organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­benzo­yl)-1-(di­amino­methyl­ene)hydrazinium chloride monohydrate

aSouth-Russia State Technical University, 346428 Novocherkassk, Russian Federation, and bA. N. Nesmeyanov Institute of Organoelement Compounds, 119991 Moscow, Russian Federation
*Correspondence e-mail: chern13@yandex.ru

(Received 8 April 2010; accepted 16 April 2010; online 24 April 2010)

In the cation of the title compound, C8H10ClN4O+·Cl·H2O, the guanidinium group is planar (maximum deviation = 0.0001 Å) and nearly perpendicular to carboxamide group, making a dihedral angle of 87.0 (3)°. The N atoms of the guanidine fragment have a planar trigonal configuration and the N atom of the carboxamide group adopts a pyramidal configuration. In the crystal structure, inter­molecular N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds link the cations, anions and water mol­ecules into layers parallel to the bc plane.

Related literature

For a related structure, see: Kolev & Petrova (2003[Kolev, T. & Petrova, R. (2003). Acta Cryst. E59, o447-o449.]). For amino­guanidine structures, see: Bharatam et al. (2004[Bharatam, P. V., Iqbal, P., Malde, A. & Tiwari, R. (2004). J. Phys. Chem. A, 108, 10509-10517.]); Koskinen et al. (1997[Koskinen, M., Mutikainen, I., Tilus, P., Pelttari, E., Korvela, M. & Elo, H. (1997). Monatsh. Chem. 128, 767-775.]); Hammerl et al. (2005[Hammerl, A., Hiskey, M. A., Holl, G., Klapötke, T. M., Polborn, K., Stierstorfer, J. & Weigand, J. (2005). Chem. Mater. 17, 3784-3793.]); Macháčková et al. (2007[Macháčková, Z., Němec, I., Teubner, K., Němec, P., Vaněk, P. & Mička, Z. (2007). J. Mol. Struct. 832, 101-107.]); Murugavel et al. (2009a[Murugavel, S., Ganesh, G., Subbiah Pandi, A., Govindarajan, S. & Selvakumar, R. (2009a). Acta Cryst. E65, o548.],b[Murugavel, S., Kannan, P. S., Subbiah Pandi, A., Govindarajan, S. & Selvakumar, R. (2009b). Acta Cryst. E65, o454.]). For the preparation of guanyl hydrazides, see: Grinstein & Chipen (1961[Grinstein, V. & Chipen, G. I. (1961). Zh. Obshch. Khim. 31, 886-890.]). For the application of guanyl hydrazides in the synthesis of 3-substituted 5-amino-1,2,4-triazoles, see: Dolzhenko et al. (2009[Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W.-K. (2009). Tetrahedron Lett. 50, 2124-2128.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10ClN4O+·Cl·H2O

  • Mr = 267.12

  • Monoclinic, P 21 /c

  • a = 19.349 (4) Å

  • b = 4.3563 (9) Å

  • c = 14.516 (3) Å

  • β = 102.360 (3)°

  • V = 1195.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.814, Tmax = 0.924

  • 9756 measured reflections

  • 2330 independent reflections

  • 2099 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.142

  • S = 1.17

  • 2330 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2i 0.90 2.36 3.194 (4) 154
N2—H2⋯O1W 0.90 2.24 3.031 (4) 146
N2—H2⋯Cl2ii 0.90 2.71 3.260 (4) 121
N3—H3B⋯O1iii 0.90 1.96 2.848 (3) 167
N3—H3A⋯Cl2iv 0.90 2.43 3.280 (4) 157
N4—H4B⋯O1W 0.90 2.04 2.834 (4) 147
N4—H4A⋯Cl2iv 0.90 2.44 3.286 (4) 156
O1W—H1W⋯Cl2v 0.85 2.58 3.292 (4) 142
O1W—H2W⋯Cl2 0.85 2.30 3.134 (4) 164
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) -x+1, -y+2, -z; (v) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2005[Bruker (2005). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carboxylic acids guanyl hydrazides are important starting compounds for the preparation of 3-substituted 5-amino-1,2,4-triazoles (Dolzhenko et al., 2009). Until the present time, the crystal structure of guanyl hydrazides was investigated only for the zwitterionic 2-guanyl hydrazide of carbonic acid (Kolev & Petrova, 2003), which previously was considered as aminoguanidine hydrogen carbonate. Here we report the crystal structure of the title compound.

Carboxylic acids guanyl hydrazides can be regarded as acylated aminoguanidines. Therefore, by analogy with protonated aminoguanidine, it is possible to assume the existence of tautomeric forms A-C (Fig. 1) for the title compound. In addition, the presence of acyl group makes it possible of tautomers D—G, the B—G forms can exist as cis- and trans-isomers. Quantum chemical calculations predict the tautomer A is to be the more stable for aminoguanidine (Bharatam et al., 2004). This prediction is corroborated by X-ray analyses of aminoguanidine salts (Hammerl et al., 2005; Koskinen et al., 1997; Macháčková et al., 2007; Murugavel et al., 2009a,b).

According to our X-ray investigation, the 4-chlorobenzoic acid 2-guanyl hydrazide hydrochloride monohydrate in the crystal exists as tautomer A (Fig. 2), similarly to aminoguanidine salts. Guanidine fragment (N2/N3/N4/C1) of the molecule is planar. The N1 atom has a trigonal-pyramidal configuration (the sum of bond angles centered on the N1 atom is 354.9° and deviates from the guanidine plane by 0.181 (6) Å. In accordance with the structure of carbonic acid 2-guanylhydrazide (Kolev & Petrova, 2003), carbonyl group is almost perpendicular to the plane of guanidine fragment (dihedral angle between the guanidine and O1/C2/N1 planes amounts 87.0 (3)°). The bonds C1–N3 and C1–N4 have lengths of 1.321 (5) and 1.324 (5) Å, respectively, close to the analogous bonds in aminoguanidine cation, though the C1–N2 bond is somewhat longer – 1.343 (5) Å instead of 1.325-1.341 Å (Hammerl et al., 2005; Koskinen et al., 1997; Macháčková et al., 2007; Murugavel et al., 2009a,b). Apparently, it indicates decrease of π-electron delocalization in the guanidine fragment of the studied molecule in relation to the aminoguanidine and guanidine cations (Bharatam et al., 2004). The N1–N2 bond length of 1.379 (4) Å is essentially equal to the length of analogous bond in the zwitterionic 2-guanyl hydrazide of carbonic acid (1.382 (1) Å, Kolev & Petrova, 2003) and slightly shorter than in aminoguanidine salts (1.396-1.414 Å) (Hammerl et al., 2005; Koskinen et al., 1997; Macháčková et al., 2007; Murugavel et al., 2009a,b). The negative inductive effect of carbonyl group and decrease in π-electron delocalization result in considerable reduction of basicity of the 4-chlorobenzoic acid 2-guanyl hydrazide in comparison with the aminoguanidine. Thus, we obtained the pKa = 7.85±0.04 by potentiometric titration of the title compound with 0.1 M aqueous potassium hydroxide, whereas the pKa = 11.5±0.1 was reported for the aminoguanidine (Koskinen et al., 1997).

The crystal packing is shown in Fig. 3. The C8H10ClN4O cations form stacks along the b axis of the monoclinic cell. In the neighbouring stacks along the c axis the cations are related by a glide-reflection plane which is perpendicular to [0, 1, 0] with glide component [0, 0, 1/2]). Along the a axis the C8H10ClN4O cations of the neighbouring stacks are turned from each other by 180° and displaced on 0.5 of cell parameter in direction of the b axis, i.e. they are space related by the 2-fold screw axes with direction [0, 1, 0] at 0, y, 1/4 with screw component [0, 1/2, 0]. In the stacks the adjacent cations are connected with each other by the N3—H3B···O1iii hydrogen bonds. The rows of chloride anions and water molecules are localized between the stacks of C8H10ClN4O cations close to the guanidine fragments. Cloride anions additionally stabilize the location of C8H10ClN4O cations in the stacks by means of two groups of hydrogen bonds (Table 1): the N1—H1···Cl2i and N2—H2···Cl2ii, the N3—H3A···Cl2iv and N4—H4A···Cl2iv. As a result, equally oriented stacks of the cations form layers along the c axis with identity period equal to the unit cell parameter c. The rows of water molecules are ordered along the b axis by means of the hydrogen bonds N2—H2···O1W, N4—H4B···O1W, O1W—H1W···Cl2v and O1W—H2W···Cl2. Thereby, the C8H10ClN4O cations, water molecules and chloride anions form a rigid three-dimensional framework in the crystal.

Related literature top

For a related structure, see: Kolev & Petrova (2003). For aminoguanidine structures, see: Bharatam et al. (2004); Koskinen et al. (1997); Hammerl et al. (2005); Macháčková et al. (2007); Murugavel et al. (2009a,b). For the preparation of guanyl hydrazides, see: Grinstein & Chipen (1961). For the application of guanyl hydrazides in the synthesis of 3-substituted 5-amino-1,2,4-triazoles, see: Dolzhenko et al. (2009).

Experimental top

4-Chlorobenzoic acid 2-guanyl hydrazide hydrochloride monohydrate was prepared by fusion of 4-chlorobenzoyl chloride with aminoguanidine hydrochloride according to Grinstein & Chipen (1961). The crystals suitable for crystallographic analysis were grown by recrystallization from water-ethanol 1:1 mixture.

Refinement top

C-bound H atoms were positioned geometrically (C—H 0.93 Å), while the rest H atoms were located on difference map and further placed in idealized positions (N—H 0.90 Å, O—H 0.85 Å). All H atoms were refined as riding on their parent atoms, with Uiso(H) = 1.2-1.5 Ueq(parent atom).

Structure description top

Carboxylic acids guanyl hydrazides are important starting compounds for the preparation of 3-substituted 5-amino-1,2,4-triazoles (Dolzhenko et al., 2009). Until the present time, the crystal structure of guanyl hydrazides was investigated only for the zwitterionic 2-guanyl hydrazide of carbonic acid (Kolev & Petrova, 2003), which previously was considered as aminoguanidine hydrogen carbonate. Here we report the crystal structure of the title compound.

Carboxylic acids guanyl hydrazides can be regarded as acylated aminoguanidines. Therefore, by analogy with protonated aminoguanidine, it is possible to assume the existence of tautomeric forms A-C (Fig. 1) for the title compound. In addition, the presence of acyl group makes it possible of tautomers D—G, the B—G forms can exist as cis- and trans-isomers. Quantum chemical calculations predict the tautomer A is to be the more stable for aminoguanidine (Bharatam et al., 2004). This prediction is corroborated by X-ray analyses of aminoguanidine salts (Hammerl et al., 2005; Koskinen et al., 1997; Macháčková et al., 2007; Murugavel et al., 2009a,b).

According to our X-ray investigation, the 4-chlorobenzoic acid 2-guanyl hydrazide hydrochloride monohydrate in the crystal exists as tautomer A (Fig. 2), similarly to aminoguanidine salts. Guanidine fragment (N2/N3/N4/C1) of the molecule is planar. The N1 atom has a trigonal-pyramidal configuration (the sum of bond angles centered on the N1 atom is 354.9° and deviates from the guanidine plane by 0.181 (6) Å. In accordance with the structure of carbonic acid 2-guanylhydrazide (Kolev & Petrova, 2003), carbonyl group is almost perpendicular to the plane of guanidine fragment (dihedral angle between the guanidine and O1/C2/N1 planes amounts 87.0 (3)°). The bonds C1–N3 and C1–N4 have lengths of 1.321 (5) and 1.324 (5) Å, respectively, close to the analogous bonds in aminoguanidine cation, though the C1–N2 bond is somewhat longer – 1.343 (5) Å instead of 1.325-1.341 Å (Hammerl et al., 2005; Koskinen et al., 1997; Macháčková et al., 2007; Murugavel et al., 2009a,b). Apparently, it indicates decrease of π-electron delocalization in the guanidine fragment of the studied molecule in relation to the aminoguanidine and guanidine cations (Bharatam et al., 2004). The N1–N2 bond length of 1.379 (4) Å is essentially equal to the length of analogous bond in the zwitterionic 2-guanyl hydrazide of carbonic acid (1.382 (1) Å, Kolev & Petrova, 2003) and slightly shorter than in aminoguanidine salts (1.396-1.414 Å) (Hammerl et al., 2005; Koskinen et al., 1997; Macháčková et al., 2007; Murugavel et al., 2009a,b). The negative inductive effect of carbonyl group and decrease in π-electron delocalization result in considerable reduction of basicity of the 4-chlorobenzoic acid 2-guanyl hydrazide in comparison with the aminoguanidine. Thus, we obtained the pKa = 7.85±0.04 by potentiometric titration of the title compound with 0.1 M aqueous potassium hydroxide, whereas the pKa = 11.5±0.1 was reported for the aminoguanidine (Koskinen et al., 1997).

The crystal packing is shown in Fig. 3. The C8H10ClN4O cations form stacks along the b axis of the monoclinic cell. In the neighbouring stacks along the c axis the cations are related by a glide-reflection plane which is perpendicular to [0, 1, 0] with glide component [0, 0, 1/2]). Along the a axis the C8H10ClN4O cations of the neighbouring stacks are turned from each other by 180° and displaced on 0.5 of cell parameter in direction of the b axis, i.e. they are space related by the 2-fold screw axes with direction [0, 1, 0] at 0, y, 1/4 with screw component [0, 1/2, 0]. In the stacks the adjacent cations are connected with each other by the N3—H3B···O1iii hydrogen bonds. The rows of chloride anions and water molecules are localized between the stacks of C8H10ClN4O cations close to the guanidine fragments. Cloride anions additionally stabilize the location of C8H10ClN4O cations in the stacks by means of two groups of hydrogen bonds (Table 1): the N1—H1···Cl2i and N2—H2···Cl2ii, the N3—H3A···Cl2iv and N4—H4A···Cl2iv. As a result, equally oriented stacks of the cations form layers along the c axis with identity period equal to the unit cell parameter c. The rows of water molecules are ordered along the b axis by means of the hydrogen bonds N2—H2···O1W, N4—H4B···O1W, O1W—H1W···Cl2v and O1W—H2W···Cl2. Thereby, the C8H10ClN4O cations, water molecules and chloride anions form a rigid three-dimensional framework in the crystal.

For a related structure, see: Kolev & Petrova (2003). For aminoguanidine structures, see: Bharatam et al. (2004); Koskinen et al. (1997); Hammerl et al. (2005); Macháčková et al. (2007); Murugavel et al. (2009a,b). For the preparation of guanyl hydrazides, see: Grinstein & Chipen (1961). For the application of guanyl hydrazides in the synthesis of 3-substituted 5-amino-1,2,4-triazoles, see: Dolzhenko et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004) and XPREP (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Possible tautomeric forms for 2-guanylhydrazide of 4-chlorobenzoic acid.
[Figure 2] Fig. 2. The molecular structure of 4-chlorobenzoic acid 2-guanyl hydrazide hydrochloride monohydrate with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. Molecular packing in the crystal, viewed down the b axis. Hydrogen bonds are shown as dashed lines.
2-(4-chlorobenzoyl)-1-(diaminomethylene)hydrazinium chloride monohydrate top
Crystal data top
C8H10ClN4O+·Cl·H2OF(000) = 552
Mr = 267.12Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 195 reflections
a = 19.349 (4) Åθ = 3–25°
b = 4.3563 (9) ŵ = 0.54 mm1
c = 14.516 (3) ÅT = 100 K
β = 102.360 (3)°Plate, colourless
V = 1195.2 (4) Å30.40 × 0.30 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2330 independent reflections
Radiation source: fine-focus sealed tube2099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2323
Tmin = 0.814, Tmax = 0.924k = 55
9756 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: difference Fourier map
wR(F2) = 0.142H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.P)2 + 7.6548P]
where P = (Fo2 + 2Fc2)/3
2330 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C8H10ClN4O+·Cl·H2OV = 1195.2 (4) Å3
Mr = 267.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.349 (4) ŵ = 0.54 mm1
b = 4.3563 (9) ÅT = 100 K
c = 14.516 (3) Å0.40 × 0.30 × 0.15 mm
β = 102.360 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2330 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2099 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.924Rint = 0.034
9756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.17Δρmax = 0.79 e Å3
2330 reflectionsΔρmin = 0.41 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.04674 (6)0.7630 (4)0.43499 (8)0.0378 (3)
Cl20.61291 (5)0.8080 (2)0.16436 (7)0.0176 (2)
O10.23490 (15)0.4393 (7)0.1141 (2)0.0206 (6)
N10.30500 (17)0.8203 (8)0.1875 (2)0.0167 (7)
H10.31680.94100.23870.020*
N20.36010 (18)0.7335 (8)0.1466 (2)0.0168 (7)
H20.39040.58130.16930.020*
N30.32072 (18)1.0675 (8)0.0221 (2)0.0170 (7)
H3B0.29011.15790.05240.020*
H3A0.32701.13180.03440.020*
N40.41145 (18)0.7296 (8)0.0186 (2)0.0191 (8)
H4B0.43900.56900.04160.023*
H4A0.41560.82250.03540.023*
C10.3636 (2)0.8462 (9)0.0616 (3)0.0151 (8)
C20.2468 (2)0.6400 (10)0.1752 (3)0.0167 (8)
C30.1974 (2)0.6938 (10)0.2392 (3)0.0189 (9)
C40.1303 (2)0.5694 (12)0.2146 (3)0.0255 (10)
H40.11660.46780.15730.031*
C50.0832 (2)0.5933 (12)0.2738 (3)0.0288 (11)
H50.03790.51120.25640.035*
C60.1048 (2)0.7415 (12)0.3591 (3)0.0248 (10)
C70.1710 (2)0.8685 (12)0.3853 (3)0.0294 (11)
H70.18430.97060.44260.035*
C80.2176 (2)0.8438 (12)0.3260 (3)0.0253 (10)
H80.26270.92730.34370.030*
O1W0.48997 (16)0.3347 (7)0.1577 (2)0.0256 (7)
H1W0.50360.14840.16250.038*
H2W0.52830.43820.16770.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0308 (6)0.0615 (9)0.0261 (6)0.0026 (6)0.0171 (5)0.0009 (6)
Cl20.0268 (5)0.0130 (4)0.0146 (5)0.0001 (4)0.0079 (4)0.0004 (4)
O10.0231 (15)0.0225 (16)0.0159 (14)0.0020 (13)0.0038 (11)0.0030 (13)
N10.0226 (17)0.0160 (17)0.0134 (16)0.0018 (15)0.0078 (13)0.0013 (14)
N20.0253 (18)0.0142 (17)0.0126 (16)0.0030 (14)0.0079 (13)0.0017 (13)
N30.0267 (18)0.0169 (17)0.0094 (15)0.0041 (15)0.0083 (13)0.0026 (14)
N40.0297 (19)0.0139 (17)0.0172 (17)0.0031 (15)0.0125 (14)0.0020 (14)
C10.022 (2)0.0111 (19)0.0118 (18)0.0043 (16)0.0037 (15)0.0046 (15)
C20.023 (2)0.017 (2)0.0103 (18)0.0039 (17)0.0025 (15)0.0039 (16)
C30.023 (2)0.022 (2)0.0126 (19)0.0048 (18)0.0052 (16)0.0013 (17)
C40.024 (2)0.035 (3)0.017 (2)0.000 (2)0.0056 (17)0.011 (2)
C50.022 (2)0.038 (3)0.029 (2)0.002 (2)0.0102 (18)0.002 (2)
C60.024 (2)0.037 (3)0.016 (2)0.007 (2)0.0109 (17)0.0046 (19)
C70.032 (2)0.042 (3)0.016 (2)0.001 (2)0.0092 (18)0.006 (2)
C80.024 (2)0.037 (3)0.016 (2)0.004 (2)0.0059 (17)0.0025 (19)
O1W0.0256 (16)0.0157 (15)0.0359 (18)0.0004 (13)0.0076 (13)0.0033 (14)
Geometric parameters (Å, º) top
Cl1—C61.736 (4)C2—C31.488 (5)
O1—C21.232 (5)C3—C41.381 (6)
N1—C21.352 (5)C3—C81.398 (6)
N1—N21.379 (4)C4—C51.384 (6)
N1—H10.8999C4—H40.9300
N2—C11.343 (5)C5—C61.380 (7)
N2—H20.9001C5—H50.9300
N3—C11.321 (5)C6—C71.373 (7)
N3—H3B0.9002C7—C81.377 (6)
N3—H3A0.9000C7—H70.9300
N4—C11.324 (5)C8—H80.9300
N4—H4B0.8999O1W—H1W0.8517
N4—H4A0.9002O1W—H2W0.8542
C2—N1—N2118.8 (3)C4—C3—C2118.1 (4)
C2—N1—H1120.3C8—C3—C2122.8 (4)
N2—N1—H1115.6C3—C4—C5121.2 (4)
C1—N2—N1119.4 (3)C3—C4—H4119.4
C1—N2—H2116.6C5—C4—H4119.4
N1—N2—H2123.2C6—C5—C4118.6 (4)
C1—N3—H3B121.8C6—C5—H5120.7
C1—N3—H3A115.4C4—C5—H5120.7
H3B—N3—H3A122.7C7—C6—C5121.5 (4)
C1—N4—H4B122.8C7—C6—Cl1119.7 (3)
C1—N4—H4A116.1C5—C6—Cl1118.8 (4)
H4B—N4—H4A121.1C6—C7—C8119.5 (4)
N3—C1—N4120.9 (4)C6—C7—H7120.2
N3—C1—N2121.0 (4)C8—C7—H7120.2
N4—C1—N2118.2 (4)C7—C8—C3120.3 (4)
O1—C2—N1122.0 (4)C7—C8—H8119.8
O1—C2—C3121.0 (4)C3—C8—H8119.8
N1—C2—C3117.1 (4)H1W—O1W—H2W104.3
C4—C3—C8118.9 (4)
C2—N1—N2—C194.5 (4)C2—C3—C4—C5175.8 (4)
N1—N2—C1—N38.8 (6)C3—C4—C5—C60.8 (8)
N1—N2—C1—N4171.3 (3)C4—C5—C6—C71.1 (8)
N2—N1—C2—O115.4 (6)C4—C5—C6—Cl1178.3 (4)
N2—N1—C2—C3164.5 (3)C5—C6—C7—C81.1 (8)
O1—C2—C3—C415.6 (6)Cl1—C6—C7—C8178.3 (4)
N1—C2—C3—C4164.5 (4)C6—C7—C8—C30.8 (8)
O1—C2—C3—C8159.5 (4)C4—C3—C8—C70.5 (7)
N1—C2—C3—C820.5 (6)C2—C3—C8—C7175.5 (4)
C8—C3—C4—C50.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.902.363.194 (4)154
N2—H2···O1W0.902.243.031 (4)146
N2—H2···Cl2ii0.902.713.260 (4)121
N3—H3B···O1iii0.901.962.848 (3)167
N3—H3A···Cl2iv0.902.433.280 (4)157
N4—H4B···O1W0.902.042.834 (4)147
N4—H4A···Cl2iv0.902.443.286 (4)156
O1W—H1W···Cl2v0.852.583.292 (4)142
O1W—H2W···Cl20.852.303.134 (4)164
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+2, z; (v) x, y1, z.

Experimental details

Crystal data
Chemical formulaC8H10ClN4O+·Cl·H2O
Mr267.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)19.349 (4), 4.3563 (9), 14.516 (3)
β (°) 102.360 (3)
V3)1195.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.40 × 0.30 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.814, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
9756, 2330, 2099
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.142, 1.17
No. of reflections2330
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.41

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004) and XPREP (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.9002.3593.194 (4)154
N2—H2···O1W0.9002.2433.031 (4)146
N2—H2···Cl2ii0.9002.7053.260 (4)121
N3—H3B···O1iii0.9001.9632.848 (3)167
N3—H3A···Cl2iv0.9002.4333.280 (4)157
N4—H4B···O1W0.9002.0352.834 (4)147
N4—H4A···Cl2iv0.9002.4413.286 (4)156
O1W—H1W···Cl2v0.8522.5793.292 (4)142
O1W—H2W···Cl20.8542.3043.134 (4)164
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+2, z; (v) x, y1, z.
 

Acknowledgements

The authors thank the Federal Agency for Education of Russia for financial support of this work through the Federal Target Program "Research and Educational Personnel of Innovative Russia at 2009–2013 Years", State contract P1472, project NK-186P/3.

References

First citationBharatam, P. V., Iqbal, P., Malde, A. & Tiwari, R. (2004). J. Phys. Chem. A, 108, 10509–10517.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W.-K. (2009). Tetrahedron Lett. 50, 2124–2128.  Web of Science CrossRef CAS Google Scholar
First citationGrinstein, V. & Chipen, G. I. (1961). Zh. Obshch. Khim. 31, 886–890.  CAS Google Scholar
First citationHammerl, A., Hiskey, M. A., Holl, G., Klapötke, T. M., Polborn, K., Stierstorfer, J. & Weigand, J. (2005). Chem. Mater. 17, 3784–3793.  Web of Science CSD CrossRef CAS Google Scholar
First citationKolev, T. & Petrova, R. (2003). Acta Cryst. E59, o447–o449.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoskinen, M., Mutikainen, I., Tilus, P., Pelttari, E., Korvela, M. & Elo, H. (1997). Monatsh. Chem. 128, 767–775.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacháčková, Z., Němec, I., Teubner, K., Němec, P., Vaněk, P. & Mička, Z. (2007). J. Mol. Struct. 832, 101–107.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMurugavel, S., Ganesh, G., Subbiah Pandi, A., Govindarajan, S. & Selvakumar, R. (2009a). Acta Cryst. E65, o548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMurugavel, S., Kannan, P. S., Subbiah Pandi, A., Govindarajan, S. & Selvakumar, R. (2009b). Acta Cryst. E65, o454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds