organic compounds
N′-Acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide dihydrate
aDepartment of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore, and bDepartment of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
*Correspondence e-mail: phada@nus.edu.sg
In the title compound, C7H12N6O·2H2O, the Z configuration of the hydrazone fragment is stabilized by an intramolecular N—H⋯N hydrogen bond involving one of the amino groups. In the the hydrazonamide molecules are connected via intermolecular N—H⋯O=C hydrogen bonds, forming C(7) chains running along [010]. The chains form sheets parallel to the (01). The chains are cross-linked by water molecules to form a three-dimensional hydrogen-bonded network.
Related literature
For bioactive pyrazoles, see: Elguero et al. (2002); Lamberth (2007). For the use of pyrazoles as synthons in heterocyclic chemistry, see: Schenone et al. (2007); Dolzhenko et al. (2008). For the use of pyrazoles in metal-organic chemistry, see: Mukherjee (2000); Halcrow (2009). For the crystal structures of related 5-amino-1H-pyrazole-4-carboxylic acid derivatives, see: Zia-ur-Rehman et al. (2008, 2009); Caruso et al. (2009). For the of N′-acetyl-2-phenylethanehydrazonamide, see: Ianelli et al. (2001). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810015357/ci5086sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810015357/ci5086Isup2.hkl
N'-Acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide was prepared by treatment of ethyl N-(4-cyano-1-methyl-1H-pyrazol-5-yl)acetimidate with 3 eq. of hydrazine hydrate (40%) in ethanol. Detail procedure with proposed mechanism will be reported elsewhere. Single crystals suitable for the crystallographic analysis were grown by recrystallization from ethanol, m.p. 513 K.
All C-bound H atoms were positioned geometrically and included in the
in riding-motion approximation [0.95 Å for Cpyrazole–H, and 0.98 Å for methyl groups; Uiso(H) = 1.2Ueq(Cpyrazole) and Uiso(H) = 1.5Ueq(Cmethyl)] while the N- and O-bound H atoms were located in a difference map and refined freely.Pyrazoles have been well recognized as valuable ligands in metal-organic chemistry (Mukherjee, 2000; Halcrow, 2009). Pyrazoles also possess useful agricultural (Lamberth, 2007) and pharmacological (Elguero et al., 2002) properties and serve as synthons for other pyrazolo fused bioactive heterocycles (Schenone et al., 2007; Dolzhenko et al., 2008).
Herein, we report molecular and ═N linkage. We found that the compound crystallizes as a N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide tautomer. Similarly to previously reported N'-acetyl-2-phenylethanehydrazonamide (Ianelli et al., 2001), the hydrazonamide group of N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide adopts (Z)-configuration. This configuration is stabilized by the intramolecular N(3)H···N5═C5 hydrogen bonding between the amino group and the hydrazone N5 atom, generating an S(6) graph-set motif (Bernstein et al., 1995). Similar NH···O═C interactions were reported for the structurally related derivatives of 5-amino-1H-pyrazole-4-carboxylic acid (Zia-ur-Rehman et al., 2008; Zia-ur-Rehman et al., 2009; Caruso et al., 2009). Planarity of the molecule is affected by slight twisting of the acetyl group [C5—N5—N6—C6 torsion angle is 170.14 (16)°].
of N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide (Figs. 1 and 2). The compound can exist in two tautomeric forms, namely hydrazonamide and imidohydrazide (Fig. 3). The hydrazonamide tautomer can also exhibit (E-Z) by inversion of configuration of the hydrazono CIn the crystal, the hydrazonamide molecules are arranged to form sheets parallel to the (101) (Fig. 2). In the sheets, atom N4 of one molecule is involved in a intermolecular N—H···O═C interaction with the carbonyl atom O1 of adjacent molecule making C(7) chains along the [010] direction. The water molecules further stabilize packing by formation of the intermolecular hydrogen bond network (Fig. 2 and Table 1).
For bioactive pyrazoles, see: Elguero et al. (2002); Lamberth (2007). For the use of pyrazoles as synthons in heterocyclic chemistry, see: Schenone et al. (2007); Dolzhenko et al. (2008). For the use of pyrazoles in metal-organic chemistry, see: Mukherjee (2000); Halcrow (2009). For the crystal structures of related 5-amino-1H-pyrazole-4-carboxylic acid derivatives, see: Zia-ur-Rehman et al. (2008, 2009); Caruso et al. (2009). For the
of N'-acetyl-2-phenylethanehydrazonamide, see: Ianelli et al. (2001). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide dihydrate showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Crystal packing of the title compound, viewed along the a axis. | |
Fig. 3. Hydrazonamide-imidohydrazide tautomerism in N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide |
C7H12N6O·2H2O | Z = 2 |
Mr = 232.26 | F(000) = 248 |
Triclinic, P1 | Dx = 1.371 Mg m−3 |
Hall symbol: -P 1 | Melting point: 513 K |
a = 7.5496 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.6208 (9) Å | Cell parameters from 1515 reflections |
c = 11.2518 (13) Å | θ = 3.0–27.5° |
α = 102.645 (2)° | µ = 0.11 mm−1 |
β = 101.440 (2)° | T = 223 K |
γ = 110.810 (2)° | Rod, colourless |
V = 562.75 (11) Å3 | 0.45 × 0.12 × 0.10 mm |
Bruker SMART APEX CCD diffractometer | 2548 independent reflections |
Radiation source: fine-focus sealed tube | 2174 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
φ and ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | h = −9→9 |
Tmin = 0.953, Tmax = 0.989 | k = −9→9 |
3963 measured reflections | l = −14→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0711P)2 + 0.1961P] where P = (Fo2 + 2Fc2)/3 |
2548 reflections | (Δ/σ)max = 0.001 |
183 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C7H12N6O·2H2O | γ = 110.810 (2)° |
Mr = 232.26 | V = 562.75 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.5496 (9) Å | Mo Kα radiation |
b = 7.6208 (9) Å | µ = 0.11 mm−1 |
c = 11.2518 (13) Å | T = 223 K |
α = 102.645 (2)° | 0.45 × 0.12 × 0.10 mm |
β = 101.440 (2)° |
Bruker SMART APEX CCD diffractometer | 2548 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | 2174 reflections with I > 2σ(I) |
Tmin = 0.953, Tmax = 0.989 | Rint = 0.021 |
3963 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.141 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.31 e Å−3 |
2548 reflections | Δρmin = −0.26 e Å−3 |
183 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3615 (2) | 0.89463 (19) | 0.14623 (12) | 0.0421 (4) | |
N1 | 0.7337 (2) | 0.3950 (2) | 0.48625 (14) | 0.0306 (4) | |
N2 | 0.7791 (2) | 0.5933 (2) | 0.51428 (13) | 0.0264 (3) | |
N3 | 0.7066 (3) | 0.8221 (2) | 0.42298 (16) | 0.0302 (4) | |
H31 | 0.748 (3) | 0.907 (3) | 0.495 (2) | 0.036 (6)* | |
H32 | 0.613 (3) | 0.821 (3) | 0.365 (2) | 0.039 (6)* | |
N4 | 0.3308 (2) | 0.2471 (2) | 0.11287 (15) | 0.0297 (4) | |
H41 | 0.350 (3) | 0.158 (3) | 0.132 (2) | 0.032 (5)* | |
H42 | 0.260 (3) | 0.223 (3) | 0.034 (2) | 0.040 (6)* | |
N5 | 0.4378 (2) | 0.5945 (2) | 0.18078 (13) | 0.0294 (4) | |
N6 | 0.3198 (2) | 0.5816 (2) | 0.06398 (13) | 0.0267 (3) | |
H6N | 0.269 (3) | 0.479 (3) | 0.000 (2) | 0.037 (6)* | |
C1 | 0.6808 (2) | 0.6344 (2) | 0.41838 (15) | 0.0239 (4) | |
C2 | 0.5664 (2) | 0.4541 (2) | 0.32050 (15) | 0.0236 (4) | |
C3 | 0.6068 (3) | 0.3143 (3) | 0.37018 (16) | 0.0272 (4) | |
H3 | 0.5496 | 0.1780 | 0.3256 | 0.033* | |
C4 | 0.9204 (3) | 0.7328 (3) | 0.63443 (17) | 0.0359 (4) | |
H4A | 1.0140 | 0.8443 | 0.6188 | 0.054* | |
H4C | 0.9916 | 0.6687 | 0.6766 | 0.054* | |
H4D | 0.8504 | 0.7791 | 0.6886 | 0.054* | |
C5 | 0.4374 (2) | 0.4304 (2) | 0.19753 (15) | 0.0225 (3) | |
C6 | 0.2965 (3) | 0.7431 (3) | 0.05365 (16) | 0.0278 (4) | |
C7 | 0.1873 (3) | 0.7318 (3) | −0.07661 (17) | 0.0354 (4) | |
H7A | 0.0729 | 0.7603 | −0.0721 | 0.053* | |
H7B | 0.1431 | 0.6000 | −0.1353 | 0.053* | |
H7C | 0.2751 | 0.8278 | −0.1066 | 0.053* | |
O1W | 0.8443 (2) | 0.7733 (2) | 0.15574 (13) | 0.0380 (4) | |
H1W | 0.752 (5) | 0.757 (4) | 0.186 (3) | 0.069 (9)* | |
H2W | 0.949 (5) | 0.780 (4) | 0.213 (3) | 0.065 (8)* | |
O2W | 0.1806 (2) | 0.8169 (2) | 0.34309 (14) | 0.0393 (4) | |
H3W | 0.253 (4) | 0.812 (4) | 0.294 (3) | 0.064 (9)* | |
H4W | 0.189 (4) | 0.731 (4) | 0.381 (3) | 0.060 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0739 (10) | 0.0235 (7) | 0.0262 (7) | 0.0259 (7) | 0.0028 (7) | 0.0046 (5) |
N1 | 0.0382 (8) | 0.0292 (8) | 0.0260 (8) | 0.0170 (7) | 0.0052 (6) | 0.0107 (6) |
N2 | 0.0311 (7) | 0.0255 (7) | 0.0195 (7) | 0.0118 (6) | 0.0023 (6) | 0.0060 (6) |
N3 | 0.0413 (9) | 0.0219 (7) | 0.0218 (8) | 0.0130 (7) | 0.0021 (7) | 0.0032 (6) |
N4 | 0.0436 (9) | 0.0173 (7) | 0.0228 (8) | 0.0136 (6) | −0.0018 (6) | 0.0053 (6) |
N5 | 0.0403 (8) | 0.0219 (7) | 0.0197 (7) | 0.0141 (6) | −0.0034 (6) | 0.0043 (6) |
N6 | 0.0375 (8) | 0.0195 (7) | 0.0174 (7) | 0.0128 (6) | −0.0022 (6) | 0.0029 (6) |
C1 | 0.0268 (8) | 0.0265 (8) | 0.0186 (7) | 0.0119 (7) | 0.0058 (6) | 0.0071 (6) |
C2 | 0.0286 (8) | 0.0225 (8) | 0.0199 (8) | 0.0119 (6) | 0.0046 (6) | 0.0072 (6) |
C3 | 0.0342 (9) | 0.0228 (8) | 0.0241 (8) | 0.0138 (7) | 0.0037 (7) | 0.0076 (6) |
C4 | 0.0374 (10) | 0.0406 (11) | 0.0206 (8) | 0.0142 (8) | −0.0003 (7) | 0.0043 (8) |
C5 | 0.0274 (8) | 0.0211 (8) | 0.0188 (7) | 0.0114 (6) | 0.0045 (6) | 0.0061 (6) |
C6 | 0.0353 (9) | 0.0264 (8) | 0.0217 (8) | 0.0143 (7) | 0.0048 (7) | 0.0085 (7) |
C7 | 0.0447 (11) | 0.0370 (10) | 0.0273 (9) | 0.0227 (9) | 0.0026 (8) | 0.0136 (8) |
O1W | 0.0406 (8) | 0.0395 (8) | 0.0236 (7) | 0.0125 (6) | 0.0021 (6) | 0.0044 (6) |
O2W | 0.0518 (9) | 0.0414 (8) | 0.0299 (7) | 0.0253 (7) | 0.0082 (7) | 0.0145 (6) |
O1—C6 | 1.236 (2) | C1—C2 | 1.401 (2) |
N1—C3 | 1.317 (2) | C2—C3 | 1.402 (2) |
N1—N2 | 1.372 (2) | C2—C5 | 1.459 (2) |
N2—C1 | 1.344 (2) | C3—H3 | 0.94 |
N2—C4 | 1.445 (2) | C4—H4A | 0.97 |
N3—C1 | 1.362 (2) | C4—H4C | 0.97 |
N3—H31 | 0.83 (2) | C4—H4D | 0.97 |
N3—H32 | 0.86 (2) | C6—C7 | 1.500 (2) |
N4—C5 | 1.350 (2) | C7—H7A | 0.97 |
N4—H41 | 0.81 (2) | C7—H7B | 0.97 |
N4—H42 | 0.88 (2) | C7—H7C | 0.97 |
N5—C5 | 1.303 (2) | O1W—H1W | 0.81 (3) |
N5—N6 | 1.3953 (19) | O1W—H2W | 0.89 (3) |
N6—C6 | 1.330 (2) | O2W—H3W | 0.86 (3) |
N6—H6N | 0.84 (2) | O2W—H4W | 0.87 (3) |
C3—N1—N2 | 104.63 (14) | C2—C3—H3 | 123.7 |
C1—N2—N1 | 112.10 (14) | N2—C4—H4A | 109.5 |
C1—N2—C4 | 127.04 (15) | N2—C4—H4C | 109.5 |
N1—N2—C4 | 120.85 (14) | H4A—C4—H4C | 109.5 |
C1—N3—H31 | 117.5 (15) | N2—C4—H4D | 109.5 |
C1—N3—H32 | 110.8 (16) | H4A—C4—H4D | 109.5 |
H31—N3—H32 | 119 (2) | H4C—C4—H4D | 109.5 |
C5—N4—H41 | 116.7 (15) | N5—C5—N4 | 126.14 (15) |
C5—N4—H42 | 123.9 (15) | N5—C5—C2 | 114.92 (14) |
H41—N4—H42 | 118 (2) | N4—C5—C2 | 118.95 (15) |
C5—N5—N6 | 117.52 (14) | O1—C6—N6 | 121.90 (15) |
C6—N6—N5 | 117.50 (14) | O1—C6—C7 | 121.68 (16) |
C6—N6—H6N | 119.6 (15) | N6—C6—C7 | 116.42 (15) |
N5—N6—H6N | 122.8 (15) | C6—C7—H7A | 109.5 |
N2—C1—N3 | 122.61 (15) | C6—C7—H7B | 109.5 |
N2—C1—C2 | 106.59 (14) | H7A—C7—H7B | 109.5 |
N3—C1—C2 | 130.72 (15) | C6—C7—H7C | 109.5 |
C1—C2—C3 | 104.15 (14) | H7A—C7—H7C | 109.5 |
C1—C2—C5 | 125.02 (15) | H7B—C7—H7C | 109.5 |
C3—C2—C5 | 130.83 (15) | H1W—O1W—H2W | 110 (3) |
N1—C3—C2 | 112.53 (15) | H3W—O2W—H4W | 103 (3) |
N1—C3—H3 | 123.7 | ||
C3—N1—N2—C1 | 0.66 (19) | N2—N1—C3—C2 | −0.1 (2) |
C3—N1—N2—C4 | −178.36 (16) | C1—C2—C3—N1 | −0.5 (2) |
C5—N5—N6—C6 | 170.14 (16) | C5—C2—C3—N1 | 179.83 (17) |
N1—N2—C1—N3 | −177.99 (15) | N6—N5—C5—N4 | −1.0 (3) |
C4—N2—C1—N3 | 1.0 (3) | N6—N5—C5—C2 | 178.89 (14) |
N1—N2—C1—C2 | −0.95 (19) | C1—C2—C5—N5 | 1.9 (2) |
C4—N2—C1—C2 | 178.00 (16) | C3—C2—C5—N5 | −178.43 (17) |
N2—C1—C2—C3 | 0.82 (18) | C1—C2—C5—N4 | −178.18 (16) |
N3—C1—C2—C3 | 177.53 (18) | C3—C2—C5—N4 | 1.5 (3) |
N2—C1—C2—C5 | −179.44 (15) | N5—N6—C6—O1 | −6.2 (3) |
N3—C1—C2—C5 | −2.7 (3) | N5—N6—C6—C7 | 173.75 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H4W···N1i | 0.87 (3) | 2.04 (3) | 2.884 (2) | 162 (3) |
O2W—H3W···O1 | 0.86 (3) | 2.11 (3) | 2.885 (2) | 150 (3) |
O1W—H2W···O2Wii | 0.89 (3) | 1.93 (3) | 2.824 (2) | 175 (3) |
O1W—H1W···N5 | 0.81 (3) | 2.24 (3) | 2.982 (2) | 153 (3) |
N6—H6N···O1Wiii | 0.84 (2) | 2.07 (2) | 2.905 (2) | 177 (2) |
N4—H42···O1Wiii | 0.88 (2) | 2.14 (3) | 2.995 (2) | 165 (2) |
N4—H41···O1iv | 0.81 (2) | 2.08 (2) | 2.874 (2) | 169 (2) |
N3—H32···N5 | 0.86 (2) | 2.18 (2) | 2.791 (2) | 128 (2) |
N3—H31···O2Wv | 0.83 (2) | 2.27 (2) | 3.082 (2) | 163 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z; (iv) x, y−1, z; (v) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C7H12N6O·2H2O |
Mr | 232.26 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 223 |
a, b, c (Å) | 7.5496 (9), 7.6208 (9), 11.2518 (13) |
α, β, γ (°) | 102.645 (2), 101.440 (2), 110.810 (2) |
V (Å3) | 562.75 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.45 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2001) |
Tmin, Tmax | 0.953, 0.989 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3963, 2548, 2174 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.141, 1.05 |
No. of reflections | 2548 |
No. of parameters | 183 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.31, −0.26 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H4W···N1i | 0.87 (3) | 2.04 (3) | 2.884 (2) | 162 (3) |
O2W—H3W···O1 | 0.86 (3) | 2.11 (3) | 2.885 (2) | 150 (3) |
O1W—H2W···O2Wii | 0.89 (3) | 1.93 (3) | 2.824 (2) | 175 (3) |
O1W—H1W···N5 | 0.81 (3) | 2.24 (3) | 2.982 (2) | 153 (3) |
N6—H6N···O1Wiii | 0.84 (2) | 2.07 (2) | 2.905 (2) | 177 (2) |
N4—H42···O1Wiii | 0.88 (2) | 2.14 (3) | 2.995 (2) | 165 (2) |
N4—H41···O1iv | 0.81 (2) | 2.08 (2) | 2.874 (2) | 169 (2) |
N3—H32···N5 | 0.86 (2) | 2.18 (2) | 2.791 (2) | 128 (2) |
N3—H31···O2Wv | 0.83 (2) | 2.27 (2) | 3.082 (2) | 163 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z; (iv) x, y−1, z; (v) −x+1, −y+2, −z+1. |
Acknowledgements
This work was supported by the National Medical Research Council, Singapore (grant No. NMRC/NIG/0020/2008).
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany. Google Scholar
Caruso, F., Raimondi, M. V., Daidone, G., Pettinari, C. & Rossi, M. (2009). Acta Cryst. E65, o2173. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2008). Heterocycles, 75, 1575–1622. CAS Google Scholar
Elguero, J., Goya, P., Jagerovic, N. & Silva, A. M. S. (2002). Targets Heterocycl. Syst. 6, 52–98. CAS Google Scholar
Halcrow, M. A. (2009). Dalton Trans. pp. 2059–2073. Web of Science CrossRef Google Scholar
Ianelli, S., Pelosi, G., Ponticelli, G., Cocco, M. T. & Onnis, V. (2001). J. Chem. Crystallogr. 31, 149–154. Web of Science CSD CrossRef CAS Google Scholar
Lamberth, C. (2007). Heterocycles, 71, 1467–1502. CrossRef CAS Google Scholar
Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218. Web of Science CrossRef CAS Google Scholar
Schenone, S., Radi, M. & Botta, M. (2007). Targets Heterocycl. Syst. 11, 44–69. CAS Google Scholar
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zia-ur-Rehman, M., Elsegood, M. R. J., Akbar, N. & Shah Zaib Saleem, R. (2008). Acta Cryst. E64, o1312–o1313. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zia-ur-Rehman, M., Elsegood, M. R. J., Choudary, J. A., Fasih Ullah, M. & Siddiqui, H. L. (2009). Acta Cryst. E65, o275–o276. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrazoles have been well recognized as valuable ligands in metal-organic chemistry (Mukherjee, 2000; Halcrow, 2009). Pyrazoles also possess useful agricultural (Lamberth, 2007) and pharmacological (Elguero et al., 2002) properties and serve as synthons for other pyrazolo fused bioactive heterocycles (Schenone et al., 2007; Dolzhenko et al., 2008).
Herein, we report molecular and crystal structure of N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide (Figs. 1 and 2). The compound can exist in two tautomeric forms, namely hydrazonamide and imidohydrazide (Fig. 3). The hydrazonamide tautomer can also exhibit (E-Z) isomerism by inversion of configuration of the hydrazono C═N linkage. We found that the compound crystallizes as a N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide tautomer. Similarly to previously reported N'-acetyl-2-phenylethanehydrazonamide (Ianelli et al., 2001), the hydrazonamide group of N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide adopts (Z)-configuration. This configuration is stabilized by the intramolecular N(3)H···N5═C5 hydrogen bonding between the amino group and the hydrazone N5 atom, generating an S(6) graph-set motif (Bernstein et al., 1995). Similar NH···O═C interactions were reported for the structurally related derivatives of 5-amino-1H-pyrazole-4-carboxylic acid (Zia-ur-Rehman et al., 2008; Zia-ur-Rehman et al., 2009; Caruso et al., 2009). Planarity of the molecule is affected by slight twisting of the acetyl group [C5—N5—N6—C6 torsion angle is 170.14 (16)°].
In the crystal, the hydrazonamide molecules are arranged to form sheets parallel to the (101) (Fig. 2). In the sheets, atom N4 of one molecule is involved in a intermolecular N—H···O═C interaction with the carbonyl atom O1 of adjacent molecule making C(7) chains along the [010] direction. The water molecules further stabilize packing by formation of the intermolecular hydrogen bond network (Fig. 2 and Table 1).