organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,7-Bis(methyl­sulfan­yl)-2,3-[(3,6,9-trioxaundecane-1,11-di­yl)bis­­(sulfanediylmethyl­ene)]-1,4,5,8-tetra­thia­fulvalene

aKey Laboratory of Organism Functional Factors of the Changbai Moutain, Yanbian University, Ministry of Education, Yanji 133002, People's Republic of China, and bState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: zqcong@ybu.edu.cn

(Received 21 March 2010; accepted 30 March 2010; online 10 April 2010)

In the title compound, C18H26O3S8, the two five-membered rings exhibit envelope conformations. The two S atoms in the 17-membered macrocycle deviate from the plane of the fused five-membered ring by 1.429 (3) and −1.434 (3) Å in opposite directions.

Related literature

For background to dithia­crown ether annulated tetra­thia­fulvalenes, see: Otsubo & Ogura (1985[Otsubo, T. & Ogura, F. (1985). Bull. Chem. Soc. Jpn, 58, 1343-1344.]); Moore et al. (2000[Moore, A. J., Goldenberg, L. M., Bryce, M. R. & Petty, M. (2000). J. Org. Chem. 65, 8269-8276.]). For details of the synthesis, see: Chen et al. (2005[Chen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem. 25, 570-575.]). For a related structure, see Hou et al. (2009[Hou, R.-B., Li, B., Che, T., Yin, B.-Z. & Wu, L.-X. (2009). Acta Cryst. E65, o2538.]).

[Scheme 1]

Experimental

Crystal data
  • C18H26O3S8

  • Mr = 546.87

  • Triclinic, [P \overline 1]

  • a = 9.715 (5) Å

  • b = 11.585 (7) Å

  • c = 12.548 (5) Å

  • α = 98.37 (2)°

  • β = 112.112 (18)°

  • γ = 103.94 (2)°

  • V = 1225.3 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 290 K

  • 0.13 × 0.11 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.909, Tmax = 0.922

  • 12067 measured reflections

  • 5535 independent reflections

  • 4519 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.125

  • S = 1.09

  • 5535 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.84 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002[Rigaku/MSC and Rigaku (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dithiacrown ether annulated tetrathiafulvalenes (TTF) have been received great attention as sensor molecules for various metal cations (Otsubo & Ogura, 1985; Moore et al., 2000). These sensors can recognize selectively the various metal cations to signal electrochemical information. We fused TTF unit with a extended dithiacrown ether to synthesize the title compound, (I). Herewith we report its crystal structure.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable to those observed in the related structure (Hou et al., 2009). Two five-membered rings have an envelope conformation. Two S atoms in the 17-membered macrocycle deviate from the plane of the fused five-membered ring in opposite directions at 1.429 (3) and -1.434 (3) Å, respectively. The mean planes of two five-membered rings form a dihedral angle of 29.84 (10) °.

Related literature top

For background to dithiacrown ether annulated tetrathiafulvalenes, see: Otsubo & Ogura (1985); Moore et al. (2000). For details of the synthesis, see: Chen et al. (2005). For a related structure, see Hou et al. (2009)

Experimental top

The title compound was prepared according to the literature (Chen et al., 2005). Single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum (60-90 °C) at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.96 and 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.5 or 1.2 Ueq(C).

Structure description top

Dithiacrown ether annulated tetrathiafulvalenes (TTF) have been received great attention as sensor molecules for various metal cations (Otsubo & Ogura, 1985; Moore et al., 2000). These sensors can recognize selectively the various metal cations to signal electrochemical information. We fused TTF unit with a extended dithiacrown ether to synthesize the title compound, (I). Herewith we report its crystal structure.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable to those observed in the related structure (Hou et al., 2009). Two five-membered rings have an envelope conformation. Two S atoms in the 17-membered macrocycle deviate from the plane of the fused five-membered ring in opposite directions at 1.429 (3) and -1.434 (3) Å, respectively. The mean planes of two five-membered rings form a dihedral angle of 29.84 (10) °.

For background to dithiacrown ether annulated tetrathiafulvalenes, see: Otsubo & Ogura (1985); Moore et al. (2000). For details of the synthesis, see: Chen et al. (2005). For a related structure, see Hou et al. (2009)

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom numbering and 30% probability displacement ellipsoids.
6,7-Bis(methylsulfanyl)-2,3-[(3,6,9-trioxaundecane-1,11- diyl)bis(sulfanediylmethylene)]-1,4,5,8-tetrathiafulvalene top
Crystal data top
C18H26O3S8Z = 2
Mr = 546.87F(000) = 572
Triclinic, P1Dx = 1.482 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.715 (5) ÅCell parameters from 8201 reflections
b = 11.585 (7) Åθ = 3.1–27.5°
c = 12.548 (5) ŵ = 0.75 mm1
α = 98.37 (2)°T = 290 K
β = 112.112 (18)°Block, yellow
γ = 103.94 (2)°0.13 × 0.11 × 0.11 mm
V = 1225.3 (11) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5535 independent reflections
Radiation source: fine-focus sealed tube4519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1211
Tmin = 0.909, Tmax = 0.922k = 1415
12067 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.6546P]
where P = (Fo2 + 2Fc2)/3
5535 reflections(Δ/σ)max = 0.004
264 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
C18H26O3S8γ = 103.94 (2)°
Mr = 546.87V = 1225.3 (11) Å3
Triclinic, P1Z = 2
a = 9.715 (5) ÅMo Kα radiation
b = 11.585 (7) ŵ = 0.75 mm1
c = 12.548 (5) ÅT = 290 K
α = 98.37 (2)°0.13 × 0.11 × 0.11 mm
β = 112.112 (18)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5535 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4519 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.922Rint = 0.021
12067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.09Δρmax = 1.19 e Å3
5535 reflectionsΔρmin = 0.84 e Å3
264 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8329 (4)0.2619 (3)0.0795 (3)0.0673 (8)
H1A0.91000.32810.01220.101*
H1B0.87970.20160.09630.101*
H1C0.74720.22430.06200.101*
C20.6741 (3)0.4211 (2)0.1600 (2)0.0461 (6)
C30.6468 (3)0.6002 (2)0.0284 (2)0.0378 (5)
C40.6879 (3)0.7034 (2)0.0568 (2)0.0375 (5)
C50.8608 (3)0.9048 (2)0.2248 (2)0.0377 (5)
C61.0049 (3)0.9939 (2)0.3263 (2)0.0453 (6)
H6A1.02220.96410.39700.054*
H6B0.98751.07240.34170.054*
C71.1338 (4)1.0744 (4)0.1696 (3)0.0672 (9)
H7A1.19461.05220.12870.081*
H7B1.02381.03240.11670.081*
C81.1631 (4)1.2111 (4)0.1912 (4)0.0809 (11)
H8A1.26681.25510.25480.097*
H8B1.15771.23620.11970.097*
C91.0704 (4)1.3669 (3)0.2552 (3)0.0717 (9)
H9A1.07451.40250.19060.086*
H9B1.16881.40800.32530.086*
C100.9373 (4)1.3834 (3)0.2801 (3)0.0631 (8)
H10A0.94451.46960.29480.076*
H10B0.83831.33650.21240.076*
C110.8268 (4)1.3533 (3)0.4170 (3)0.0631 (8)
H11A0.72451.31750.34970.076*
H11B0.84271.43960.44780.076*
C120.8366 (4)1.2872 (3)0.5112 (3)0.0684 (9)
H12A0.94381.31570.57240.082*
H12B0.77011.30600.54790.082*
C130.6293 (4)1.0953 (3)0.4346 (3)0.0646 (8)
H13A0.57001.15240.42050.077*
H13B0.62151.06420.50060.077*
C140.5624 (4)0.9902 (3)0.3249 (3)0.0579 (7)
H14A0.46590.93490.31910.070*
H14B0.63580.94450.33350.070*
C150.7020 (3)1.0495 (2)0.1709 (2)0.0424 (5)
H15A0.69481.07920.10110.051*
H15B0.78951.10950.23980.051*
C160.7328 (3)0.9291 (2)0.1574 (2)0.0369 (5)
C170.5549 (3)0.4512 (3)0.2335 (2)0.0542 (7)
C180.2899 (5)0.2958 (4)0.4241 (4)0.0993 (14)
H18A0.30420.23210.38390.149*
H18B0.23540.25980.50860.149*
H18C0.22960.33800.39830.149*
O11.0472 (3)1.2390 (2)0.2231 (2)0.0649 (6)
O20.9459 (2)1.3412 (2)0.38150 (17)0.0585 (5)
O30.7891 (2)1.1573 (2)0.46389 (19)0.0605 (5)
S10.76152 (11)0.32107 (7)0.20652 (7)0.0659 (2)
S20.75246 (8)0.49614 (6)0.00808 (5)0.04786 (17)
S30.85994 (8)0.75086 (6)0.19036 (5)0.04658 (17)
S41.18116 (8)1.01831 (8)0.30089 (7)0.0583 (2)
S50.52206 (8)1.03736 (6)0.18849 (6)0.04905 (17)
S60.57706 (7)0.80320 (6)0.04603 (6)0.04656 (17)
S70.48777 (8)0.55840 (7)0.16902 (6)0.05239 (18)
S80.47241 (13)0.40014 (12)0.39012 (7)0.0970 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.070 (2)0.0609 (19)0.077 (2)0.0254 (16)0.0397 (18)0.0044 (16)
C20.0520 (15)0.0406 (13)0.0391 (12)0.0002 (11)0.0261 (11)0.0012 (10)
C30.0382 (12)0.0360 (12)0.0364 (11)0.0085 (9)0.0153 (9)0.0096 (9)
C40.0378 (12)0.0352 (11)0.0389 (11)0.0118 (9)0.0159 (9)0.0096 (9)
C50.0369 (12)0.0373 (12)0.0380 (11)0.0115 (9)0.0178 (10)0.0038 (9)
C60.0406 (13)0.0497 (14)0.0390 (12)0.0129 (11)0.0150 (10)0.0013 (10)
C70.0522 (17)0.100 (3)0.0579 (17)0.0260 (17)0.0347 (15)0.0127 (17)
C80.059 (2)0.110 (3)0.091 (3)0.019 (2)0.0487 (19)0.045 (2)
C90.078 (2)0.0544 (18)0.069 (2)0.0044 (16)0.0316 (17)0.0209 (15)
C100.081 (2)0.0383 (14)0.0566 (16)0.0106 (14)0.0199 (15)0.0147 (12)
C110.0613 (19)0.0534 (17)0.0645 (18)0.0204 (15)0.0203 (15)0.0021 (14)
C120.064 (2)0.081 (2)0.0460 (15)0.0117 (17)0.0222 (14)0.0003 (14)
C130.0501 (16)0.091 (2)0.0611 (18)0.0179 (16)0.0329 (14)0.0263 (17)
C140.0535 (17)0.0573 (17)0.078 (2)0.0194 (14)0.0388 (15)0.0305 (15)
C150.0411 (13)0.0337 (12)0.0526 (14)0.0112 (10)0.0212 (11)0.0106 (10)
C160.0335 (11)0.0338 (11)0.0437 (12)0.0084 (9)0.0193 (10)0.0076 (9)
C170.0500 (15)0.0618 (17)0.0353 (12)0.0017 (13)0.0199 (12)0.0028 (11)
C180.090 (3)0.098 (3)0.070 (2)0.000 (2)0.016 (2)0.008 (2)
O10.0606 (13)0.0569 (12)0.0870 (15)0.0080 (10)0.0468 (12)0.0237 (11)
O20.0605 (12)0.0613 (12)0.0532 (11)0.0206 (10)0.0208 (10)0.0212 (9)
O30.0486 (11)0.0760 (14)0.0617 (12)0.0191 (10)0.0265 (10)0.0257 (11)
S10.0891 (6)0.0546 (4)0.0623 (4)0.0167 (4)0.0508 (4)0.0005 (3)
S20.0601 (4)0.0414 (3)0.0366 (3)0.0208 (3)0.0156 (3)0.0012 (2)
S30.0475 (4)0.0435 (3)0.0412 (3)0.0221 (3)0.0095 (3)0.0030 (2)
S40.0325 (3)0.0715 (5)0.0582 (4)0.0171 (3)0.0114 (3)0.0018 (3)
S50.0395 (3)0.0518 (4)0.0557 (4)0.0219 (3)0.0173 (3)0.0103 (3)
S60.0351 (3)0.0367 (3)0.0556 (4)0.0113 (2)0.0094 (3)0.0050 (3)
S70.0433 (4)0.0610 (4)0.0404 (3)0.0105 (3)0.0102 (3)0.0091 (3)
S80.0877 (7)0.1331 (10)0.0378 (4)0.0061 (6)0.0267 (4)0.0001 (5)
Geometric parameters (Å, º) top
C1—S11.790 (4)C10—O21.408 (3)
C1—H1A0.9600C10—H10A0.9700
C1—H1B0.9600C10—H10B0.9700
C1—H1C0.9600C11—O21.415 (4)
C2—C171.341 (4)C11—C121.485 (5)
C2—S11.748 (3)C11—H11A0.9700
C2—S21.753 (3)C11—H11B0.9700
C3—C41.345 (3)C12—O31.425 (4)
C3—S21.750 (3)C12—H12A0.9700
C3—S71.753 (2)C12—H12B0.9700
C4—S61.746 (2)C13—O31.420 (4)
C4—S31.756 (2)C13—C141.503 (5)
C5—C161.337 (3)C13—H13A0.9700
C5—C61.492 (3)C13—H13B0.9700
C5—S31.770 (3)C14—S51.803 (3)
C6—S41.821 (3)C14—H14A0.9700
C6—H6A0.9700C14—H14B0.9700
C6—H6B0.9700C15—C161.496 (3)
C7—C81.504 (5)C15—S51.818 (3)
C7—S41.798 (4)C15—H15A0.9700
C7—H7A0.9700C15—H15B0.9700
C7—H7B0.9700C16—S61.767 (3)
C8—O11.419 (4)C17—S81.761 (3)
C8—H8A0.9700C17—S71.765 (3)
C8—H8B0.9700C18—S81.742 (5)
C9—O11.416 (4)C18—H18A0.9600
C9—C101.487 (5)C18—H18B0.9600
C9—H9A0.9700C18—H18C0.9600
C9—H9B0.9700
S1—C1—H1A109.5O2—C11—H11B110.3
S1—C1—H1B109.5C12—C11—H11B110.3
H1A—C1—H1B109.5H11A—C11—H11B108.6
S1—C1—H1C109.5O3—C12—C11111.5 (2)
H1A—C1—H1C109.5O3—C12—H12A109.3
H1B—C1—H1C109.5C11—C12—H12A109.3
C17—C2—S1124.5 (2)O3—C12—H12B109.3
C17—C2—S2116.3 (2)C11—C12—H12B109.3
S1—C2—S2119.01 (17)H12A—C12—H12B108.0
C4—C3—S2121.99 (19)O3—C13—C14109.6 (2)
C4—C3—S7124.10 (19)O3—C13—H13A109.7
S2—C3—S7113.89 (13)C14—C13—H13A109.7
C3—C4—S6123.71 (19)O3—C13—H13B109.7
C3—C4—S3122.82 (19)C14—C13—H13B109.7
S6—C4—S3113.46 (13)H13A—C13—H13B108.2
C16—C5—C6126.9 (2)C13—C14—S5114.0 (2)
C16—C5—S3116.77 (18)C13—C14—H14A108.8
C6—C5—S3116.37 (18)S5—C14—H14A108.8
C5—C6—S4114.01 (17)C13—C14—H14B108.8
C5—C6—H6A108.7S5—C14—H14B108.8
S4—C6—H6A108.7H14A—C14—H14B107.7
C5—C6—H6B108.7C16—C15—S5112.39 (16)
S4—C6—H6B108.7C16—C15—H15A109.1
H6A—C6—H6B107.6S5—C15—H15A109.1
C8—C7—S4115.4 (2)C16—C15—H15B109.1
C8—C7—H7A108.4S5—C15—H15B109.1
S4—C7—H7A108.4H15A—C15—H15B107.9
C8—C7—H7B108.4C5—C16—C15127.2 (2)
S4—C7—H7B108.4C5—C16—S6116.68 (18)
H7A—C7—H7B107.5C15—C16—S6115.94 (18)
O1—C8—C7108.5 (3)C2—C17—S8124.0 (2)
O1—C8—H8A110.0C2—C17—S7117.57 (19)
C7—C8—H8A110.0S8—C17—S7118.18 (19)
O1—C8—H8B110.0S8—C18—H18A109.5
C7—C8—H8B110.0S8—C18—H18B109.5
H8A—C8—H8B108.4H18A—C18—H18B109.5
O1—C9—C10108.2 (2)S8—C18—H18C109.5
O1—C9—H9A110.1H18A—C18—H18C109.5
C10—C9—H9A110.1H18B—C18—H18C109.5
O1—C9—H9B110.1C9—O1—C8113.5 (3)
C10—C9—H9B110.1C10—O2—C11114.0 (2)
H9A—C9—H9B108.4C13—O3—C12113.9 (3)
O2—C10—C9107.8 (3)C2—S1—C1101.77 (14)
O2—C10—H10A110.2C3—S2—C295.28 (13)
C9—C10—H10A110.2C4—S3—C594.67 (11)
O2—C10—H10B110.2C7—S4—C6103.95 (13)
C9—C10—H10B110.2C14—S5—C15102.32 (13)
H10A—C10—H10B108.5C4—S6—C1694.86 (12)
O2—C11—C12107.1 (3)C3—S7—C1794.12 (13)
O2—C11—H11A110.3C18—S8—C17102.48 (18)
C12—C11—H11A110.3

Experimental details

Crystal data
Chemical formulaC18H26O3S8
Mr546.87
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)9.715 (5), 11.585 (7), 12.548 (5)
α, β, γ (°)98.37 (2), 112.112 (18), 103.94 (2)
V3)1225.3 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.13 × 0.11 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.909, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
12067, 5535, 4519
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.125, 1.09
No. of reflections5535
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 0.84

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC and Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supra­molecular Structure and Materials, Jilin University.

References

First citationChen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem. 25, 570–575.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHou, R.-B., Li, B., Che, T., Yin, B.-Z. & Wu, L.-X. (2009). Acta Cryst. E65, o2538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoore, A. J., Goldenberg, L. M., Bryce, M. R. & Petty, M. (2000). J. Org. Chem. 65, 8269–8276.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOtsubo, T. & Ogura, F. (1985). Bull. Chem. Soc. Jpn, 58, 1343–1344.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC and Rigaku (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds