N2—N1—C1—C23.16 (13)C7—C8—C9—C100.2 (2)
C15—N1—C1—C2179.61 (11)C8—C9—C10—C110.60 (19)
O1—C1—C2—C51.6 (2)C9—C10—C11—C60.61 (18)
N1—C1—C2—C5179.04 (10)C7—C6—C11—C100.21 (17)
O1—C1—C2—C3176.70 (13)C5—C6—C11—C10178.89 (11)
N1—C1—C2—C32.63 (13)C5—N3—C12—C13135.28 (14)
N1—N2—C3—C20.57 (13)C5—N3—C12—C14156.29 (13)
N1—N2—C3—C4179.70 (10)N3—C12—C13—C14106.42 (13)
C5—C2—C3—N2179.36 (12)N3—C12—C14—C13108.60 (13)
C1—C2—C3—N21.32 (13)C1—N1—C15—C2019.43 (18)
C5—C2—C3—C40.3 (2)N2—N1—C15—C20163.52 (10)
C1—C2—C3—C4178.36 (11)C1—N1—C15—C16161.44 (12)
C12—N3—C5—C2170.89 (12)N2—N1—C15—C1615.61 (15)
C12—N3—C5—C66.43 (19)C20—C15—C16—C170.12 (17)
C3—C2—C5—N3170.75 (13)N1—C15—C16—C17179.02 (10)
C1—C2—C5—N37.04 (17)C15—C16—C17—C180.82 (18)
C3—C2—C5—C612.0 (2)C16—C17—C18—C190.70 (19)
C1—C2—C5—C6170.18 (11)C17—C18—C19—C200.11 (19)
N3—C5—C6—C11119.23 (13)C18—C19—C20—C150.80 (19)
C2—C5—C6—C1157.95 (16)C16—C15—C20—C190.68 (17)
N3—C5—C6—C759.85 (16)N1—C15—C20—C19179.80 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O10.92 (2)1.88 (2)2.6726 (15)143 (2)
C20—H20···O10.952.362.9453 (16)120
C10—H10···O1i0.952.303.1809 (17)154
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC20H19N3O
Mr317.38
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)8.9790 (18), 18.500 (4), 20.050 (4)
V3)3330.5 (12)
Z8
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.24 × 0.21 × 0.20
Data collection
DiffractometerRigaku Saturn70
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.863, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
34928, 3262, 2946
Rint0.060
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.06
No. of reflections3262
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.24

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O10.92 (2)1.88 (2)2.6726 (15)143 (2)
C20—H20···O10.952.362.9453 (16)120
C10—H10···O1i0.952.303.1809 (17)154
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (grant No. 20772066).

References

First citationLi, J.-Z., Yu, W.-J. & Du, X.-Y. (1997). Chin. J. Appl. Chem. 14, 98–100.  CAS Google Scholar
First citationLiu, J.-M., Yang, R.-D. & Ma, T.-R. (1980). Chem. J. Chin. Univ. 1, 23–29.  CAS Google Scholar
First citationRigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430–o432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Y.-P., Yang, Zh.-Y., Yu, H.-J. & Yang, R.-D. (1999). Chin. J. Appl. Chem. 16, 37–41.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds