organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-Acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide dihydrate

aDepartment of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore, and bDepartment of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
*Correspondence e-mail: phada@nus.edu.sg

(Received 22 April 2010; accepted 26 April 2010; online 30 April 2010)

In the title compound, C7H12N6O·2H2O, the Z configuration of the hydrazone fragment is stabilized by an intra­molecular N—H⋯N hydrogen bond involving one of the amino groups. In the crystal structure, the hydrazonamide mol­ecules are connected via inter­molecular N—H⋯O=C hydrogen bonds, forming C(7) chains running along [010]. The chains form sheets parallel to the ([\overline{1}]01). The chains are cross-linked by water mol­ecules to form a three-dimensional hydrogen-bonded network.

Related literature

For bioactive pyrazoles, see: Elguero et al. (2002[Elguero, J., Goya, P., Jagerovic, N. & Silva, A. M. S. (2002). Targets Heterocycl. Syst. 6, 52-98.]); Lamberth (2007[Lamberth, C. (2007). Heterocycles, 71, 1467-1502.]). For the use of pyrazoles as synthons in heterocyclic chemistry, see: Schenone et al. (2007[Schenone, S., Radi, M. & Botta, M. (2007). Targets Heterocycl. Syst. 11, 44-69.]); Dolzhenko et al. (2008[Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2008). Heterocycles, 75, 1575-1622.]). For the use of pyrazoles in metal-organic chemistry, see: Mukherjee (2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]); Halcrow (2009[Halcrow, M. A. (2009). Dalton Trans. pp. 2059-2073.]). For the crystal structures of related 5-amino-1H-pyrazole-4-carboxylic acid derivatives, see: Zia-ur-Rehman et al. (2008[Zia-ur-Rehman, M., Elsegood, M. R. J., Akbar, N. & Shah Zaib Saleem, R. (2008). Acta Cryst. E64, o1312-o1313.], 2009[Zia-ur-Rehman, M., Elsegood, M. R. J., Choudary, J. A., Fasih Ullah, M. & Siddiqui, H. L. (2009). Acta Cryst. E65, o275-o276.]); Caruso et al. (2009[Caruso, F., Raimondi, M. V., Daidone, G., Pettinari, C. & Rossi, M. (2009). Acta Cryst. E65, o2173.]). For the crystal structure of N′-acetyl-2-phenyl­ethane­hydra­zo­namide, see: Ianelli et al. (2001[Ianelli, S., Pelosi, G., Ponticelli, G., Cocco, M. T. & Onnis, V. (2001). J. Chem. Crystallogr. 31, 149-154.]). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H12N6O·2H2O

  • Mr = 232.26

  • Triclinic, [P \overline 1]

  • a = 7.5496 (9) Å

  • b = 7.6208 (9) Å

  • c = 11.2518 (13) Å

  • α = 102.645 (2)°

  • β = 101.440 (2)°

  • γ = 110.810 (2)°

  • V = 562.75 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 223 K

  • 0.45 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.953, Tmax = 0.989

  • 3963 measured reflections

  • 2548 independent reflections

  • 2174 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.141

  • S = 1.05

  • 2548 reflections

  • 183 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H4W⋯N1i 0.87 (3) 2.04 (3) 2.884 (2) 162 (3)
O2W—H3W⋯O1 0.86 (3) 2.11 (3) 2.885 (2) 150 (3)
O1W—H2W⋯O2Wii 0.89 (3) 1.93 (3) 2.824 (2) 175 (3)
O1W—H1W⋯N5 0.81 (3) 2.24 (3) 2.982 (2) 153 (3)
N6—H6N⋯O1Wiii 0.84 (2) 2.07 (2) 2.905 (2) 177 (2)
N4—H42⋯O1Wiii 0.88 (2) 2.14 (3) 2.995 (2) 165 (2)
N4—H41⋯O1iv 0.81 (2) 2.08 (2) 2.874 (2) 169 (2)
N3—H32⋯N5 0.86 (2) 2.18 (2) 2.791 (2) 128 (2)
N3—H31⋯O2Wv 0.83 (2) 2.27 (2) 3.082 (2) 163 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z; (iv) x, y-1, z; (v) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazoles have been well recognized as valuable ligands in metal-organic chemistry (Mukherjee, 2000; Halcrow, 2009). Pyrazoles also possess useful agricultural (Lamberth, 2007) and pharmacological (Elguero et al., 2002) properties and serve as synthons for other pyrazolo fused bioactive heterocycles (Schenone et al., 2007; Dolzhenko et al., 2008).

Herein, we report molecular and crystal structure of N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide (Figs. 1 and 2). The compound can exist in two tautomeric forms, namely hydrazonamide and imidohydrazide (Fig. 3). The hydrazonamide tautomer can also exhibit (E-Z) isomerism by inversion of configuration of the hydrazono CN linkage. We found that the compound crystallizes as a N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide tautomer. Similarly to previously reported N'-acetyl-2-phenylethanehydrazonamide (Ianelli et al., 2001), the hydrazonamide group of N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide adopts (Z)-configuration. This configuration is stabilized by the intramolecular N(3)H···N5C5 hydrogen bonding between the amino group and the hydrazone N5 atom, generating an S(6) graph-set motif (Bernstein et al., 1995). Similar NH···OC interactions were reported for the structurally related derivatives of 5-amino-1H-pyrazole-4-carboxylic acid (Zia-ur-Rehman et al., 2008; Zia-ur-Rehman et al., 2009; Caruso et al., 2009). Planarity of the molecule is affected by slight twisting of the acetyl group [C5—N5—N6—C6 torsion angle is 170.14 (16)°].

In the crystal, the hydrazonamide molecules are arranged to form sheets parallel to the (101) (Fig. 2). In the sheets, atom N4 of one molecule is involved in a intermolecular N—H···OC interaction with the carbonyl atom O1 of adjacent molecule making C(7) chains along the [010] direction. The water molecules further stabilize packing by formation of the intermolecular hydrogen bond network (Fig. 2 and Table 1).

Related literature top

For bioactive pyrazoles, see: Elguero et al. (2002); Lamberth (2007). For the use of pyrazoles as synthons in heterocyclic chemistry, see: Schenone et al. (2007); Dolzhenko et al. (2008). For the use of pyrazoles in metal-organic chemistry, see: Mukherjee (2000); Halcrow (2009). For the crystal structures of related 5-amino-1H-pyrazole-4-carboxylic acid derivatives, see: Zia-ur-Rehman et al. (2008, 2009); Caruso et al. (2009). For the crystal structure of N'-acetyl-2-phenylethanehydrazonamide, see: Ianelli et al. (2001). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

N'-Acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide was prepared by treatment of ethyl N-(4-cyano-1-methyl-1H-pyrazol-5-yl)acetimidate with 3 eq. of hydrazine hydrate (40%) in ethanol. Detail procedure with proposed mechanism will be reported elsewhere. Single crystals suitable for the crystallographic analysis were grown by recrystallization from ethanol, m.p. 513 K.

Refinement top

All C-bound H atoms were positioned geometrically and included in the refinement in riding-motion approximation [0.95 Å for Cpyrazole–H, and 0.98 Å for methyl groups; Uiso(H) = 1.2Ueq(Cpyrazole) and Uiso(H) = 1.5Ueq(Cmethyl)] while the N- and O-bound H atoms were located in a difference map and refined freely.

Structure description top

Pyrazoles have been well recognized as valuable ligands in metal-organic chemistry (Mukherjee, 2000; Halcrow, 2009). Pyrazoles also possess useful agricultural (Lamberth, 2007) and pharmacological (Elguero et al., 2002) properties and serve as synthons for other pyrazolo fused bioactive heterocycles (Schenone et al., 2007; Dolzhenko et al., 2008).

Herein, we report molecular and crystal structure of N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide (Figs. 1 and 2). The compound can exist in two tautomeric forms, namely hydrazonamide and imidohydrazide (Fig. 3). The hydrazonamide tautomer can also exhibit (E-Z) isomerism by inversion of configuration of the hydrazono CN linkage. We found that the compound crystallizes as a N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide tautomer. Similarly to previously reported N'-acetyl-2-phenylethanehydrazonamide (Ianelli et al., 2001), the hydrazonamide group of N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide adopts (Z)-configuration. This configuration is stabilized by the intramolecular N(3)H···N5C5 hydrogen bonding between the amino group and the hydrazone N5 atom, generating an S(6) graph-set motif (Bernstein et al., 1995). Similar NH···OC interactions were reported for the structurally related derivatives of 5-amino-1H-pyrazole-4-carboxylic acid (Zia-ur-Rehman et al., 2008; Zia-ur-Rehman et al., 2009; Caruso et al., 2009). Planarity of the molecule is affected by slight twisting of the acetyl group [C5—N5—N6—C6 torsion angle is 170.14 (16)°].

In the crystal, the hydrazonamide molecules are arranged to form sheets parallel to the (101) (Fig. 2). In the sheets, atom N4 of one molecule is involved in a intermolecular N—H···OC interaction with the carbonyl atom O1 of adjacent molecule making C(7) chains along the [010] direction. The water molecules further stabilize packing by formation of the intermolecular hydrogen bond network (Fig. 2 and Table 1).

For bioactive pyrazoles, see: Elguero et al. (2002); Lamberth (2007). For the use of pyrazoles as synthons in heterocyclic chemistry, see: Schenone et al. (2007); Dolzhenko et al. (2008). For the use of pyrazoles in metal-organic chemistry, see: Mukherjee (2000); Halcrow (2009). For the crystal structures of related 5-amino-1H-pyrazole-4-carboxylic acid derivatives, see: Zia-ur-Rehman et al. (2008, 2009); Caruso et al. (2009). For the crystal structure of N'-acetyl-2-phenylethanehydrazonamide, see: Ianelli et al. (2001). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide dihydrate showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the a axis.
[Figure 3] Fig. 3. Hydrazonamide-imidohydrazide tautomerism in N'-acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide
N'-Acetyl-5-amino-1-methyl-1H-pyrazole-4-carbohydrazonamide dihydrate top
Crystal data top
C7H12N6O·2H2OZ = 2
Mr = 232.26F(000) = 248
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Melting point: 513 K
a = 7.5496 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6208 (9) ÅCell parameters from 1515 reflections
c = 11.2518 (13) Åθ = 3.0–27.5°
α = 102.645 (2)°µ = 0.11 mm1
β = 101.440 (2)°T = 223 K
γ = 110.810 (2)°Rod, colourless
V = 562.75 (11) Å30.45 × 0.12 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2548 independent reflections
Radiation source: fine-focus sealed tube2174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 99
Tmin = 0.953, Tmax = 0.989k = 99
3963 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.1961P]
where P = (Fo2 + 2Fc2)/3
2548 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C7H12N6O·2H2Oγ = 110.810 (2)°
Mr = 232.26V = 562.75 (11) Å3
Triclinic, P1Z = 2
a = 7.5496 (9) ÅMo Kα radiation
b = 7.6208 (9) ŵ = 0.11 mm1
c = 11.2518 (13) ÅT = 223 K
α = 102.645 (2)°0.45 × 0.12 × 0.10 mm
β = 101.440 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2548 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2174 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.989Rint = 0.021
3963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.31 e Å3
2548 reflectionsΔρmin = 0.26 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3615 (2)0.89463 (19)0.14623 (12)0.0421 (4)
N10.7337 (2)0.3950 (2)0.48625 (14)0.0306 (4)
N20.7791 (2)0.5933 (2)0.51428 (13)0.0264 (3)
N30.7066 (3)0.8221 (2)0.42298 (16)0.0302 (4)
H310.748 (3)0.907 (3)0.495 (2)0.036 (6)*
H320.613 (3)0.821 (3)0.365 (2)0.039 (6)*
N40.3308 (2)0.2471 (2)0.11287 (15)0.0297 (4)
H410.350 (3)0.158 (3)0.132 (2)0.032 (5)*
H420.260 (3)0.223 (3)0.034 (2)0.040 (6)*
N50.4378 (2)0.5945 (2)0.18078 (13)0.0294 (4)
N60.3198 (2)0.5816 (2)0.06398 (13)0.0267 (3)
H6N0.269 (3)0.479 (3)0.000 (2)0.037 (6)*
C10.6808 (2)0.6344 (2)0.41838 (15)0.0239 (4)
C20.5664 (2)0.4541 (2)0.32050 (15)0.0236 (4)
C30.6068 (3)0.3143 (3)0.37018 (16)0.0272 (4)
H30.54960.17800.32560.033*
C40.9204 (3)0.7328 (3)0.63443 (17)0.0359 (4)
H4A1.01400.84430.61880.054*
H4C0.99160.66870.67660.054*
H4D0.85040.77910.68860.054*
C50.4374 (2)0.4304 (2)0.19753 (15)0.0225 (3)
C60.2965 (3)0.7431 (3)0.05365 (16)0.0278 (4)
C70.1873 (3)0.7318 (3)0.07661 (17)0.0354 (4)
H7A0.07290.76030.07210.053*
H7B0.14310.60000.13530.053*
H7C0.27510.82780.10660.053*
O1W0.8443 (2)0.7733 (2)0.15574 (13)0.0380 (4)
H1W0.752 (5)0.757 (4)0.186 (3)0.069 (9)*
H2W0.949 (5)0.780 (4)0.213 (3)0.065 (8)*
O2W0.1806 (2)0.8169 (2)0.34309 (14)0.0393 (4)
H3W0.253 (4)0.812 (4)0.294 (3)0.064 (9)*
H4W0.189 (4)0.731 (4)0.381 (3)0.060 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0739 (10)0.0235 (7)0.0262 (7)0.0259 (7)0.0028 (7)0.0046 (5)
N10.0382 (8)0.0292 (8)0.0260 (8)0.0170 (7)0.0052 (6)0.0107 (6)
N20.0311 (7)0.0255 (7)0.0195 (7)0.0118 (6)0.0023 (6)0.0060 (6)
N30.0413 (9)0.0219 (7)0.0218 (8)0.0130 (7)0.0021 (7)0.0032 (6)
N40.0436 (9)0.0173 (7)0.0228 (8)0.0136 (6)0.0018 (6)0.0053 (6)
N50.0403 (8)0.0219 (7)0.0197 (7)0.0141 (6)0.0034 (6)0.0043 (6)
N60.0375 (8)0.0195 (7)0.0174 (7)0.0128 (6)0.0022 (6)0.0029 (6)
C10.0268 (8)0.0265 (8)0.0186 (7)0.0119 (7)0.0058 (6)0.0071 (6)
C20.0286 (8)0.0225 (8)0.0199 (8)0.0119 (6)0.0046 (6)0.0072 (6)
C30.0342 (9)0.0228 (8)0.0241 (8)0.0138 (7)0.0037 (7)0.0076 (6)
C40.0374 (10)0.0406 (11)0.0206 (8)0.0142 (8)0.0003 (7)0.0043 (8)
C50.0274 (8)0.0211 (8)0.0188 (7)0.0114 (6)0.0045 (6)0.0061 (6)
C60.0353 (9)0.0264 (8)0.0217 (8)0.0143 (7)0.0048 (7)0.0085 (7)
C70.0447 (11)0.0370 (10)0.0273 (9)0.0227 (9)0.0026 (8)0.0136 (8)
O1W0.0406 (8)0.0395 (8)0.0236 (7)0.0125 (6)0.0021 (6)0.0044 (6)
O2W0.0518 (9)0.0414 (8)0.0299 (7)0.0253 (7)0.0082 (7)0.0145 (6)
Geometric parameters (Å, º) top
O1—C61.236 (2)C1—C21.401 (2)
N1—C31.317 (2)C2—C31.402 (2)
N1—N21.372 (2)C2—C51.459 (2)
N2—C11.344 (2)C3—H30.94
N2—C41.445 (2)C4—H4A0.97
N3—C11.362 (2)C4—H4C0.97
N3—H310.83 (2)C4—H4D0.97
N3—H320.86 (2)C6—C71.500 (2)
N4—C51.350 (2)C7—H7A0.97
N4—H410.81 (2)C7—H7B0.97
N4—H420.88 (2)C7—H7C0.97
N5—C51.303 (2)O1W—H1W0.81 (3)
N5—N61.3953 (19)O1W—H2W0.89 (3)
N6—C61.330 (2)O2W—H3W0.86 (3)
N6—H6N0.84 (2)O2W—H4W0.87 (3)
C3—N1—N2104.63 (14)C2—C3—H3123.7
C1—N2—N1112.10 (14)N2—C4—H4A109.5
C1—N2—C4127.04 (15)N2—C4—H4C109.5
N1—N2—C4120.85 (14)H4A—C4—H4C109.5
C1—N3—H31117.5 (15)N2—C4—H4D109.5
C1—N3—H32110.8 (16)H4A—C4—H4D109.5
H31—N3—H32119 (2)H4C—C4—H4D109.5
C5—N4—H41116.7 (15)N5—C5—N4126.14 (15)
C5—N4—H42123.9 (15)N5—C5—C2114.92 (14)
H41—N4—H42118 (2)N4—C5—C2118.95 (15)
C5—N5—N6117.52 (14)O1—C6—N6121.90 (15)
C6—N6—N5117.50 (14)O1—C6—C7121.68 (16)
C6—N6—H6N119.6 (15)N6—C6—C7116.42 (15)
N5—N6—H6N122.8 (15)C6—C7—H7A109.5
N2—C1—N3122.61 (15)C6—C7—H7B109.5
N2—C1—C2106.59 (14)H7A—C7—H7B109.5
N3—C1—C2130.72 (15)C6—C7—H7C109.5
C1—C2—C3104.15 (14)H7A—C7—H7C109.5
C1—C2—C5125.02 (15)H7B—C7—H7C109.5
C3—C2—C5130.83 (15)H1W—O1W—H2W110 (3)
N1—C3—C2112.53 (15)H3W—O2W—H4W103 (3)
N1—C3—H3123.7
C3—N1—N2—C10.66 (19)N2—N1—C3—C20.1 (2)
C3—N1—N2—C4178.36 (16)C1—C2—C3—N10.5 (2)
C5—N5—N6—C6170.14 (16)C5—C2—C3—N1179.83 (17)
N1—N2—C1—N3177.99 (15)N6—N5—C5—N41.0 (3)
C4—N2—C1—N31.0 (3)N6—N5—C5—C2178.89 (14)
N1—N2—C1—C20.95 (19)C1—C2—C5—N51.9 (2)
C4—N2—C1—C2178.00 (16)C3—C2—C5—N5178.43 (17)
N2—C1—C2—C30.82 (18)C1—C2—C5—N4178.18 (16)
N3—C1—C2—C3177.53 (18)C3—C2—C5—N41.5 (3)
N2—C1—C2—C5179.44 (15)N5—N6—C6—O16.2 (3)
N3—C1—C2—C52.7 (3)N5—N6—C6—C7173.75 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H4W···N1i0.87 (3)2.04 (3)2.884 (2)162 (3)
O2W—H3W···O10.86 (3)2.11 (3)2.885 (2)150 (3)
O1W—H2W···O2Wii0.89 (3)1.93 (3)2.824 (2)175 (3)
O1W—H1W···N50.81 (3)2.24 (3)2.982 (2)153 (3)
N6—H6N···O1Wiii0.84 (2)2.07 (2)2.905 (2)177 (2)
N4—H42···O1Wiii0.88 (2)2.14 (3)2.995 (2)165 (2)
N4—H41···O1iv0.81 (2)2.08 (2)2.874 (2)169 (2)
N3—H32···N50.86 (2)2.18 (2)2.791 (2)128 (2)
N3—H31···O2Wv0.83 (2)2.27 (2)3.082 (2)163 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x, y1, z; (v) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC7H12N6O·2H2O
Mr232.26
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)7.5496 (9), 7.6208 (9), 11.2518 (13)
α, β, γ (°)102.645 (2), 101.440 (2), 110.810 (2)
V3)562.75 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.45 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.953, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
3963, 2548, 2174
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.141, 1.05
No. of reflections2548
No. of parameters183
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H4W···N1i0.87 (3)2.04 (3)2.884 (2)162 (3)
O2W—H3W···O10.86 (3)2.11 (3)2.885 (2)150 (3)
O1W—H2W···O2Wii0.89 (3)1.93 (3)2.824 (2)175 (3)
O1W—H1W···N50.81 (3)2.24 (3)2.982 (2)153 (3)
N6—H6N···O1Wiii0.84 (2)2.07 (2)2.905 (2)177 (2)
N4—H42···O1Wiii0.88 (2)2.14 (3)2.995 (2)165 (2)
N4—H41···O1iv0.81 (2)2.08 (2)2.874 (2)169 (2)
N3—H32···N50.86 (2)2.18 (2)2.791 (2)128 (2)
N3—H31···O2Wv0.83 (2)2.27 (2)3.082 (2)163 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x, y1, z; (v) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the National Medical Research Council, Singapore (grant No. NMRC/NIG/0020/2008).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationCaruso, F., Raimondi, M. V., Daidone, G., Pettinari, C. & Rossi, M. (2009). Acta Cryst. E65, o2173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2008). Heterocycles, 75, 1575–1622.  CAS Google Scholar
First citationElguero, J., Goya, P., Jagerovic, N. & Silva, A. M. S. (2002). Targets Heterocycl. Syst. 6, 52–98.  CAS Google Scholar
First citationHalcrow, M. A. (2009). Dalton Trans. pp. 2059–2073.  Web of Science CrossRef Google Scholar
First citationIanelli, S., Pelosi, G., Ponticelli, G., Cocco, M. T. & Onnis, V. (2001). J. Chem. Crystallogr. 31, 149–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationLamberth, C. (2007). Heterocycles, 71, 1467–1502.  CrossRef CAS Google Scholar
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS Google Scholar
First citationSchenone, S., Radi, M. & Botta, M. (2007). Targets Heterocycl. Syst. 11, 44–69.  CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Elsegood, M. R. J., Akbar, N. & Shah Zaib Saleem, R. (2008). Acta Cryst. E64, o1312–o1313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Elsegood, M. R. J., Choudary, J. A., Fasih Ullah, M. & Siddiqui, H. L. (2009). Acta Cryst. E65, o275–o276.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds