metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­{5-carb­oxy-2-[(1H-1,2,4-triazol-1-yl)­meth­yl]-1H-imidazole-4-carboxyl­ato}­manganese(II)

aDepartment of Quality Examination and Management, Zhengzhou College of Animal Husbandry Engineering, Zhengzhou, Henan 450011, People's Republic of China
*Correspondence e-mail: zzuddg@163.com

(Received 1 April 2010; accepted 4 April 2010; online 10 April 2010)

In the title compound, [Mn(C8H6N5O4)2(H2O)2], the MnII ion is situated on an inversion center and is six-coordinated by two N and two O atoms from two L ligands (HL = 2-[(1H-1,2,4-triazol-1-yl)meth­yl]-1H-imidazole-4,5-dicarboxylic acid) and two water mol­ecules in a distorted octa­hedral geometry. In ligand L, the imidazole and triazole rings form a dihedral angle of 74.25 (8)°. Mol­ecules are assembled into a three-dimensional structure via inter­molecular O—H⋯O, O—H⋯N and N—H⋯N hydrogen-bonds, and ππ inter­actions with a short distance of 3.665 (2) Å between the centroids of the imidazole and triazole rings of neighbouring mol­ecules.

Related literature

For related structures, see: Lee et al. (2005[Lee, E. Y., Jang, S. Y. & Suh, M. P. (2005). J. Am. Chem. Soc. 127, 6374-6381.]); Ouellette et al. (2007[Ouellette, W., Hudson, B. & Zubieta, J. (2007). Inorg. Chem. 46, 4887-4904.]); Won et al. (2007[Won, T. J., Clegg, J. K., Lindoy, L. F. & McMurtrie, J. C. (2007). Cryst. Growth Des. 7, 972-979.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H6N5O4)2(H2O)2]

  • Mr = 563.33

  • Monoclinic, P 21 /c

  • a = 7.730 (2) Å

  • b = 14.498 (3) Å

  • c = 11.588 (4) Å

  • β = 125.70 (2)°

  • V = 1054.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.871, Tmax = 0.933

  • 11281 measured reflections

  • 2074 independent reflections

  • 1974 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.077

  • S = 1.05

  • 2074 reflections

  • 169 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3C⋯O2 0.98 1.50 2.483 (2) 178
O5—H5B⋯N2i 0.78 2.18 2.878 (2) 149
O5—H5C⋯O4ii 0.80 1.98 2.755 (2) 162
N5—H5A⋯N3iii 0.86 1.96 2.811 (2) 169
Symmetry codes: (i) [-x-1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z-1; (iii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multidentate ligands containing rich coordination sites (N and/or O donors) are often employed to produce polymeric networks with structural diversity owing to their various coordination modes (Lee et al., 2005; Ouellette et al., 2007; Won et al., 2007). As ligands with multiple coordination sites, 1,2,4-triazole and its derivatives have been shown to be good organic linkers in generation of structurally versatile metal-organic frameworks since it can bridge different metal centers to afford coordination polymers that exhibit extraordinary structural diversity and facile accessibility of functionalized materials. We selected a ligand containing 1,2,4-triazole, imidazole, and carboxylate groups, 2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-imidazole-4,5-dicarboxylic acid, to study its coordination chemistry. As a result, we report herein the crystal structure of the title compound (I).

In (I), MnII ion located on an inversion center is six–coordinated by two imidazole nitrogen atoms (N4), two carboxylate group oxygen atoms (O1) from two ligands, and two water oxygen atoms (Fig. 1). The coordination bond lengths Mn—N and Mn—O are 2.248 (1), 2.186 (1) Å and 2.188 (2) Å, respectively. The coordination geometry around MnII is a distorted octahedron - the MnII coordination angles are in the range from 75.75 (6)° to 180.00 (1)°. Each L acts as a bidentate ligand.

In the crystal structure, the intra- and intermolecular hydrogen bonds (Table 1) and ππ interactions with short distance of 3.665 (2) Å between the centroids of imidazole and triazole rings from the neighbouring molecules consolidate the crystal packing.

Related literature top

For related structures, see: Lee et al. (2005); Ouellette et al. (2007); Won et al. (2007).

Experimental top

All solvents and chemicals were of analytical grade and were used without further purification. The compound [MnL2(H2O)2] was synthesized as follows: 2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-imidazole-4,5-dicarboxylic acid (1.0 mmol) was added to 5 cm3 water and the resulting solution was adjusted pH to 7.0 by NaOH aqueous. Then MnCl2(0.5 mmol) was added to the above solution, and the mixture was stirred for 30 min and filtered. After one days, pink single crystals suitable for X-ray analysis were obtained. Analysis calculated (%) for C16H16MnN10O10: C 34.12, H 2.86, N 24.87; found (%): C 34.23, H 2.65, N 24.75.

Refinement top

The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å for the triazole, 0.97 Å for the methylene H atoms, O—H = 0.79 Å for water molecule, 0.98 Å for carboxylic acid, and N—H = 0.86 Å for the imidazole, with Uiso(H) = 1.5Ueq(parent O-atom) and 1.2Ueq(parent N-atom and C-atom).

Structure description top

Multidentate ligands containing rich coordination sites (N and/or O donors) are often employed to produce polymeric networks with structural diversity owing to their various coordination modes (Lee et al., 2005; Ouellette et al., 2007; Won et al., 2007). As ligands with multiple coordination sites, 1,2,4-triazole and its derivatives have been shown to be good organic linkers in generation of structurally versatile metal-organic frameworks since it can bridge different metal centers to afford coordination polymers that exhibit extraordinary structural diversity and facile accessibility of functionalized materials. We selected a ligand containing 1,2,4-triazole, imidazole, and carboxylate groups, 2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-imidazole-4,5-dicarboxylic acid, to study its coordination chemistry. As a result, we report herein the crystal structure of the title compound (I).

In (I), MnII ion located on an inversion center is six–coordinated by two imidazole nitrogen atoms (N4), two carboxylate group oxygen atoms (O1) from two ligands, and two water oxygen atoms (Fig. 1). The coordination bond lengths Mn—N and Mn—O are 2.248 (1), 2.186 (1) Å and 2.188 (2) Å, respectively. The coordination geometry around MnII is a distorted octahedron - the MnII coordination angles are in the range from 75.75 (6)° to 180.00 (1)°. Each L acts as a bidentate ligand.

In the crystal structure, the intra- and intermolecular hydrogen bonds (Table 1) and ππ interactions with short distance of 3.665 (2) Å between the centroids of imidazole and triazole rings from the neighbouring molecules consolidate the crystal packing.

For related structures, see: Lee et al. (2005); Ouellette et al. (2007); Won et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering [symmetry code: (A) - x - 1, - y, - z].
Diaquabis{5-carboxy-2-[(1H-1,2,4-triazol-1-yl)methyl]-1H- imidazole-4-carboxylato}manganese(II) top
Crystal data top
[Mn(C8H6N5O4)2(H2O)2]F(000) = 574
Mr = 563.33Dx = 1.774 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3276 reflections
a = 7.730 (2) Åθ = 2.6–30.8°
b = 14.498 (3) ŵ = 0.71 mm1
c = 11.588 (4) ÅT = 293 K
β = 125.70 (2)°Prism, pink
V = 1054.6 (5) Å30.20 × 0.15 × 0.10 mm
Z = 2
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
2074 independent reflections
Radiation source: fine-focus sealed tube1974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
h = 99
Tmin = 0.871, Tmax = 0.933k = 1717
11281 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0245P)2 + 0.947P]
where P = (Fo2 + 2Fc2)/3
2074 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Mn(C8H6N5O4)2(H2O)2]V = 1054.6 (5) Å3
Mr = 563.33Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.730 (2) ŵ = 0.71 mm1
b = 14.498 (3) ÅT = 293 K
c = 11.588 (4) Å0.20 × 0.15 × 0.10 mm
β = 125.70 (2)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
2074 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
1974 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.933Rint = 0.033
11281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
2074 reflectionsΔρmin = 0.25 e Å3
169 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.00000.00000.02963 (14)
O10.2806 (2)0.11091 (10)0.13249 (15)0.0333 (4)
O20.0902 (2)0.17418 (10)0.34848 (15)0.0319 (3)
O30.0253 (2)0.14770 (10)0.58250 (15)0.0328 (4)
H3C0.04910.15960.49080.049*
O40.1284 (2)0.04886 (11)0.67687 (15)0.0353 (4)
O50.7693 (3)0.08739 (13)0.05545 (17)0.0516 (5)
H5B0.75490.13350.01550.077*
H5C0.87570.08860.13460.077*
N10.4778 (3)0.24271 (11)0.21460 (17)0.0247 (4)
N20.3256 (3)0.29594 (12)0.32424 (18)0.0316 (4)
N30.3707 (3)0.33526 (13)0.12013 (18)0.0318 (4)
N40.4235 (3)0.02708 (11)0.21633 (16)0.0229 (4)
N50.3572 (3)0.05521 (11)0.42541 (16)0.0221 (4)
H5A0.35940.08200.49070.026*
C10.2671 (4)0.34974 (16)0.2612 (2)0.0337 (5)
H1A0.16200.39450.31010.040*
C20.5007 (4)0.26688 (14)0.0956 (2)0.0290 (5)
H2A0.59520.23940.00740.035*
C30.5880 (3)0.16935 (14)0.2336 (2)0.0283 (5)
H3A0.62080.19020.29840.034*
H3B0.72150.15590.14300.034*
C40.4575 (3)0.08370 (13)0.2908 (2)0.0219 (4)
C50.2913 (3)0.04042 (13)0.30983 (19)0.0208 (4)
C60.2149 (3)0.11379 (14)0.2602 (2)0.0249 (4)
C70.2507 (3)0.02413 (13)0.44029 (19)0.0212 (4)
C80.1284 (3)0.07527 (14)0.5765 (2)0.0252 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0324 (3)0.0372 (3)0.0167 (2)0.0015 (2)0.0129 (2)0.00040 (18)
O10.0379 (9)0.0365 (9)0.0233 (8)0.0041 (7)0.0166 (7)0.0066 (6)
O20.0335 (8)0.0273 (8)0.0316 (8)0.0063 (6)0.0172 (7)0.0006 (6)
O30.0347 (8)0.0307 (8)0.0279 (8)0.0076 (7)0.0153 (7)0.0074 (6)
O40.0384 (9)0.0452 (10)0.0207 (8)0.0050 (7)0.0162 (7)0.0059 (7)
O50.0416 (10)0.0684 (13)0.0262 (9)0.0132 (9)0.0093 (8)0.0137 (8)
N10.0317 (9)0.0216 (9)0.0235 (9)0.0040 (7)0.0176 (8)0.0033 (7)
N20.0376 (10)0.0316 (10)0.0224 (9)0.0003 (8)0.0156 (8)0.0009 (7)
N30.0410 (11)0.0312 (10)0.0293 (10)0.0014 (8)0.0240 (9)0.0032 (8)
N40.0250 (8)0.0240 (9)0.0175 (8)0.0010 (7)0.0111 (7)0.0016 (6)
N50.0268 (9)0.0229 (9)0.0185 (8)0.0000 (7)0.0144 (7)0.0004 (6)
C10.0351 (12)0.0332 (12)0.0300 (12)0.0032 (10)0.0174 (10)0.0006 (9)
C20.0410 (12)0.0249 (11)0.0227 (10)0.0040 (9)0.0196 (10)0.0022 (8)
C30.0330 (11)0.0243 (11)0.0332 (11)0.0039 (9)0.0225 (10)0.0057 (9)
C40.0230 (10)0.0213 (10)0.0217 (10)0.0002 (8)0.0133 (8)0.0016 (8)
C50.0210 (9)0.0201 (9)0.0189 (9)0.0021 (8)0.0102 (8)0.0004 (8)
C60.0234 (10)0.0238 (10)0.0240 (10)0.0033 (8)0.0119 (9)0.0046 (8)
C70.0207 (9)0.0214 (10)0.0188 (9)0.0019 (8)0.0100 (8)0.0004 (7)
C80.0227 (10)0.0274 (11)0.0211 (10)0.0034 (8)0.0102 (8)0.0025 (8)
Geometric parameters (Å, º) top
Mn1—O5i2.1886 (17)N2—C11.316 (3)
Mn1—O52.1886 (17)N3—C21.319 (3)
Mn1—O1i2.1862 (16)N3—C11.353 (3)
Mn1—O12.1862 (16)N4—C41.324 (2)
Mn1—N42.2489 (18)N4—C51.373 (2)
Mn1—N4i2.2489 (18)N5—C41.339 (2)
O1—C61.254 (2)N5—C71.366 (2)
O2—C61.262 (2)N5—H5A0.8600
O3—C81.296 (3)C1—H1A0.9300
O3—H3C0.9817C2—H2A0.9300
O4—C81.224 (2)C3—C41.489 (3)
O5—H5B0.7826C3—H3A0.9700
O5—H5C0.7987C3—H3B0.9700
N1—C21.331 (3)C5—C71.373 (3)
N1—N21.360 (2)C5—C61.486 (3)
N1—C31.458 (3)C7—C81.481 (3)
O5i—Mn1—O5180.00 (12)C4—N5—H5A126.2
O5i—Mn1—O1i89.74 (7)C7—N5—H5A126.2
O5—Mn1—O1i90.26 (7)N2—C1—N3115.2 (2)
O5i—Mn1—O190.26 (7)N2—C1—H1A122.4
O5—Mn1—O189.74 (7)N3—C1—H1A122.4
O1i—Mn1—O1180.00 (10)N3—C2—N1110.49 (19)
O5i—Mn1—N489.15 (6)N3—C2—H2A124.8
O5—Mn1—N490.85 (6)N1—C2—H2A124.8
O1i—Mn1—N4104.25 (6)N1—C3—C4111.81 (16)
O1—Mn1—N475.75 (6)N1—C3—H3A109.3
O5i—Mn1—N4i90.85 (6)C4—C3—H3A109.3
O5—Mn1—N4i89.15 (6)N1—C3—H3B109.3
O1i—Mn1—N4i75.75 (6)C4—C3—H3B109.3
O1—Mn1—N4i104.25 (6)H3A—C3—H3B107.9
N4—Mn1—N4i180.00 (11)N4—C4—N5111.56 (17)
C6—O1—Mn1117.87 (13)N4—C4—C3124.59 (17)
C8—O3—H3C111.3N5—C4—C3123.85 (18)
Mn1—O5—H5B122.5N4—C5—C7109.45 (17)
Mn1—O5—H5C121.0N4—C5—C6119.06 (16)
H5B—O5—H5C110.9C7—C5—C6131.47 (18)
C2—N1—N2109.77 (17)O1—C6—O2124.89 (19)
C2—N1—C3127.77 (18)O1—C6—C5117.01 (18)
N2—N1—C3122.43 (16)O2—C6—C5118.10 (17)
C1—N2—N1102.01 (17)N5—C7—C5105.79 (16)
C2—N3—C1102.53 (18)N5—C7—C8121.25 (17)
C4—N4—C5105.50 (15)C5—C7—C8132.93 (18)
C4—N4—Mn1144.26 (13)O4—C8—O3122.92 (18)
C5—N4—Mn1110.24 (12)O4—C8—C7120.16 (19)
C4—N5—C7107.68 (16)O3—C8—C7116.91 (18)
O5i—Mn1—O1—C690.63 (15)C5—N4—C4—C3178.15 (18)
O5—Mn1—O1—C689.37 (15)Mn1—N4—C4—C32.4 (4)
O1i—Mn1—O1—C6178 (100)C7—N5—C4—N40.3 (2)
N4—Mn1—O1—C61.57 (14)C7—N5—C4—C3178.78 (18)
N4i—Mn1—O1—C6178.43 (14)N1—C3—C4—N473.8 (2)
C2—N1—N2—C10.1 (2)N1—C3—C4—N5105.2 (2)
C3—N1—N2—C1178.39 (18)C4—N4—C5—C71.2 (2)
O5i—Mn1—N4—C487.9 (2)Mn1—N4—C5—C7178.46 (12)
O5—Mn1—N4—C492.1 (2)C4—N4—C5—C6177.62 (17)
O1i—Mn1—N4—C41.6 (2)Mn1—N4—C5—C62.7 (2)
O1—Mn1—N4—C4178.4 (2)Mn1—O1—C6—O2179.15 (15)
N4i—Mn1—N4—C4171 (100)Mn1—O1—C6—C50.6 (2)
O5i—Mn1—N4—C592.68 (13)N4—C5—C6—O11.6 (3)
O5—Mn1—N4—C587.32 (13)C7—C5—C6—O1179.9 (2)
O1i—Mn1—N4—C5177.81 (12)N4—C5—C6—O2178.64 (17)
O1—Mn1—N4—C52.19 (12)C7—C5—C6—O20.1 (3)
N4i—Mn1—N4—C59 (100)C4—N5—C7—C50.4 (2)
N1—N2—C1—N30.3 (2)C4—N5—C7—C8177.95 (17)
C2—N3—C1—N20.6 (3)N4—C5—C7—N51.0 (2)
C1—N3—C2—N10.7 (2)C6—C5—C7—N5177.59 (19)
N2—N1—C2—N30.6 (2)N4—C5—C7—C8177.1 (2)
C3—N1—C2—N3178.69 (18)C6—C5—C7—C84.3 (4)
C2—N1—C3—C497.8 (2)N5—C7—C8—O43.0 (3)
N2—N1—C3—C480.2 (2)C5—C7—C8—O4174.9 (2)
C5—N4—C4—N50.9 (2)N5—C7—C8—O3177.23 (17)
Mn1—N4—C4—N5178.52 (16)C5—C7—C8—O34.9 (3)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O20.981.502.483 (2)178
O5—H5B···N2ii0.782.182.878 (2)149
O5—H5C···O4iii0.801.982.755 (2)162
N5—H5A···N3iv0.861.962.811 (2)169
Symmetry codes: (ii) x1, y+1/2, z+1/2; (iii) x1, y, z1; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C8H6N5O4)2(H2O)2]
Mr563.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.730 (2), 14.498 (3), 11.588 (4)
β (°) 125.70 (2)
V3)1054.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerRigaku Mercury CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.871, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
11281, 2074, 1974
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.077, 1.05
No. of reflections2074
No. of parameters169
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O20.981.502.483 (2)178
O5—H5B···N2i0.782.182.878 (2)149.4
O5—H5C···O4ii0.801.982.755 (2)161.9
N5—H5A···N3iii0.861.962.811 (2)169.1
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x1, y, z1; (iii) x, y1/2, z+1/2.
 

Acknowledgements

This work was sponsored by the Natural Science Foundation of Henan Province (grant No. 200510469005).

References

First citationLee, E. Y., Jang, S. Y. & Suh, M. P. (2005). J. Am. Chem. Soc. 127, 6374–6381.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOuellette, W., Hudson, B. & Zubieta, J. (2007). Inorg. Chem. 46, 4887–4904.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWon, T. J., Clegg, J. K., Lindoy, L. F. & McMurtrie, J. C. (2007). Cryst. Growth Des. 7, 972–979.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds