organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[(2-Fluoro­phen­yl)imino­meth­yl]-2-naphthol–(Z)-1-[(2-fluoro­phen­yl)amino­methyl­­idene]naphthalen-2(1H)-one (0.57/0.43)

aDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 14 April 2010; accepted 22 April 2010; online 28 April 2010)

The title Schiff base compound, 0.57C17H12FNO·0.43C17H12FNO, reveals both the enol (OH) and keto (NH) tautomeric forms with occupancies of 0.57 (6) and 0.43 (6), respectively. The tautomeric forms are stabilized by intra­molecular O—H⋯N (enol) and N—H⋯O (keto) hydrogen bonds. The dihedral angle between the naphthalene ring system and the benzene ring is 32.76 (1)°.

Related literature

For the biological properties of Schiff bases, see: Lozier et al. (1975[Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]). For the coordination chemistry of Schiff bases, see: Kargar et al. (2009[Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.]); Yeap et al. (2009[Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570-m571.]). For Schiff base tautomerism, see: Hökelek et al. (2000[Hökelek, T., Kılıç, Z., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61-69.]); Kaitner & Pavlovic (1996[Kaitner, B. & Pavlovic, G. (1996). Acta Cryst. C52, 2573-2575.]); Karabıyık et al. (2007[Karabıyık, H., Güzel, B., Aygün, M., Boğa, G. & Büyükgüngör, O. (2007). Acta Cryst. C63, o215-o218.]); Nazır et al. (2000[Nazır, H., Yıldız, M., Yılmaz, H., Tahir, M. N. & Ülkü, D. (2000). J. Mol. Struct. 524, 241-250.]); Odabaşoğlu et al. (2005[Odabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. (2005). Acta Cryst. E61, o425-o426.]); Yıldız et al. (1998[Yıldız, M., Kılıç, Z. & Hökelek, T. (1998). J. Mol. Struct. 441, 1-10.]); Tanak et al. (2009[Tanak, H., Bingöl Alpaslan, Y., Yavuz, M., Ağar, E., Erşahin, F. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1572.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • 0.57C17H12FNO·0.43C17H12FNO

  • Mr = 265.28

  • Orthorhombic, P 21 21 21

  • a = 7.2841 (3) Å

  • b = 12.2158 (6) Å

  • c = 14.5731 (7) Å

  • V = 1296.73 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.73 × 0.31 × 0.10 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.967, Tmax = 0.993

  • 5655 measured reflections

  • 1477 independent reflections

  • 951 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.113

  • S = 0.97

  • 1477 reflections

  • 183 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.82 2.535 (4) 144
N1—H1B⋯O1 0.86 1.86 2.535 (4) 134

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). Schiff bases have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Yeap et al., 2009). There are two types of intramolecular hydrogen bonds in Schiff bases, namely N—H···O in keto (NH) (Hökelek et al., 2000) and N···H—O in enol (OH) (Odabaşoǧlu et al., 2005) tautomeric forms. In the solid state, while OH tautomeric forms of Schiff bases are predominant in salicylaldimines (Kaitner & Pavlovic, 1996; Yıldız et al.,1998), both NH and OH forms have been found in naphthaldimine Schiff base compounds (Nazır et al., 2000; Karabıyık et al., 2007). Our investigations shows that in the title compound both OH (enol) and NH (keto) tautomers coexist with occupancies of 0.57 (6) and 0.43 (6), respectively. This evidence is also supported by the observed IR vibrational bands given in the experimental section.

An ORTEP-3 (Farrugia, 1997) plot of the molecule of (I) is shown in Fig.1. The C2—O1 [1.314 (5) Å] and C11—N1 [1.306 (4) Å] bond lengths are intermediate between the single and double C—O (1.362 and 1.222 Å, respectively) and C—N bond lengths (1.339 and 1.279 Å, respectively) (Allen et al., 1987). Similar results were observed for 2-[(2,4-dimethylphenyl)iminomethyl]-3,5-dimethoxyphenol (Tanak et al., 2009). The molecule of the title compound is not planar, with a dihedral angle of 32.76 (1)° between naphthalene and benzene rings. The molecular structure is stabilized by O—H···N or N—H···O hydrogen bonds.

Related literature top

For the biological properties of Schiff bases, see: Lozier et al. (1975). For the coordination chemistry of Schiff bases, see: Kargar et al. (2009); Yeap et al. (2009). For Schiff base tautomerism, see: Hökelek et al. (2000); Kaitner & Pavlovic (1996); Karabıyık et al. (2007); Nazır et al. (2000); Odabaşoǧlu et al. (2005); Yıldız et al. (1998); Tanak et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by refluxing a mixture of a solution containing 2-hydroxy-1-naphthaldehyde (172 mg, 1 mmol) in 50 ml ethanol and a solution containing 2-fluoroaniline (111 mg, 1 mmol) in 30 ml ethanol. The reaction mixture was stirred for 3 h under reflux. The crystals of the title compound were obtained by slow evaporation of ethanol (yield 68%; m.p. 361-363 K). The FT-IR spectra of the title compound was recorded on a KBr pellets with a Schmadzu FT-IR 8900 spectrophotometer. IR (KBr) ν = 3558 (O–H), 3420 (N–H), 1698 (CO) weak, 1620 (CN) cm-1.

Refinement top

The absolute configuration could not be determined from X-ray data, as no strong anomalous scatterer is present; 1058 Friedel pairs were merged before the final refinement. All H atoms (except H1A and H1B) were placed in calculated positions and constrained to ride on their parent atoms, with C–H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). Inspection of the tautomeric hydrogen atom's (H1) location in difference Fourier map between O1 and N1 indicated that there is a positional disorder for this H atom. Hence, atoms H1A and H1B bonded with O1 and N1 were positioned geometrically and their occupancies were refined to 0.57 (6) and 0.43 (6), respectively. A restraint (DELU instruction in SHELXL97, Sheldrick, 2008) was used in order to maintain a reasonable geometry and atomic displacement parameters for atoms C13 and F1.

Structure description top

Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). Schiff bases have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Yeap et al., 2009). There are two types of intramolecular hydrogen bonds in Schiff bases, namely N—H···O in keto (NH) (Hökelek et al., 2000) and N···H—O in enol (OH) (Odabaşoǧlu et al., 2005) tautomeric forms. In the solid state, while OH tautomeric forms of Schiff bases are predominant in salicylaldimines (Kaitner & Pavlovic, 1996; Yıldız et al.,1998), both NH and OH forms have been found in naphthaldimine Schiff base compounds (Nazır et al., 2000; Karabıyık et al., 2007). Our investigations shows that in the title compound both OH (enol) and NH (keto) tautomers coexist with occupancies of 0.57 (6) and 0.43 (6), respectively. This evidence is also supported by the observed IR vibrational bands given in the experimental section.

An ORTEP-3 (Farrugia, 1997) plot of the molecule of (I) is shown in Fig.1. The C2—O1 [1.314 (5) Å] and C11—N1 [1.306 (4) Å] bond lengths are intermediate between the single and double C—O (1.362 and 1.222 Å, respectively) and C—N bond lengths (1.339 and 1.279 Å, respectively) (Allen et al., 1987). Similar results were observed for 2-[(2,4-dimethylphenyl)iminomethyl]-3,5-dimethoxyphenol (Tanak et al., 2009). The molecule of the title compound is not planar, with a dihedral angle of 32.76 (1)° between naphthalene and benzene rings. The molecular structure is stabilized by O—H···N or N—H···O hydrogen bonds.

For the biological properties of Schiff bases, see: Lozier et al. (1975). For the coordination chemistry of Schiff bases, see: Kargar et al. (2009); Yeap et al. (2009). For Schiff base tautomerism, see: Hökelek et al. (2000); Kaitner & Pavlovic (1996); Karabıyık et al. (2007); Nazır et al. (2000); Odabaşoǧlu et al. (2005); Yıldız et al. (1998); Tanak et al. (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Both OH (solid O–H bond) and NH (dashed N–H bond) tautomers are shown.
(E)-1-[(2-Fluorophenyl)iminomethyl]-2-naphthol–(Z)-1- [(2-fluorophenyl)aminomethylidene]naphthalen-2(1H)-one (0.57/0.43) top
Crystal data top
0.57C17H12FNO·0.43C17H12FNOF(000) = 552
Mr = 265.28Dx = 1.359 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4776 reflections
a = 7.2841 (3) Åθ = 1.4–27.8°
b = 12.2158 (6) ŵ = 0.10 mm1
c = 14.5731 (7) ÅT = 296 K
V = 1296.73 (10) Å3Needle, yellow
Z = 40.73 × 0.31 × 0.10 mm
Data collection top
Stoe IPDSII
diffractometer
1477 independent reflections
Radiation source: fine-focus sealed tube951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.2°
ω scansh = 88
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1315
Tmin = 0.967, Tmax = 0.993l = 1716
5655 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0576P)2]
where P = (Fo2 + 2Fc2)/3
1477 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
0.57C17H12FNO·0.43C17H12FNOV = 1296.73 (10) Å3
Mr = 265.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2841 (3) ŵ = 0.10 mm1
b = 12.2158 (6) ÅT = 296 K
c = 14.5731 (7) Å0.73 × 0.31 × 0.10 mm
Data collection top
Stoe IPDSII
diffractometer
1477 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
951 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.993Rint = 0.040
5655 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.113H-atom parameters constrained
S = 0.97Δρmax = 0.23 e Å3
1477 reflectionsΔρmin = 0.14 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3705 (5)0.8439 (3)0.5517 (2)0.0525 (9)
C20.4237 (5)0.7941 (4)0.6359 (3)0.0643 (10)
C30.4381 (5)0.8594 (4)0.7158 (3)0.0736 (12)
H30.47380.82680.77070.088*
C40.4018 (5)0.9661 (4)0.7144 (3)0.0700 (11)
H40.41271.00600.76850.084*
C50.3467 (5)1.0212 (3)0.6328 (3)0.0614 (10)
C60.3091 (6)1.1331 (4)0.6324 (3)0.0780 (12)
H60.32011.17280.68660.094*
C70.2573 (8)1.1848 (4)0.5552 (4)0.0927 (14)
H70.23371.25960.55620.111*
C80.2390 (7)1.1264 (4)0.4742 (3)0.0899 (14)
H80.20241.16210.42090.108*
C90.2744 (6)1.0171 (3)0.4721 (3)0.0706 (11)
H90.26140.97930.41710.085*
C100.3302 (4)0.9598 (3)0.5510 (2)0.0520 (8)
C110.3571 (5)0.7794 (3)0.4722 (2)0.0568 (9)
H110.32410.81330.41750.068*
C120.3841 (5)0.6111 (3)0.3898 (3)0.0577 (9)
C130.3368 (6)0.5017 (3)0.3975 (3)0.0743 (10)
C140.3288 (6)0.4347 (4)0.3228 (5)0.0930 (15)
H140.29590.36160.32960.112*
C150.3693 (7)0.4754 (5)0.2380 (4)0.0916 (16)
H150.36270.43020.18680.110*
C160.4199 (6)0.5835 (4)0.2282 (3)0.0830 (13)
H160.44840.61110.17040.100*
C170.4283 (5)0.6505 (3)0.3039 (3)0.0689 (11)
H170.46420.72310.29710.083*
F10.2925 (4)0.4629 (2)0.4811 (2)0.1113 (10)
N10.3887 (4)0.6741 (2)0.4711 (2)0.0612 (8)
H1B0.41350.64180.52200.073*0.43 (6)
O10.4613 (5)0.6891 (2)0.6408 (2)0.0823 (9)
H1A0.42420.65840.59430.124*0.57 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0475 (17)0.062 (2)0.048 (2)0.0027 (16)0.0010 (14)0.0002 (18)
C20.055 (2)0.076 (3)0.062 (3)0.003 (2)0.0028 (18)0.008 (2)
C30.068 (2)0.106 (4)0.047 (2)0.005 (2)0.0024 (19)0.007 (2)
C40.062 (2)0.099 (3)0.049 (2)0.007 (2)0.0014 (19)0.007 (2)
C50.055 (2)0.072 (3)0.057 (2)0.0125 (18)0.0069 (17)0.010 (2)
C60.081 (3)0.076 (3)0.077 (3)0.012 (2)0.015 (2)0.020 (3)
C70.118 (4)0.057 (2)0.103 (4)0.001 (3)0.016 (3)0.004 (3)
C80.127 (4)0.062 (3)0.081 (3)0.013 (3)0.003 (3)0.006 (2)
C90.096 (3)0.061 (2)0.055 (2)0.004 (2)0.003 (2)0.0001 (18)
C100.0468 (18)0.056 (2)0.053 (2)0.0045 (15)0.0006 (15)0.0017 (18)
C110.055 (2)0.057 (2)0.059 (2)0.0004 (17)0.0048 (18)0.0079 (17)
C120.0473 (18)0.052 (2)0.073 (3)0.0021 (16)0.0060 (18)0.006 (2)
C130.062 (2)0.056 (3)0.104 (2)0.0001 (19)0.002 (2)0.005 (2)
C140.074 (3)0.055 (3)0.151 (5)0.001 (2)0.011 (3)0.010 (3)
C150.075 (3)0.087 (4)0.114 (4)0.014 (3)0.007 (3)0.040 (3)
C160.075 (3)0.094 (4)0.080 (3)0.014 (3)0.000 (2)0.017 (3)
C170.067 (2)0.070 (3)0.070 (2)0.007 (2)0.001 (2)0.008 (2)
F10.124 (2)0.0774 (17)0.133 (2)0.0092 (16)0.007 (2)0.0304 (16)
N10.0596 (18)0.057 (2)0.067 (2)0.0015 (15)0.0012 (15)0.0019 (16)
O10.098 (2)0.0781 (19)0.0710 (19)0.0091 (18)0.0012 (16)0.0213 (16)
Geometric parameters (Å, º) top
C1—C111.405 (5)C9—H90.93
C1—C21.424 (5)C11—N11.306 (4)
C1—C101.446 (5)C11—H110.93
C2—O11.314 (5)C12—C171.380 (5)
C2—C31.415 (5)C12—C131.384 (5)
C3—C41.330 (6)C12—N11.413 (4)
C3—H30.93C13—F11.347 (5)
C4—C51.426 (6)C13—C141.363 (6)
C4—H40.93C14—C151.365 (7)
C5—C61.394 (6)C14—H140.93
C5—C101.413 (5)C15—C161.378 (7)
C6—C71.344 (6)C15—H150.93
C6—H60.93C16—C171.375 (6)
C7—C81.387 (6)C16—H160.93
C7—H70.93C17—H170.93
C8—C91.360 (5)N1—H1B0.86
C8—H80.93O1—H1A0.82
C9—C101.406 (5)
C11—C1—C2119.3 (3)C9—C10—C1123.5 (3)
C11—C1—C10122.0 (3)C5—C10—C1119.7 (3)
C2—C1—C10118.7 (3)N1—C11—C1123.4 (3)
O1—C2—C3119.4 (4)N1—C11—H11118.3
O1—C2—C1121.3 (4)C1—C11—H11118.3
C3—C2—C1119.3 (4)C17—C12—C13117.9 (4)
C4—C3—C2121.6 (4)C17—C12—N1124.4 (3)
C4—C3—H3119.2C13—C12—N1117.7 (4)
C2—C3—H3119.2F1—C13—C14120.0 (4)
C3—C4—C5122.1 (4)F1—C13—C12118.2 (4)
C3—C4—H4118.9C14—C13—C12121.8 (5)
C5—C4—H4118.9C13—C14—C15119.7 (5)
C6—C5—C10120.1 (4)C13—C14—H14120.2
C6—C5—C4121.4 (4)C15—C14—H14120.2
C10—C5—C4118.5 (4)C14—C15—C16120.1 (5)
C7—C6—C5121.2 (4)C14—C15—H15120.0
C7—C6—H6119.4C16—C15—H15120.0
C5—C6—H6119.4C17—C16—C15119.9 (5)
C6—C7—C8119.9 (4)C17—C16—H16120.0
C6—C7—H7120.1C15—C16—H16120.0
C8—C7—H7120.1C16—C17—C12120.7 (4)
C9—C8—C7120.4 (4)C16—C17—H17119.7
C9—C8—H8119.8C12—C17—H17119.7
C7—C8—H8119.8C11—N1—C12122.9 (3)
C8—C9—C10121.7 (4)C11—N1—H1B118.6
C8—C9—H9119.2C12—N1—H1B118.6
C10—C9—H9119.2C2—O1—H1A109.5
C9—C10—C5116.7 (3)
C11—C1—C2—O10.3 (5)C11—C1—C10—C90.3 (5)
C10—C1—C2—O1179.8 (3)C2—C1—C10—C9179.2 (4)
C11—C1—C2—C3179.7 (3)C11—C1—C10—C5179.7 (3)
C10—C1—C2—C30.9 (5)C2—C1—C10—C50.8 (5)
O1—C2—C3—C4179.9 (4)C2—C1—C11—N11.0 (5)
C1—C2—C3—C40.5 (6)C10—C1—C11—N1178.5 (3)
C2—C3—C4—C50.1 (6)C17—C12—C13—F1179.7 (4)
C3—C4—C5—C6180.0 (4)N1—C12—C13—F12.0 (5)
C3—C4—C5—C100.1 (5)C17—C12—C13—C141.7 (6)
C10—C5—C6—C70.1 (6)N1—C12—C13—C14180.0 (4)
C4—C5—C6—C7180.0 (4)F1—C13—C14—C15178.3 (4)
C5—C6—C7—C80.5 (8)C12—C13—C14—C150.4 (6)
C6—C7—C8—C90.4 (8)C13—C14—C15—C160.7 (7)
C7—C8—C9—C100.0 (8)C14—C15—C16—C170.5 (7)
C8—C9—C10—C50.4 (6)C15—C16—C17—C120.9 (7)
C8—C9—C10—C1179.5 (4)C13—C12—C17—C161.9 (6)
C6—C5—C10—C90.3 (5)N1—C12—C17—C16179.9 (4)
C4—C5—C10—C9179.6 (3)C1—C11—N1—C12176.7 (3)
C6—C5—C10—C1179.6 (3)C17—C12—N1—C1130.5 (5)
C4—C5—C10—C10.5 (5)C13—C12—N1—C11151.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.822.535 (4)144
N1—H1B···O10.861.862.535 (4)134

Experimental details

Crystal data
Chemical formula0.57C17H12FNO·0.43C17H12FNO
Mr265.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.2841 (3), 12.2158 (6), 14.5731 (7)
V3)1296.73 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.73 × 0.31 × 0.10
Data collection
DiffractometerStoe IPDSII
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.967, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5655, 1477, 951
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.113, 0.97
No. of reflections1477
No. of parameters183
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.14

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.822.535 (4)144
N1—H1B···O10.861.862.535 (4)134
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Kılıç, Z., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaitner, B. & Pavlovic, G. (1996). Acta Cryst. C52, 2573–2575.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKarabıyık, H., Güzel, B., Aygün, M., Boğa, G. & Büyükgüngör, O. (2007). Acta Cryst. C63, o215–o218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNazır, H., Yıldız, M., Yılmaz, H., Tahir, M. N. & Ülkü, D. (2000). J. Mol. Struct. 524, 241–250.  Web of Science CSD CrossRef CAS Google Scholar
First citationOdabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. (2005). Acta Cryst. E61, o425–o426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTanak, H., Bingöl Alpaslan, Y., Yavuz, M., Ağar, E., Erşahin, F. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1572.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYıldız, M., Kılıç, Z. & Hökelek, T. (1998). J. Mol. Struct. 441, 1–10.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds