metal-organic compounds
Di-μ-thiocyanato-κ4N:N-bis({5-methoxy-2-[3-(methylamino)propyliminomethyl]phenolato-κ3O1,N,N′}copper(II))
aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: wangnong05@163.com
The title thiocyanate-bridged dinuclear copper(II) complex, [Cu2(C12H17N2O2)2(NCS)2], possesses crystallographic inversion symmetry. Each CuII atom is five-coordinated by one imine N, one amine N and one phenolate O atom of the Schiff base ligand, and by two N atoms from two bridging thiocyanate ligands, forming a square-pyramidal geometry. Beside the two thiocyanate bridges, there are two intramolecular N—H⋯O hydrogen bonds, which further link the two Cu(C12H17N2O2)(NCS) units. The Cu⋯Cu separation is 3.261 (2) Å. Parts of the methylaminopropylimino segment are disordered over two sites with occupancies of 0.669(9) and 0.331(9).
Related literature
For general background to copper complexes, see: Reddy et al. (2000); Ray et al. (2003); Arnold et al. (2003); Raptopoulou et al. (1998). For our previous reports of copper(II) complexes, see: Wang & Li (2005); Wang et al. (2006). For related structures, see: Elmali et al. (2000); You & Zhu (2005); Liu et al. (2004); Datta et al. (2008); Habibi et al. (2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810015564/ci5079sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810015564/ci5079Isup2.hkl
4-Methoxysalicylaldehyde (0.1 mmol, 15.2 mg), N-methylpropane-1,3-diamine (0.1 mmol, 8.8 mg), NH4NCS (0.1 mmol, 7.6 mg) and Cu(CH3COO)2.H2O (0.1 mmol, 19.9 mg) were dissolved in methanol (20 ml). The mixture was stirred at room temperature for 1 h to give a blue solution. The resulting solution was allowed to stand in air for a few days, and blue block-shaped crystals were formed.
Atoms C9, C10 and C11 of the methylaminopropylimino segment are disordered over two sites with occupancies of 0.669 (9) and 0.331 (9). The N—C and also the C—C distances involving the disordered atoms were restrained to be equal. The Uij parameters of the disordered atoms, and atom C12 were restrained to an approximate isotropic behaviour. H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93-0.97 Å, N—H distances in the range 0.90-0.91 Å and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(methyl C).
An extensive effort has been made to prepare and characterize a variety of coordination complexes in an attempt to model the physical and chemical behaviour of copper-containing enzymes (Reddy et al., 2000). The peculiarity of copper lies in its ability to form complexes with coordination numbers of four, five, and six (Ray et al. 2003; Arnold et al., 2003; Raptopoulou et al., 1998). As a continuation of our own work in this area (Wang & Li, 2005; Wang et al., 2006), the title compound, a new copper(II) complex, is reported here.
The title compound is a thiocyanate-bridged dinuclear copper(II) complex (Fig. 1), with a Cu···Cu separation of 3.2608 (7) Å. The complex possesses a crystallographic inversion centre symmetry. Each CuII atom is five-coordinated by one imine N, one amine N, and one phenolate O atom of the Schiff base ligand, and by two N atoms from two thiocyanate ligands, forming a square-pyramidal geometry. The bond lengths and angles (Table 1) are typical and comparable with those in other copper(II) complexes with
and thiocyanate ligands (Elmali et al., 2000; You & Zhu, 2005; Liu et al., 2004; Datta et al., 2008; Habibi et al., 2007). Beside the two thiocyanate bridges, there exist two N—H···O hydrogen bonds (Table 2) in the complex, which further link the two [Cu(C12H17N2O2)(NCS)] units together (Fig. 2).For general background to copper complexes, see: Reddy et al. (2000); Ray et al. (2003); Arnold et al. (2003); Raptopoulou et al. (1998). For our previous reports of copper(II) complexes, see: Wang & Li (2005); Wang et al. (2006). For related structures, see: Elmali et al. (2000); You & Zhu (2005); Liu et al. (2004); Datta et al. (2008); Habibi et al. (2007).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2(C12H17N2O2)2(NCS)2] | F(000) = 708 |
Mr = 685.79 | Dx = 1.531 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2304 reflections |
a = 11.8003 (18) Å | θ = 2.5–25.1° |
b = 15.373 (2) Å | µ = 1.61 mm−1 |
c = 8.6740 (13) Å | T = 298 K |
β = 108.972 (7)° | Block, blue |
V = 1488.0 (4) Å3 | 0.20 × 0.20 × 0.18 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 3544 independent reflections |
Radiation source: fine-focus sealed tube | 2496 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ω scans | θmax = 28.5°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −15→15 |
Tmin = 0.739, Tmax = 0.760 | k = −20→19 |
9297 measured reflections | l = −11→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0508P)2 + 0.2175P] where P = (Fo2 + 2Fc2)/3 |
3544 reflections | (Δ/σ)max = 0.001 |
211 parameters | Δρmax = 0.48 e Å−3 |
50 restraints | Δρmin = −0.41 e Å−3 |
[Cu2(C12H17N2O2)2(NCS)2] | V = 1488.0 (4) Å3 |
Mr = 685.79 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.8003 (18) Å | µ = 1.61 mm−1 |
b = 15.373 (2) Å | T = 298 K |
c = 8.6740 (13) Å | 0.20 × 0.20 × 0.18 mm |
β = 108.972 (7)° |
Bruker SMART CCD area-detector diffractometer | 3544 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2496 reflections with I > 2σ(I) |
Tmin = 0.739, Tmax = 0.760 | Rint = 0.030 |
9297 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 50 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.48 e Å−3 |
3544 reflections | Δρmin = −0.41 e Å−3 |
211 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.44981 (3) | 0.09693 (2) | 0.01842 (4) | 0.04380 (14) | |
S1 | 0.77288 (9) | 0.09042 (7) | −0.17937 (13) | 0.0751 (3) | |
O1 | 0.33324 (18) | 0.07895 (14) | −0.1912 (2) | 0.0557 (6) | |
O2 | −0.03088 (19) | 0.11364 (15) | −0.6308 (3) | 0.0612 (6) | |
N1 | 0.3347 (2) | 0.14948 (17) | 0.1093 (3) | 0.0578 (7) | |
N2 | 0.5877 (3) | 0.1033 (2) | 0.2257 (4) | 0.0775 (10) | |
H2A | 0.6321 | 0.0548 | 0.2262 | 0.093* | 0.669 (9) |
H2B | 0.6324 | 0.0572 | 0.2174 | 0.093* | 0.331 (9) |
N3 | 0.5707 (2) | 0.06534 (19) | −0.0884 (3) | 0.0608 (7) | |
C1 | 0.1697 (2) | 0.15468 (16) | −0.1467 (3) | 0.0412 (6) | |
C2 | 0.2230 (2) | 0.10933 (17) | −0.2462 (4) | 0.0433 (7) | |
C3 | 0.1564 (3) | 0.09443 (17) | −0.4110 (4) | 0.0447 (7) | |
H3 | 0.1906 | 0.0638 | −0.4774 | 0.054* | |
C4 | 0.0408 (2) | 0.12515 (19) | −0.4741 (4) | 0.0458 (7) | |
C5 | −0.0121 (3) | 0.1713 (2) | −0.3762 (4) | 0.0558 (8) | |
H5 | −0.0897 | 0.1925 | −0.4201 | 0.067* | |
C6 | 0.0507 (3) | 0.18466 (18) | −0.2176 (4) | 0.0516 (7) | |
H6 | 0.0145 | 0.2146 | −0.1528 | 0.062* | |
C7 | 0.0149 (3) | 0.0685 (2) | −0.7408 (4) | 0.0664 (9) | |
H7A | 0.0827 | 0.0993 | −0.7513 | 0.080* | |
H7B | −0.0461 | 0.0646 | −0.8454 | 0.080* | |
H7C | 0.0391 | 0.0110 | −0.6998 | 0.080* | |
C8 | 0.2262 (3) | 0.16936 (18) | 0.0221 (4) | 0.0516 (7) | |
H8 | 0.1799 | 0.1965 | 0.0768 | 0.062* | |
C9 | 0.3506 (5) | 0.1469 (5) | 0.2885 (6) | 0.0633 (17) | 0.669 (9) |
H9A | 0.3322 | 0.0889 | 0.3178 | 0.076* | 0.669 (9) |
H9B | 0.2951 | 0.1872 | 0.3117 | 0.076* | 0.669 (9) |
C10 | 0.4770 (5) | 0.1705 (5) | 0.3900 (8) | 0.068 (2) | 0.669 (9) |
H10A | 0.4972 | 0.2259 | 0.3522 | 0.082* | 0.669 (9) |
H10B | 0.4798 | 0.1780 | 0.5022 | 0.082* | 0.669 (9) |
C11 | 0.5706 (8) | 0.1048 (6) | 0.3857 (7) | 0.080 (3) | 0.669 (9) |
H11A | 0.6459 | 0.1191 | 0.4689 | 0.096* | 0.669 (9) |
H11B | 0.5462 | 0.0475 | 0.4098 | 0.096* | 0.669 (9) |
C9A | 0.3884 (12) | 0.1980 (8) | 0.2722 (11) | 0.068 (4) | 0.331 (9) |
H9AA | 0.4489 | 0.2391 | 0.2655 | 0.082* | 0.331 (9) |
H9AB | 0.3265 | 0.2293 | 0.3004 | 0.082* | 0.331 (9) |
C10A | 0.4432 (15) | 0.1287 (10) | 0.397 (2) | 0.086 (5) | 0.331 (9) |
H10C | 0.3808 | 0.0888 | 0.4019 | 0.103* | 0.331 (9) |
H10D | 0.4758 | 0.1559 | 0.5033 | 0.103* | 0.331 (9) |
C11A | 0.5414 (14) | 0.0777 (10) | 0.3617 (15) | 0.085 (6) | 0.331 (9) |
H11C | 0.6096 | 0.0773 | 0.4613 | 0.102* | 0.331 (9) |
H11D | 0.5137 | 0.0181 | 0.3414 | 0.102* | 0.331 (9) |
C12 | 0.6695 (4) | 0.1786 (3) | 0.2263 (7) | 0.1234 (19) | |
H12A | 0.6282 | 0.2323 | 0.2276 | 0.148* | |
H12B | 0.6930 | 0.1762 | 0.1303 | 0.148* | |
H12C | 0.7394 | 0.1753 | 0.3214 | 0.148* | |
C13 | 0.6548 (3) | 0.07722 (19) | −0.1263 (4) | 0.0500 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0406 (2) | 0.0484 (2) | 0.0408 (2) | 0.00958 (15) | 0.01100 (16) | −0.00055 (14) |
S1 | 0.0543 (5) | 0.1109 (8) | 0.0669 (6) | −0.0065 (5) | 0.0290 (5) | 0.0033 (5) |
O1 | 0.0440 (12) | 0.0789 (15) | 0.0409 (11) | 0.0279 (10) | 0.0095 (9) | −0.0046 (10) |
O2 | 0.0424 (12) | 0.0714 (15) | 0.0598 (15) | 0.0034 (10) | 0.0026 (11) | −0.0030 (11) |
N1 | 0.0597 (16) | 0.0727 (18) | 0.0399 (14) | 0.0239 (14) | 0.0149 (13) | −0.0057 (12) |
N2 | 0.0566 (18) | 0.093 (2) | 0.063 (2) | 0.0254 (16) | −0.0074 (15) | −0.0285 (16) |
N3 | 0.0474 (15) | 0.0776 (18) | 0.0592 (17) | 0.0080 (14) | 0.0195 (14) | 0.0049 (14) |
C1 | 0.0389 (14) | 0.0394 (14) | 0.0484 (16) | 0.0053 (12) | 0.0185 (13) | 0.0028 (12) |
C2 | 0.0404 (15) | 0.0425 (16) | 0.0472 (17) | 0.0080 (12) | 0.0146 (13) | 0.0073 (12) |
C3 | 0.0411 (15) | 0.0495 (16) | 0.0435 (16) | 0.0043 (12) | 0.0140 (13) | 0.0037 (12) |
C4 | 0.0387 (16) | 0.0446 (15) | 0.0500 (17) | 0.0000 (12) | 0.0088 (14) | 0.0074 (13) |
C5 | 0.0328 (15) | 0.0577 (19) | 0.073 (2) | 0.0075 (13) | 0.0113 (16) | 0.0021 (16) |
C6 | 0.0410 (16) | 0.0481 (17) | 0.070 (2) | 0.0043 (13) | 0.0239 (16) | −0.0047 (14) |
C7 | 0.061 (2) | 0.079 (2) | 0.0491 (19) | −0.0022 (18) | 0.0044 (17) | 0.0007 (17) |
C8 | 0.0577 (19) | 0.0498 (17) | 0.0539 (18) | 0.0126 (14) | 0.0271 (16) | 0.0011 (14) |
C9 | 0.072 (4) | 0.075 (4) | 0.044 (3) | 0.013 (3) | 0.021 (3) | −0.004 (3) |
C10 | 0.080 (4) | 0.073 (4) | 0.042 (3) | 0.010 (3) | 0.007 (3) | −0.021 (3) |
C11 | 0.104 (5) | 0.086 (5) | 0.030 (3) | 0.029 (4) | −0.007 (3) | −0.017 (3) |
C9A | 0.070 (7) | 0.080 (7) | 0.053 (6) | 0.028 (6) | 0.018 (5) | −0.008 (5) |
C10A | 0.089 (9) | 0.106 (9) | 0.062 (7) | 0.005 (7) | 0.024 (7) | 0.018 (7) |
C11A | 0.100 (9) | 0.085 (8) | 0.038 (7) | 0.041 (7) | −0.022 (6) | −0.032 (6) |
C12 | 0.066 (3) | 0.138 (4) | 0.148 (4) | −0.020 (3) | 0.010 (3) | −0.070 (3) |
C13 | 0.0459 (17) | 0.0568 (18) | 0.0452 (17) | 0.0038 (14) | 0.0118 (15) | 0.0024 (13) |
Cu1—O1 | 1.910 (2) | C5—H5 | 0.93 |
Cu1—N1 | 1.953 (2) | C6—H6 | 0.93 |
Cu1—N2 | 1.997 (3) | C7—H7A | 0.96 |
Cu1—N3 | 1.998 (3) | C7—H7B | 0.96 |
Cu1—N3i | 2.598 (4) | C7—H7C | 0.96 |
S1—C13 | 1.616 (3) | C8—H8 | 0.93 |
O1—C2 | 1.317 (3) | C9—C10 | 1.509 (6) |
O2—C4 | 1.359 (3) | C9—H9A | 0.97 |
O2—C7 | 1.421 (4) | C9—H9B | 0.97 |
N1—C8 | 1.294 (4) | C10—C11 | 1.506 (6) |
N1—C9 | 1.504 (5) | C10—H10A | 0.97 |
N1—C9A | 1.540 (8) | C10—H10B | 0.97 |
N2—C11 | 1.467 (6) | C11—H11A | 0.97 |
N2—C12 | 1.505 (5) | C11—H11B | 0.97 |
N2—C11A | 1.506 (9) | C9A—C10A | 1.507 (8) |
N2—H2A | 0.91 | C9A—H9AA | 0.97 |
N2—H2B | 0.90 | C9A—H9AB | 0.97 |
N3—C13 | 1.157 (4) | C10A—C11A | 1.510 (8) |
C1—C2 | 1.407 (4) | C10A—H10C | 0.97 |
C1—C6 | 1.415 (4) | C10A—H10D | 0.97 |
C1—C8 | 1.416 (4) | C11A—H11C | 0.97 |
C2—C3 | 1.408 (4) | C11A—H11D | 0.97 |
C3—C4 | 1.378 (4) | C12—H12A | 0.96 |
C3—H3 | 0.93 | C12—H12B | 0.96 |
C4—C5 | 1.399 (4) | C12—H12C | 0.96 |
C5—C6 | 1.350 (4) | ||
O1—Cu1—N1 | 93.67 (10) | H7A—C7—H7B | 109.5 |
O1—Cu1—N2 | 171.12 (10) | O2—C7—H7C | 109.5 |
N1—Cu1—N2 | 94.96 (12) | H7A—C7—H7C | 109.5 |
O1—Cu1—N3 | 85.70 (10) | H7B—C7—H7C | 109.5 |
N1—Cu1—N3 | 169.45 (12) | N1—C8—C1 | 127.6 (3) |
N2—Cu1—N3 | 86.20 (12) | N1—C8—H8 | 116.2 |
N3i—Cu1—N1 | 99.91 (15) | C1—C8—H8 | 116.2 |
N3i—Cu1—N2 | 87.06 (15) | N1—C9—C10 | 111.3 (5) |
N3i—Cu1—N3 | 90.57 (15) | N1—C9—H9A | 109.4 |
N3i—Cu1—O1 | 89.50 (15) | C10—C9—H9A | 109.4 |
C2—O1—Cu1 | 127.91 (18) | N1—C9—H9B | 109.4 |
C4—O2—C7 | 119.1 (2) | C10—C9—H9B | 109.4 |
C8—N1—C9 | 112.2 (3) | H9A—C9—H9B | 108.0 |
C8—N1—C9A | 117.1 (5) | C11—C10—C9 | 114.7 (6) |
C8—N1—Cu1 | 123.2 (2) | C11—C10—H10A | 108.6 |
C9—N1—Cu1 | 122.4 (3) | C9—C10—H10A | 108.6 |
C9A—N1—Cu1 | 116.0 (5) | C11—C10—H10B | 108.6 |
C11—N2—C12 | 105.7 (5) | C9—C10—H10B | 108.6 |
C12—N2—C11A | 126.4 (7) | H10A—C10—H10B | 107.6 |
C11—N2—Cu1 | 122.0 (4) | N2—C11—C10 | 111.2 (5) |
C12—N2—Cu1 | 112.0 (3) | N2—C11—H11A | 109.4 |
C11A—N2—Cu1 | 107.2 (7) | C10—C11—H11A | 109.4 |
C11—N2—H2A | 105.3 | N2—C11—H11B | 109.4 |
C12—N2—H2A | 105.3 | C10—C11—H11B | 109.4 |
C11A—N2—H2A | 97.8 | H11A—C11—H11B | 108.0 |
Cu1—N2—H2A | 105.3 | C10A—C9A—N1 | 105.7 (11) |
C11—N2—H2B | 110.6 | C10A—C9A—H9AA | 110.6 |
C12—N2—H2B | 102.4 | N1—C9A—H9AA | 110.6 |
C11A—N2—H2B | 103.1 | C10A—C9A—H9AB | 110.6 |
Cu1—N2—H2B | 102.5 | N1—C9A—H9AB | 110.6 |
C13—N3—Cu1 | 154.3 (3) | H9AA—C9A—H9AB | 108.7 |
C2—C1—C6 | 118.3 (3) | C9A—C10A—C11A | 113.5 (12) |
C2—C1—C8 | 124.0 (3) | C9A—C10A—H10C | 108.9 |
C6—C1—C8 | 117.7 (3) | C11A—C10A—H10C | 108.9 |
O1—C2—C1 | 122.6 (3) | C9A—C10A—H10D | 108.9 |
O1—C2—C3 | 118.0 (3) | C11A—C10A—H10D | 108.9 |
C1—C2—C3 | 119.3 (3) | H10C—C10A—H10D | 107.7 |
C4—C3—C2 | 120.1 (3) | N2—C11A—C10A | 121.4 (11) |
C4—C3—H3 | 120.0 | N2—C11A—H11C | 107.0 |
C2—C3—H3 | 120.0 | C10A—C11A—H11C | 107.0 |
O2—C4—C3 | 124.5 (3) | N2—C11A—H11D | 107.0 |
O2—C4—C5 | 114.7 (2) | C10A—C11A—H11D | 107.0 |
C3—C4—C5 | 120.8 (3) | H11C—C11A—H11D | 106.7 |
C6—C5—C4 | 119.4 (3) | N2—C12—H12A | 109.5 |
C6—C5—H5 | 120.3 | N2—C12—H12B | 109.5 |
C4—C5—H5 | 120.3 | H12A—C12—H12B | 109.5 |
C5—C6—C1 | 122.1 (3) | N2—C12—H12C | 109.5 |
C5—C6—H6 | 118.9 | H12A—C12—H12C | 109.5 |
C1—C6—H6 | 118.9 | H12B—C12—H12C | 109.5 |
O2—C7—H7A | 109.5 | N3—C13—S1 | 178.1 (3) |
O2—C7—H7B | 109.5 | ||
N1—Cu1—O1—C2 | 10.5 (3) | C7—O2—C4—C5 | 179.3 (3) |
N3—Cu1—O1—C2 | −159.0 (3) | C2—C3—C4—O2 | −179.5 (3) |
O1—Cu1—N1—C8 | −8.2 (3) | C2—C3—C4—C5 | 0.0 (4) |
N2—Cu1—N1—C8 | 173.9 (3) | O2—C4—C5—C6 | 178.6 (3) |
N3—Cu1—N1—C8 | 78.0 (7) | C3—C4—C5—C6 | −0.9 (4) |
O1—Cu1—N1—C9 | 153.7 (4) | C4—C5—C6—C1 | 1.0 (5) |
N2—Cu1—N1—C9 | −24.2 (4) | C2—C1—C6—C5 | −0.2 (4) |
N3—Cu1—N1—C9 | −120.1 (6) | C8—C1—C6—C5 | −177.8 (3) |
O1—Cu1—N1—C9A | −165.8 (6) | C9—N1—C8—C1 | −160.8 (4) |
N2—Cu1—N1—C9A | 16.3 (6) | C9A—N1—C8—C1 | 160.1 (7) |
N3—Cu1—N1—C9A | −79.5 (8) | Cu1—N1—C8—C1 | 2.8 (5) |
N1—Cu1—N2—C11 | 25.6 (5) | C2—C1—C8—N1 | 4.5 (5) |
N3—Cu1—N2—C11 | −164.9 (5) | C6—C1—C8—N1 | −178.0 (3) |
N1—Cu1—N2—C12 | −101.1 (3) | C8—N1—C9—C10 | −150.3 (5) |
N3—Cu1—N2—C12 | 68.4 (3) | C9A—N1—C9—C10 | −44.3 (8) |
N1—Cu1—N2—C11A | 41.7 (6) | Cu1—N1—C9—C10 | 46.0 (7) |
N3—Cu1—N2—C11A | −148.9 (6) | N1—C9—C10—C11 | −68.3 (9) |
O1—Cu1—N3—C13 | 123.7 (6) | C12—N2—C11—C10 | 81.1 (7) |
N1—Cu1—N3—C13 | 36.7 (10) | C11A—N2—C11—C10 | −97 (2) |
N2—Cu1—N3—C13 | −60.0 (6) | Cu1—N2—C11—C10 | −48.3 (8) |
Cu1—O1—C2—C1 | −6.7 (4) | C9—C10—C11—N2 | 69.8 (9) |
Cu1—O1—C2—C3 | 174.05 (19) | C8—N1—C9A—C10A | 132.2 (9) |
C6—C1—C2—O1 | −180.0 (2) | C9—N1—C9A—C10A | 41.3 (8) |
C8—C1—C2—O1 | −2.5 (4) | Cu1—N1—C9A—C10A | −68.8 (12) |
C6—C1—C2—C3 | −0.8 (4) | N1—C9A—C10A—C11A | 60.8 (18) |
C8—C1—C2—C3 | 176.7 (3) | C11—N2—C11A—C10A | 78 (2) |
O1—C2—C3—C4 | −179.9 (2) | C12—N2—C11A—C10A | 75.1 (16) |
C1—C2—C3—C4 | 0.9 (4) | Cu1—N2—C11A—C10A | −60.6 (15) |
C7—O2—C4—C3 | −1.2 (4) | C9A—C10A—C11A—N2 | 7 (2) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O1i | 0.91 | 2.14 | 2.999 (3) | 157 |
Symmetry code: (i) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C12H17N2O2)2(NCS)2] |
Mr | 685.79 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 11.8003 (18), 15.373 (2), 8.6740 (13) |
β (°) | 108.972 (7) |
V (Å3) | 1488.0 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.61 |
Crystal size (mm) | 0.20 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.739, 0.760 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9297, 3544, 2496 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.670 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.108, 1.05 |
No. of reflections | 3544 |
No. of parameters | 211 |
No. of restraints | 50 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.48, −0.41 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—O1 | 1.910 (2) | Cu1—N3 | 1.998 (3) |
Cu1—N1 | 1.953 (2) | Cu1—N3i | 2.598 (4) |
Cu1—N2 | 1.997 (3) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O1i | 0.91 | 2.14 | 2.999 (3) | 157 |
Symmetry code: (i) −x+1, −y, −z. |
Acknowledgements
This work was supported by the Science and Technology Support Projects of Gansu Province (grant No. 097 GKCA028) and by the `Qing Lan' Talent Engineering Funds of Lanzhou Jiaotong University.
References
Arnold, P. J., Davies, S. C., Durrant, M. C., Griffiths, D. V., Hughes, D. L. & Sharpe, P. C. (2003). Inorg. Chim. Acta, 348, 143–149. Web of Science CSD CrossRef CAS Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Datta, A., Huang, J.-H. & Lee, H. M. (2008). Acta Cryst. E64, m1497. Web of Science CSD CrossRef IUCr Journals Google Scholar
Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, m1998. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, H., Wang, H., Niu, D. & Lu, Z. (2004). Acta Cryst. E60, m1941–m1942. Web of Science CSD CrossRef IUCr Journals Google Scholar
Raptopoulou, C. P., Papadopoulos, A. N., Malamatari, D. A., Ioannidis, E., Moisidis, G., Terzis, A. & Kessissoglou, D. P. (1998). Inorg. Chim. Acta, 272, 283–290. Web of Science CSD CrossRef CAS Google Scholar
Ray, M. S., Bhattacharya, R. B., Chaudhuri, S., Righi, L., Bocelli, G., Mukhopadhyay, G. & Ghosh, A. (2003). Polyhedron, 22, 617–624. Web of Science CSD CrossRef CAS Google Scholar
Reddy, P. A. N., Datta, R. & Chakravarty, A. R. (2000). Inorg. Chem. Commun. 3, 322–324. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, N., Han, X.-E. & Wen, X.-G. (2006). Acta Cryst. E62, m369–m370. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, N. & Li, J.-P. (2005). Acta Cryst. E61, m1223–m1225. Web of Science CSD CrossRef IUCr Journals Google Scholar
You, Z.-L. & Zhu, H.-L. (2005). Acta Cryst. C61, m421–m423. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
An extensive effort has been made to prepare and characterize a variety of coordination complexes in an attempt to model the physical and chemical behaviour of copper-containing enzymes (Reddy et al., 2000). The peculiarity of copper lies in its ability to form complexes with coordination numbers of four, five, and six (Ray et al. 2003; Arnold et al., 2003; Raptopoulou et al., 1998). As a continuation of our own work in this area (Wang & Li, 2005; Wang et al., 2006), the title compound, a new copper(II) complex, is reported here.
The title compound is a thiocyanate-bridged dinuclear copper(II) complex (Fig. 1), with a Cu···Cu separation of 3.2608 (7) Å. The complex possesses a crystallographic inversion centre symmetry. Each CuII atom is five-coordinated by one imine N, one amine N, and one phenolate O atom of the Schiff base ligand, and by two N atoms from two thiocyanate ligands, forming a square-pyramidal geometry. The bond lengths and angles (Table 1) are typical and comparable with those in other copper(II) complexes with Schiff bases and thiocyanate ligands (Elmali et al., 2000; You & Zhu, 2005; Liu et al., 2004; Datta et al., 2008; Habibi et al., 2007). Beside the two thiocyanate bridges, there exist two N—H···O hydrogen bonds (Table 2) in the complex, which further link the two [Cu(C12H17N2O2)(NCS)] units together (Fig. 2).