metal-organic compounds
Tetraaquabis[4-(methylamino)benzoato-κO]nickel(II)
aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Karabük University, 78050 Karabük, Turkey, cDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
The title complex, [Ni(C8H8NO2)2(H2O)4], is centrosymmetric with the NiII ion located on a centre of symmetry. It contains two 4-(methylamino)benzoate (PMAB) anions and four coordinated water molecules. The four O atoms in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by two O atoms of the PMAB anions in the axial positions. In the intermolecular O—H⋯O, O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds link the molecules into a three-dimensional network.
Related literature
For structure–function–coordination relationships of the arylcarboxylate ion in transition-metal complexes of benzoic acid derivatives, see: Nadzhafov et al. (1981); Shnulin et al. (1981). For studies of transition-metal complexes with biochemical model systems, see: Antolini et al. (1982). For the coordination modes of benzoic acid derivatives, see: Chen & Chen (2002); Amiraslanov et al. (1979); Hauptmann et al. (2000). For related structures, see: Hökelek et al. (2009a,b); Necefoğlu et al. (2010); Sertçelik et al. (2009).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810014807/ci5081sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810014807/ci5081Isup2.hkl
The title compound was prepared by the reaction of Ni(SO4).6(H2O) (1.31 g, 5 mmol) in H2O (50 ml) and sodium 4-(methylamino)benzoate (1.74 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving green single crystals.
H atoms of NH group and water molecules were located in difference maps and refined isotropically; the O–H and and H···H distances in the water molecules were restrained to 0.95 (2) Å and 1.46 (4) Å, respectively. The remaining H atoms were positioned geometrically with C–H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for methyl H atoms.
The structure-function-coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change, depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). Transition metal complexes with biochemical molecules frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). The title compound was synthesized and its
is reported herein.The title compound is a monomeric complex, with the NiII ion on a centre of symmetry. It contains two 4-(methylamino)benzoate (PMAB) ligands and four coordinated water molecules. The PMAB ligands are monodentate. The four O atoms (O3, O4, and the symmetry-related atoms O3' and O4') in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the carboxylate O atoms (O2 and O2') of the symmetry related PMAB ligands (Fig. 1 and Table 1).
The C1—O1 [1.2761 (17) Å] and C1—O2 [1.2561 (18) Å] bonds in the carboxylate groups may be compared with the corresponding distances: 1.263 (4) and 1.249 (4) Å in [Ni(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009), 1.267 (3) and 1.258 (3) Å in [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009a), 1.2616 (17) and 1.2435 (18) Å in [Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2] (Hökelek et al., 2009b), and 1.2678 (17) and 1.2654 (17) Å in [Ni(C8H7O2)2(C6H6N2O)2(H2O)2] (Necefoğlu et al., 2010).
The Ni atom is displaced out of the least-square plane of the carboxylate group (O1/C1/O2) by 0.0728 (1) Å. On the other hand, O1, O2, N1 and C1 atoms are 0.0061 (11), 0.0549 (10), -0.0636 (13) and 0.0163 (13) Å away from the plane of the benzene ring A (C2—C7), respectively.
In the
intermolecular O—H···O, O—H···N, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network.For structure–function–coordination relationships of the arylcarboxylate ion in transition-metal complexes of benzoic acid derivatives, see: Nadzhafov et al. (1981); Shnulin et al. (1981). For the biological applications of transition-metal complexes with biochemical molecules, see: Antolini et al. (1982). For the coordination modes of benzoic acid derivatives, see: Chen & Chen (2002); Amiraslanov et al. (1979); Hauptmann et al. (2000). For related structures, see: Hökelek et al. (2009a,b); Necefoğlu et al. (2010); Sertçelik et al. (2009).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The primed atoms are generated by the symmetry operation (-x, 1 - y, -z). |
[Ni(C8H8NO2)2(H2O)4] | F(000) = 452 |
Mr = 431.06 | Dx = 1.594 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5176 reflections |
a = 7.5466 (2) Å | θ = 2.7–28.4° |
b = 6.1811 (2) Å | µ = 1.13 mm−1 |
c = 19.4802 (3) Å | T = 100 K |
β = 98.628 (3)° | Block, green |
V = 898.40 (4) Å3 | 0.35 × 0.25 × 0.13 mm |
Z = 2 |
Bruker Kappa APEXII CCD area-detector diffractometer | 2242 independent reflections |
Radiation source: fine-focus sealed tube | 2085 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
φ and ω scans | θmax = 28.4°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −10→10 |
Tmin = 0.718, Tmax = 0.863 | k = −8→8 |
8475 measured reflections | l = −25→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.061 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.032P)2 + 0.3955P] where P = (Fo2 + 2Fc2)/3 |
2242 reflections | (Δ/σ)max = 0.001 |
145 parameters | Δρmax = 0.41 e Å−3 |
6 restraints | Δρmin = −0.33 e Å−3 |
[Ni(C8H8NO2)2(H2O)4] | V = 898.40 (4) Å3 |
Mr = 431.06 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.5466 (2) Å | µ = 1.13 mm−1 |
b = 6.1811 (2) Å | T = 100 K |
c = 19.4802 (3) Å | 0.35 × 0.25 × 0.13 mm |
β = 98.628 (3)° |
Bruker Kappa APEXII CCD area-detector diffractometer | 2242 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2085 reflections with I > 2σ(I) |
Tmin = 0.718, Tmax = 0.863 | Rint = 0.019 |
8475 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 6 restraints |
wR(F2) = 0.061 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.41 e Å−3 |
2242 reflections | Δρmin = −0.33 e Å−3 |
145 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.0000 | 0.5000 | 0.0000 | 0.01094 (9) | |
O1 | 0.12315 (14) | 0.95272 (17) | 0.08266 (5) | 0.0166 (2) | |
O2 | −0.00352 (13) | 0.63206 (17) | 0.09653 (5) | 0.0153 (2) | |
O3 | 0.23373 (13) | 0.34113 (17) | 0.03994 (5) | 0.0150 (2) | |
H31 | 0.327 (2) | 0.418 (3) | 0.0632 (10) | 0.031 (5)* | |
H32 | 0.220 (3) | 0.227 (3) | 0.0651 (11) | 0.044 (7)* | |
O4 | −0.15665 (13) | 0.25462 (17) | 0.03223 (5) | 0.0146 (2) | |
H41 | −0.163 (4) | 0.167 (4) | −0.0089 (11) | 0.070 (9)* | |
H42 | −0.090 (3) | 0.178 (4) | 0.0679 (10) | 0.046 (7)* | |
N1 | −0.05050 (17) | 1.0577 (2) | 0.39282 (6) | 0.0155 (2) | |
H1 | −0.133 (3) | 0.984 (3) | 0.4069 (11) | 0.022 (5)* | |
C1 | 0.04946 (17) | 0.8156 (2) | 0.11841 (7) | 0.0130 (3) | |
C2 | 0.02308 (17) | 0.8804 (2) | 0.19011 (7) | 0.0126 (3) | |
C3 | −0.05536 (18) | 0.7378 (2) | 0.23236 (7) | 0.0149 (3) | |
H3 | −0.0902 | 0.6007 | 0.2159 | 0.018* | |
C4 | −0.08175 (18) | 0.7983 (2) | 0.29847 (7) | 0.0156 (3) | |
H4 | −0.1342 | 0.7015 | 0.3260 | 0.019* | |
C5 | −0.03016 (18) | 1.0039 (2) | 0.32435 (7) | 0.0137 (3) | |
C6 | 0.04875 (18) | 1.1470 (2) | 0.28224 (7) | 0.0147 (3) | |
H6 | 0.0840 | 1.2840 | 0.2987 | 0.018* | |
C7 | 0.07450 (18) | 1.0852 (2) | 0.21607 (7) | 0.0142 (3) | |
H7 | 0.1269 | 1.1817 | 0.1885 | 0.017* | |
C8 | −0.0564 (2) | 1.2874 (3) | 0.41124 (7) | 0.0182 (3) | |
H8A | −0.0838 | 1.3009 | 0.4576 | 0.027* | |
H8B | −0.1473 | 1.3589 | 0.3795 | 0.027* | |
H8C | 0.0578 | 1.3526 | 0.4087 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01233 (13) | 0.00929 (13) | 0.01089 (13) | −0.00098 (9) | 0.00076 (9) | 0.00030 (8) |
O1 | 0.0221 (5) | 0.0123 (5) | 0.0157 (5) | −0.0032 (4) | 0.0035 (4) | 0.0001 (4) |
O2 | 0.0192 (5) | 0.0124 (5) | 0.0140 (4) | −0.0025 (4) | 0.0015 (4) | −0.0013 (4) |
O3 | 0.0151 (5) | 0.0128 (5) | 0.0163 (5) | −0.0011 (4) | −0.0001 (4) | 0.0012 (4) |
O4 | 0.0162 (5) | 0.0130 (5) | 0.0144 (4) | −0.0015 (4) | 0.0011 (4) | 0.0005 (4) |
N1 | 0.0159 (6) | 0.0170 (6) | 0.0143 (5) | −0.0006 (5) | 0.0043 (4) | 0.0006 (5) |
C1 | 0.0118 (6) | 0.0125 (6) | 0.0138 (6) | 0.0023 (5) | −0.0009 (4) | 0.0013 (5) |
C2 | 0.0115 (5) | 0.0122 (6) | 0.0134 (6) | 0.0004 (5) | −0.0003 (4) | −0.0003 (5) |
C3 | 0.0145 (6) | 0.0122 (6) | 0.0171 (6) | −0.0014 (5) | −0.0002 (5) | −0.0003 (5) |
C4 | 0.0159 (6) | 0.0151 (7) | 0.0160 (6) | −0.0013 (5) | 0.0026 (5) | 0.0033 (5) |
C5 | 0.0107 (6) | 0.0158 (7) | 0.0141 (6) | 0.0021 (5) | 0.0001 (5) | 0.0008 (5) |
C6 | 0.0143 (6) | 0.0132 (6) | 0.0163 (6) | −0.0014 (5) | 0.0017 (5) | −0.0014 (5) |
C7 | 0.0142 (6) | 0.0134 (7) | 0.0151 (6) | −0.0013 (5) | 0.0021 (5) | 0.0005 (5) |
C8 | 0.0196 (6) | 0.0185 (7) | 0.0172 (6) | −0.0005 (6) | 0.0055 (5) | −0.0018 (5) |
Ni1—O2 | 2.0537 (10) | C2—C3 | 1.3969 (19) |
Ni1—O2i | 2.0537 (10) | C3—H3 | 0.93 |
Ni1—O3 | 2.0662 (10) | C4—C3 | 1.3839 (19) |
Ni1—O3i | 2.0662 (10) | C4—C5 | 1.401 (2) |
Ni1—O4 | 2.0772 (10) | C4—H4 | 0.93 |
Ni1—O4i | 2.0772 (10) | C6—C5 | 1.3987 (19) |
O1—C1 | 1.2761 (17) | C6—H6 | 0.93 |
O2—C1 | 1.2561 (18) | C7—C2 | 1.396 (2) |
O3—H31 | 0.909 (16) | C7—C6 | 1.3858 (19) |
O3—H32 | 0.873 (17) | C7—H7 | 0.93 |
O4—H41 | 0.964 (17) | C8—N1 | 1.466 (2) |
O4—H42 | 0.926 (17) | C8—H8A | 0.96 |
N1—C5 | 1.4052 (18) | C8—H8B | 0.96 |
N1—H1 | 0.85 (2) | C8—H8C | 0.96 |
C2—C1 | 1.4948 (18) | ||
O2—Ni1—O3 | 88.38 (4) | O2—C1—O1 | 123.87 (13) |
O2i—Ni1—O3 | 91.62 (4) | O2—C1—C2 | 118.61 (12) |
O2—Ni1—O2i | 180.00 (2) | C3—C2—C1 | 120.60 (13) |
O2—Ni1—O3i | 91.62 (4) | C7—C2—C1 | 120.83 (12) |
O2i—Ni1—O3i | 88.38 (4) | C7—C2—C3 | 118.57 (12) |
O2—Ni1—O4 | 85.83 (4) | C2—C3—H3 | 119.6 |
O2i—Ni1—O4 | 94.17 (4) | C4—C3—C2 | 120.71 (13) |
O2—Ni1—O4i | 94.17 (4) | C4—C3—H3 | 119.6 |
O2i—Ni1—O4i | 85.83 (4) | C3—C4—C5 | 120.60 (13) |
O3i—Ni1—O3 | 180.00 (5) | C3—C4—H4 | 119.7 |
O3—Ni1—O4 | 91.81 (4) | C5—C4—H4 | 119.7 |
O3i—Ni1—O4 | 88.19 (4) | C4—C5—N1 | 119.48 (13) |
O3—Ni1—O4i | 88.19 (4) | C6—C5—N1 | 121.60 (13) |
O3i—Ni1—O4i | 91.81 (4) | C6—C5—C4 | 118.84 (13) |
O4—Ni1—O4i | 180.00 (5) | C5—C6—H6 | 119.9 |
C1—O2—Ni1 | 128.50 (9) | C7—C6—C5 | 120.18 (13) |
Ni1—O3—H31 | 119.5 (15) | C7—C6—H6 | 119.9 |
Ni1—O3—H32 | 115.3 (16) | C2—C7—H7 | 119.4 |
H31—O3—H32 | 106.7 (19) | C6—C7—C2 | 121.11 (13) |
Ni1—O4—H41 | 96.8 (18) | C6—C7—H7 | 119.4 |
Ni1—O4—H42 | 109.2 (15) | N1—C8—H8A | 109.5 |
H42—O4—H41 | 107 (2) | N1—C8—H8B | 109.5 |
C5—N1—C8 | 118.22 (12) | N1—C8—H8C | 109.5 |
C5—N1—H1 | 111.6 (14) | H8A—C8—H8B | 109.5 |
C8—N1—H1 | 113.0 (13) | H8A—C8—H8C | 109.5 |
O1—C1—C2 | 117.52 (12) | H8B—C8—H8C | 109.5 |
O3—Ni1—O2—C1 | 98.00 (11) | C7—C2—C1—O2 | −177.98 (12) |
O3i—Ni1—O2—C1 | −82.00 (11) | C1—C2—C3—C4 | −179.27 (12) |
O4—Ni1—O2—C1 | −170.07 (12) | C7—C2—C3—C4 | 0.1 (2) |
O4i—Ni1—O2—C1 | 9.93 (12) | C5—C4—C3—C2 | 0.0 (2) |
Ni1—O2—C1—O1 | −2.6 (2) | C3—C4—C5—N1 | −176.96 (13) |
Ni1—O2—C1—C2 | 176.51 (8) | C3—C4—C5—C6 | −0.1 (2) |
C8—N1—C5—C4 | −159.10 (13) | C7—C6—C5—N1 | 176.96 (13) |
C8—N1—C5—C6 | 24.13 (19) | C7—C6—C5—C4 | 0.2 (2) |
C3—C2—C1—O1 | −179.47 (12) | C6—C7—C2—C1 | 179.34 (12) |
C3—C2—C1—O2 | 1.36 (19) | C6—C7—C2—C3 | 0.0 (2) |
C7—C2—C1—O1 | 1.19 (19) | C2—C7—C6—C5 | −0.1 (2) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4ii | 0.85 (2) | 2.55 (2) | 3.3902 (16) | 170 (2) |
O3—H31···N1iii | 0.91 (2) | 1.97 (2) | 2.8780 (16) | 172 (2) |
O3—H32···O1iv | 0.87 (2) | 1.90 (2) | 2.7131 (15) | 155 (2) |
O4—H41···O1i | 0.96 (2) | 1.68 (2) | 2.6240 (14) | 165 (3) |
O4—H42···O1iv | 0.92 (2) | 2.11 (2) | 2.8781 (15) | 139 (2) |
C8—H8A···O3v | 0.96 | 2.43 | 3.2583 (18) | 144 |
C8—H8C···O1vi | 0.96 | 2.47 | 3.4105 (19) | 168 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x−1/2, y+1/2, −z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x, y−1, z; (v) x−1/2, −y+3/2, z+1/2; (vi) −x+1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C8H8NO2)2(H2O)4] |
Mr | 431.06 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 7.5466 (2), 6.1811 (2), 19.4802 (3) |
β (°) | 98.628 (3) |
V (Å3) | 898.40 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.13 |
Crystal size (mm) | 0.35 × 0.25 × 0.13 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.718, 0.863 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8475, 2242, 2085 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.061, 1.06 |
No. of reflections | 2242 |
No. of parameters | 145 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.41, −0.33 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4i | 0.85 (2) | 2.55 (2) | 3.3902 (16) | 170 (2) |
O3—H31···N1ii | 0.91 (2) | 1.97 (2) | 2.8780 (16) | 172 (2) |
O3—H32···O1iii | 0.87 (2) | 1.90 (2) | 2.7131 (15) | 155 (2) |
O4—H41···O1iv | 0.96 (2) | 1.68 (2) | 2.6240 (14) | 165 (3) |
O4—H42···O1iii | 0.92 (2) | 2.11 (2) | 2.8781 (15) | 139 (2) |
C8—H8A···O3v | 0.96 | 2.43 | 3.2583 (18) | 144 |
C8—H8C···O1vi | 0.96 | 2.47 | 3.4105 (19) | 168 |
Symmetry codes: (i) −x−1/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, y−1, z; (iv) −x, −y+1, −z; (v) x−1/2, −y+3/2, z+1/2; (vi) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).
References
Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080. CAS Google Scholar
Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172. CAS Google Scholar
Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m545–m546. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128. CAS Google Scholar
Necefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, m361–m362. Web of Science CrossRef IUCr Journals Google Scholar
Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m326–m327. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structure-function-coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change, depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). Transition metal complexes with biochemical molecules frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). The title compound was synthesized and its crystal structure is reported herein.
The title compound is a monomeric complex, with the NiII ion on a centre of symmetry. It contains two 4-(methylamino)benzoate (PMAB) ligands and four coordinated water molecules. The PMAB ligands are monodentate. The four O atoms (O3, O4, and the symmetry-related atoms O3' and O4') in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the carboxylate O atoms (O2 and O2') of the symmetry related PMAB ligands (Fig. 1 and Table 1).
The C1—O1 [1.2761 (17) Å] and C1—O2 [1.2561 (18) Å] bonds in the carboxylate groups may be compared with the corresponding distances: 1.263 (4) and 1.249 (4) Å in [Ni(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009), 1.267 (3) and 1.258 (3) Å in [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009a), 1.2616 (17) and 1.2435 (18) Å in [Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2] (Hökelek et al., 2009b), and 1.2678 (17) and 1.2654 (17) Å in [Ni(C8H7O2)2(C6H6N2O)2(H2O)2] (Necefoğlu et al., 2010).
The Ni atom is displaced out of the least-square plane of the carboxylate group (O1/C1/O2) by 0.0728 (1) Å. On the other hand, O1, O2, N1 and C1 atoms are 0.0061 (11), 0.0549 (10), -0.0636 (13) and 0.0163 (13) Å away from the plane of the benzene ring A (C2—C7), respectively.
In the crystal structure, intermolecular O—H···O, O—H···N, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network.