organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Piperazine-1,4-diium bis­­(3,5-di­carb­oxy­benzoate)

aCollege of Chemical Engineering and Biotechnology, Hebei Polytechnic University, Tangshan 063009, People's Republic of China, and bMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan
*Correspondence e-mail: iukhangcu@126.com

(Received 5 April 2010; accepted 9 April 2010; online 17 April 2010)

The asymmetric unit of the title salt, C4H12N22+·2C9H5O6, comprises one half of the piperazine-1,4-diium dication lying on an inversion centre and one 3,5-dicarboxy­benzoate anion. In the crystal, the ions are linked into a two-dimensional framework parallel to (101) by N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For related structures, see: Divya et al. (2003[Divya, K. & Ramaswamy, M. (2003). Indian J. Chem. Sect. A, 42, 2267-2276.]); Sharma & Zaworotko et al. (1996[Sharma, C. V. K. & Zaworotko, M. J. (1996). J. Chem. Soc. Chem. Commun. pp. 2655-2666.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12N22+·2C9H5O6

  • Mr = 506.42

  • Triclinic, [P \overline 1]

  • a = 7.3029 (15) Å

  • b = 8.6758 (17) Å

  • c = 9.0422 (18) Å

  • α = 87.04 (3)°

  • β = 69.94 (3)°

  • γ = 83.76 (3)°

  • V = 534.9 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 295 K

  • 0.22 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.971

  • 5586 measured reflections

  • 2443 independent reflections

  • 1563 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.219

  • S = 1.00

  • 2443 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.90 1.85 2.725 (4) 165
N1—H1B⋯O6ii 0.90 1.92 2.751 (4) 153
O2—H2⋯O4iii 0.82 1.87 2.612 (4) 149
O5—H5⋯O3iv 0.82 1.79 2.584 (4) 164
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x-1, y, z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3,5-Benzenetricarboxylic acid is an important building block in crystal engineering due to its predictable honeycomb formation in the crystal lattice. It has six potential donor sites in the three carboxylic acid group, and it can form mono-, di- and trianionic ligand species through deprotonation. The adduct of 4,4'-bipyridyl with trimesic acid (1,3,5-benzenetricarboxylic acid) is of 2:3 stoichiometry and it forms a two-dimensional network (Sharma & Zaworotko, 1996). We report here the crystal structure of the title compound, (I).

The asymmetric unit of the compound (I) comprises one-half of a piperazine-1,4-diium cation which lies on an inversion centre and one 3,5-dicarboxy benzoate anion (Fig. 1). Bond distances and angles in (I) are normal (Divya et al., 2003).

In the crystal structure, the cations and anions are interlinked by N—H···O and O—H···O hydrogen bonds (Table 1) producing a two-dimensional hydrogen-bonded framework structure parallel to the (101) [Fig. 2].

Related literature top

For related structures, see: Divya et al. (2003); Sharma & Zaworotko et al. (1996).

Experimental top

1,3,5-Benzenetricarboxylic acid (1.06 g, 5 mmol) and piperazine (0.43 g, 5 mmol) were dissolved in warm water (30 ml). Single crystals of the title compound were obtained by slow evaporation of this solution.

Refinement top

H atoms were positioned geometrically [O–H = 0.82 Å, N–H = 0.90 Å and C–H = 0.93 or 0.97 Å] and refined using a riding model, with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C,N).

Structure description top

1,3,5-Benzenetricarboxylic acid is an important building block in crystal engineering due to its predictable honeycomb formation in the crystal lattice. It has six potential donor sites in the three carboxylic acid group, and it can form mono-, di- and trianionic ligand species through deprotonation. The adduct of 4,4'-bipyridyl with trimesic acid (1,3,5-benzenetricarboxylic acid) is of 2:3 stoichiometry and it forms a two-dimensional network (Sharma & Zaworotko, 1996). We report here the crystal structure of the title compound, (I).

The asymmetric unit of the compound (I) comprises one-half of a piperazine-1,4-diium cation which lies on an inversion centre and one 3,5-dicarboxy benzoate anion (Fig. 1). Bond distances and angles in (I) are normal (Divya et al., 2003).

In the crystal structure, the cations and anions are interlinked by N—H···O and O—H···O hydrogen bonds (Table 1) producing a two-dimensional hydrogen-bonded framework structure parallel to the (101) [Fig. 2].

For related structures, see: Divya et al. (2003); Sharma & Zaworotko et al. (1996).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering and 30% probability displacement ellipsoids. Atoms labelled with the suffix A are generated by the symmetry operation (1-x, 1-y, 1-z).
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines
Piperazine-1,4-diium bis(3,5-dicarboxybenzoate) top
Crystal data top
C4H12N22+·2C9H5O6Z = 1
Mr = 506.42F(000) = 264
Triclinic, P1Dx = 1.572 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3029 (15) ÅCell parameters from 2886 reflections
b = 8.6758 (17) Åθ = 4.1–23.7°
c = 9.0422 (18) ŵ = 0.13 mm1
α = 87.04 (3)°T = 295 K
β = 69.94 (3)°Prism, colourless
γ = 83.76 (3)°0.22 × 0.21 × 0.20 mm
V = 534.9 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2443 independent reflections
Radiation source: fine-focus sealed tube1563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.968, Tmax = 0.971k = 1111
5586 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.219H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1021P)2 + 0.7768P]
where P = (Fo2 + 2Fc2)/3
2443 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C4H12N22+·2C9H5O6γ = 83.76 (3)°
Mr = 506.42V = 534.9 (2) Å3
Triclinic, P1Z = 1
a = 7.3029 (15) ÅMo Kα radiation
b = 8.6758 (17) ŵ = 0.13 mm1
c = 9.0422 (18) ÅT = 295 K
α = 87.04 (3)°0.22 × 0.21 × 0.20 mm
β = 69.94 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2443 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1563 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.971Rint = 0.048
5586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.219H-atom parameters constrained
S = 1.00Δρmax = 0.35 e Å3
2443 reflectionsΔρmin = 0.22 e Å3
165 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.5054 (4)0.0789 (3)0.2891 (3)0.0327 (7)
O40.3840 (4)0.2898 (3)0.1607 (3)0.0351 (7)
O50.2059 (4)0.0124 (3)0.4770 (3)0.0299 (6)
H50.28530.03310.54790.045*
O60.0820 (4)0.2283 (3)0.3989 (3)0.0401 (8)
C60.0627 (5)0.1419 (4)0.2228 (4)0.0244 (8)
H60.01040.20460.30730.029*
O20.3069 (5)0.4294 (3)0.0579 (3)0.0507 (9)
H20.31100.52320.05470.076*
C20.2932 (5)0.1130 (4)0.0401 (4)0.0213 (7)
H2A0.37400.15670.13220.026*
C30.2797 (5)0.0471 (4)0.0306 (4)0.0200 (7)
C50.0477 (5)0.0166 (4)0.2327 (4)0.0220 (7)
C10.1875 (5)0.2071 (4)0.0863 (4)0.0238 (8)
C40.1576 (5)0.1116 (4)0.1067 (4)0.0231 (8)
H40.14900.21810.11460.028*
C80.3998 (5)0.1456 (4)0.1710 (4)0.0221 (7)
O10.1355 (6)0.4589 (3)0.1961 (4)0.0588 (10)
C90.0858 (5)0.0890 (4)0.3773 (4)0.0243 (8)
C70.2045 (6)0.3776 (4)0.0825 (4)0.0324 (9)
N10.6111 (5)0.5988 (3)0.5510 (3)0.0294 (7)
H1A0.53320.61810.65090.035*
H1B0.71840.64950.53110.035*
C110.5066 (7)0.6562 (4)0.4430 (5)0.0375 (10)
H11A0.59460.64390.33520.045*
H11B0.46560.76590.46020.045*
C100.3299 (6)0.5704 (4)0.4671 (5)0.0385 (10)
H10A0.23570.59060.57160.046*
H10B0.26820.60680.39070.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0350 (14)0.0304 (14)0.0214 (13)0.0079 (11)0.0066 (11)0.0010 (10)
O40.0490 (17)0.0175 (13)0.0256 (14)0.0037 (12)0.0047 (12)0.0024 (10)
O50.0265 (14)0.0288 (14)0.0223 (13)0.0038 (11)0.0074 (10)0.0010 (10)
O60.0459 (17)0.0261 (14)0.0318 (15)0.0108 (12)0.0099 (13)0.0006 (11)
C60.0257 (18)0.0196 (16)0.0219 (17)0.0002 (14)0.0002 (14)0.0049 (13)
O20.085 (2)0.0214 (14)0.0282 (15)0.0164 (15)0.0054 (15)0.0018 (11)
C20.0253 (18)0.0196 (16)0.0157 (15)0.0037 (14)0.0025 (13)0.0021 (13)
C30.0183 (16)0.0200 (16)0.0189 (16)0.0021 (13)0.0027 (13)0.0005 (12)
C50.0229 (17)0.0230 (17)0.0162 (16)0.0035 (14)0.0015 (13)0.0003 (13)
C10.0280 (18)0.0199 (17)0.0224 (17)0.0043 (14)0.0064 (14)0.0000 (13)
C40.0268 (18)0.0203 (16)0.0207 (17)0.0048 (14)0.0052 (14)0.0014 (13)
C80.0220 (17)0.0220 (17)0.0198 (16)0.0035 (14)0.0034 (14)0.0008 (13)
O10.091 (3)0.0257 (15)0.0370 (17)0.0137 (16)0.0105 (17)0.0093 (13)
C90.0232 (17)0.0249 (18)0.0208 (17)0.0078 (15)0.0010 (14)0.0005 (14)
C70.041 (2)0.0224 (18)0.0285 (19)0.0098 (17)0.0025 (17)0.0000 (15)
N10.0306 (17)0.0261 (16)0.0255 (16)0.0069 (13)0.0001 (13)0.0063 (13)
C110.058 (3)0.0202 (18)0.033 (2)0.0037 (18)0.0124 (19)0.0006 (15)
C100.038 (2)0.033 (2)0.044 (2)0.0074 (18)0.0150 (19)0.0115 (18)
Geometric parameters (Å, º) top
O3—C81.240 (4)C5—C41.396 (5)
O4—C81.265 (4)C5—C91.493 (4)
O5—C91.314 (4)C1—C71.496 (5)
O5—H50.82C4—H40.93
O6—C91.213 (4)O1—C71.204 (5)
C6—C51.387 (5)N1—C111.471 (5)
C6—C11.394 (5)N1—C10i1.485 (5)
C6—H60.93N1—H1A0.90
O2—C71.318 (4)N1—H1B0.90
O2—H20.8200C11—C101.505 (6)
C2—C11.387 (5)C11—H11A0.97
C2—C31.399 (4)C11—H11B0.97
C2—H2A0.93C10—N1i1.485 (5)
C3—C41.388 (5)C10—H10A0.97
C3—C81.516 (5)C10—H10B0.97
C9—O5—H5109.5O6—C9—C5122.5 (3)
C5—C6—C1120.0 (3)O5—C9—C5113.5 (3)
C5—C6—H6120.0O1—C7—O2123.3 (3)
C1—C6—H6120.0O1—C7—C1123.8 (3)
C7—O2—H2109.5O2—C7—C1112.9 (3)
C1—C2—C3120.7 (3)C11—N1—C10i111.1 (3)
C1—C2—H2A119.6C11—N1—H1A109.4
C3—C2—H2A119.6C10i—N1—H1A109.4
C4—C3—C2119.4 (3)C11—N1—H1B109.4
C4—C3—C8121.7 (3)C10i—N1—H1B109.4
C2—C3—C8118.9 (3)H1A—N1—H1B108.0
C6—C5—C4120.3 (3)N1—C11—C10111.5 (3)
C6—C5—C9121.0 (3)N1—C11—H11A109.3
C4—C5—C9118.7 (3)C10—C11—H11A109.3
C2—C1—C6119.6 (3)N1—C11—H11B109.3
C2—C1—C7122.1 (3)C10—C11—H11B109.3
C6—C1—C7118.3 (3)H11A—C11—H11B108.0
C3—C4—C5119.9 (3)N1i—C10—C11110.1 (3)
C3—C4—H4120.0N1i—C10—H10A109.6
C5—C4—H4120.0C11—C10—H10A109.6
O3—C8—O4124.4 (3)N1i—C10—H10B109.6
O3—C8—C3117.7 (3)C11—C10—H10B109.6
O4—C8—C3117.9 (3)H10A—C10—H10B108.2
O6—C9—O5124.0 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4ii0.901.852.725 (4)165
N1—H1B···O6iii0.901.922.751 (4)153
O2—H2···O4iv0.821.872.612 (4)149
O5—H5···O3v0.821.792.584 (4)164
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC4H12N22+·2C9H5O6
Mr506.42
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.3029 (15), 8.6758 (17), 9.0422 (18)
α, β, γ (°)87.04 (3), 69.94 (3), 83.76 (3)
V3)534.9 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.22 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
5586, 2443, 1563
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.219, 1.00
No. of reflections2443
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.22

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.901.852.725 (4)165
N1—H1B···O6ii0.901.922.751 (4)153
O2—H2···O4iii0.821.872.612 (4)149
O5—H5···O3iv0.821.792.584 (4)164
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x1, y, z+1.
 

Acknowledgements

The authors thank Hebei Polytechnic University and Government College University for support this work.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDivya, K. & Ramaswamy, M. (2003). Indian J. Chem. Sect. A, 42, 2267–2276.  Google Scholar
First citationSharma, C. V. K. & Zaworotko, M. J. (1996). J. Chem. Soc. Chem. Commun. pp. 2655–2666.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds