organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bi­pyridine–2,2′-(1,2-phenylene­di­oxy)di­acetic acid–water (1/1/1)

aSchool of Pharmaceutical Science, Jilin University, Changchun 130012, People's Republic of China, bState Key Laboratory for Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China, and cDepartment of Chemistry and Chemical Engineering, Jinzhong College, Jinzhong 030600, People's Republic of China
*Correspondence e-mail: yeling@jlu.edu.cn

(Received 7 April 2010; accepted 15 April 2010; online 21 April 2010)

In the title 1:1:1 adduct, C10H8N2·C10H10O6·H2O, the dihedral angle between the rings of the 4,4-bipyridine molecule is 10.981 (8)°. In the crystal, O—H⋯O and O—H⋯N hydrogen bonds link the mol­ecules into a zigzag chain structure.

Related literature

For the synthesis of 1,2-phenyl­enedi(oxyacetic acid), see: Mirci (1990[Mirci, L. E. (1990). Rom. Patent No. 07 43 205.]). For related structures, see: Soleimannejad et al. (2009[Soleimannejad, J., Aghabozorg, H., Najafi, S., Nasibipour, M. & Attar Gharamaleki, J. (2009). Acta Cryst. E65, o532-o533.]); Yu et al. (2006[Yu, B., Wang, X.-Q., Wang, R.-J., Shen, G.-Q. & Shen, D.-Z. (2006). Acta Cryst. E62, o2757-o2758.]). For hydrogen-bonding motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·C10H10O6·H2O

  • Mr = 400.38

  • Monoclinic, P 21 /c

  • a = 11.566 (5) Å

  • b = 9.712 (5) Å

  • c = 16.810 (7) Å

  • β = 90.81 (2)°

  • V = 1888.2 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 291 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.979, Tmax = 0.987

  • 18105 measured reflections

  • 4306 independent reflections

  • 2654 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.113

  • S = 0.97

  • 4306 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H23⋯N2i 0.85 1.76 2.6051 (19) 173
O6—H24⋯N1 0.85 1.74 2.5871 (19) 176
O7—H21⋯O5 0.85 2.07 2.8817 (19) 160
O7—H22⋯O2 0.85 1.97 2.7826 (17) 161
Symmetry code: (i) [x-1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Flexible carboxylic acid and 4,4'-bipyridine are ofen used for constructing the high dimensional structure with intriguing topology. In this paper, we report the title compound, contained flexible 1,2-phenylenedi(oxyacetic acid), 4,4'-bipyridine and water molecules, which forms a one-dimensional hydrogen bonding chain strucutre.

The O—H···O hydrogen bonds link the 1,2-phenylenedi(oxyacetic acid) and water molecules into a 13-membered hydrogen bonding ring, with a unitary graph-set descriptorN1 = R22(13) (Etter et al., 1990; Bernstein et al., 1995) (Figure 1, Table 1). And then, 4,4'-bipyridine molecules bridge these hydrogen bonding rings into a one-dimensional zigzag chain through the O—H···N hydrogen bonds (Table 1, Figure 2). Similar hydrogen bonding interactions involving the 4,4'-bipyridine have being frequently observed (Soleimannejad et al., 2009; Yu et al., 2006).

Related literature top

For the synthesis of 1,2-phenylenedi(oxyacetic acid), see: Mirci (1990). For related structures, see: Soleimannejad et al. (2009); Yu et al. (2006). For hydrogen-bonding motifs, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

1,2-phenylenedi(oxyacetic acid) was prepared by the reaction of chloroacetic acid with odihydroxybenzene (Mirci, 1990 ). All other chemicals were analytical grade reagents and used without further purification. 1,2-phenylenedi (oxyacetic acid) (0.40 g, 2 mmol) and 4,4'-bipyridine (0.31 g, 2 mmol) were dissolved in mixed solution of water (5 ml) and ethanol (5 ml). Colorless rod crystals of title compound were obtained after several days in room temperature.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.97 Å (methylene), C—H = 0.93 Å (aromatic) and with Uiso(H) = 1.2Ueq(C). H atoms O atoms were initially located in a difference Fourier map and treated as riding on their parent atoms, with O—H = 0.85 Å, Uiso(H) = 1.5 Ueq(N/O).

Structure description top

Flexible carboxylic acid and 4,4'-bipyridine are ofen used for constructing the high dimensional structure with intriguing topology. In this paper, we report the title compound, contained flexible 1,2-phenylenedi(oxyacetic acid), 4,4'-bipyridine and water molecules, which forms a one-dimensional hydrogen bonding chain strucutre.

The O—H···O hydrogen bonds link the 1,2-phenylenedi(oxyacetic acid) and water molecules into a 13-membered hydrogen bonding ring, with a unitary graph-set descriptorN1 = R22(13) (Etter et al., 1990; Bernstein et al., 1995) (Figure 1, Table 1). And then, 4,4'-bipyridine molecules bridge these hydrogen bonding rings into a one-dimensional zigzag chain through the O—H···N hydrogen bonds (Table 1, Figure 2). Similar hydrogen bonding interactions involving the 4,4'-bipyridine have being frequently observed (Soleimannejad et al., 2009; Yu et al., 2006).

For the synthesis of 1,2-phenylenedi(oxyacetic acid), see: Mirci (1990). For related structures, see: Soleimannejad et al. (2009); Yu et al. (2006). For hydrogen-bonding motifs, see: Etter et al. (1990); Bernstein et al. (1995).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom labeling scheme, Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing view, showing the three-dimensional hydrogen bonding supramolecular network. Hydrogen bonds are shown as dashed lines.H atoms not involved in hydrogen bondings have been omitted for clarity.
4,4'-Bipyridine–2,2'-(1,2-phenylenedioxy)diacetic acid–water (1/1/1) top
Crystal data top
C10H8N2·C10H10O6·H2OF(000) = 840
Mr = 400.38Dx = 1.408 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11161 reflections
a = 11.566 (5) Åθ = 3.0–27.5°
b = 9.712 (5) ŵ = 0.11 mm1
c = 16.810 (7) ÅT = 291 K
β = 90.81 (2)°Rod, colorless
V = 1888.2 (15) Å30.20 × 0.18 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4306 independent reflections
Radiation source: fine-focus sealed tube2654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1514
Tmin = 0.979, Tmax = 0.987k = 1212
18105 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0647P)2]
where P = (Fo2 + 2Fc2)/3
4306 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C10H8N2·C10H10O6·H2OV = 1888.2 (15) Å3
Mr = 400.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.566 (5) ŵ = 0.11 mm1
b = 9.712 (5) ÅT = 291 K
c = 16.810 (7) Å0.20 × 0.18 × 0.12 mm
β = 90.81 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4306 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2654 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.987Rint = 0.030
18105 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 0.97Δρmax = 0.17 e Å3
4306 reflectionsΔρmin = 0.15 e Å3
262 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.60888 (10)0.06435 (13)0.44070 (7)0.0574 (3)
C10.59235 (13)0.04189 (17)0.39244 (9)0.0616 (4)
H10.54670.02930.34700.074*
C20.63933 (12)0.16976 (16)0.40627 (8)0.0588 (4)
H20.62650.24060.37000.071*
C30.70588 (11)0.19349 (14)0.47429 (8)0.0462 (3)
C40.72238 (12)0.08127 (15)0.52468 (9)0.0574 (4)
H40.76620.09100.57120.069*
C50.67402 (13)0.04364 (16)0.50574 (9)0.0613 (4)
H50.68730.11750.53990.074*
C60.75714 (11)0.33068 (14)0.49263 (8)0.0460 (3)
C70.72463 (14)0.44768 (16)0.45093 (9)0.0662 (4)
H70.66970.44160.41010.079*
C80.77316 (14)0.57246 (17)0.46966 (10)0.0672 (4)
H80.74980.64930.44060.081*
C90.88302 (13)0.47824 (16)0.56821 (9)0.0609 (4)
H90.93750.48790.60910.073*
C100.83819 (12)0.34962 (15)0.55282 (9)0.0579 (4)
H100.86260.27480.58320.069*
C110.27722 (11)0.59624 (14)0.26783 (7)0.0458 (3)
C120.32396 (13)0.71838 (15)0.29545 (8)0.0554 (4)
H120.38950.71670.32820.066*
C130.27396 (13)0.84376 (16)0.27477 (9)0.0597 (4)
H130.30610.92560.29350.072*
C140.17787 (14)0.84657 (15)0.22704 (9)0.0594 (4)
H140.14420.93050.21350.071*
C150.12991 (12)0.72505 (14)0.19859 (9)0.0561 (4)
H150.06440.72820.16590.067*
C160.17855 (11)0.59898 (13)0.21839 (8)0.0460 (3)
C170.04541 (11)0.47710 (14)0.13642 (8)0.0495 (3)
H17A0.06940.52760.08970.059*
H17B0.02080.52390.15870.059*
C180.01249 (11)0.33352 (14)0.11347 (8)0.0479 (3)
C190.41863 (12)0.46231 (15)0.33609 (8)0.0542 (4)
H19A0.40010.50440.38670.065*
H19B0.48180.51350.31300.065*
C200.45447 (12)0.31491 (16)0.34906 (9)0.0548 (4)
N20.85154 (10)0.58951 (13)0.52696 (7)0.0564 (3)
O10.13736 (8)0.47386 (9)0.19334 (6)0.0545 (3)
O20.05129 (9)0.23016 (10)0.14397 (6)0.0597 (3)
O30.06491 (9)0.33379 (10)0.05595 (6)0.0651 (3)
H230.08670.25120.04810.098*
O40.32100 (8)0.46709 (9)0.28462 (6)0.0531 (3)
O50.42135 (9)0.21927 (11)0.30849 (7)0.0710 (3)
O60.52702 (9)0.30628 (11)0.40864 (6)0.0709 (3)
H240.55060.22510.41850.106*
O70.17765 (9)0.17334 (11)0.28219 (6)0.0712 (3)
H210.24720.20120.28040.107*
H220.14660.20930.24100.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0485 (7)0.0614 (8)0.0619 (7)0.0020 (6)0.0057 (6)0.0183 (6)
C10.0563 (9)0.0752 (11)0.0530 (9)0.0049 (8)0.0126 (7)0.0131 (8)
C20.0600 (9)0.0681 (10)0.0477 (8)0.0021 (7)0.0126 (7)0.0027 (7)
C30.0390 (7)0.0545 (8)0.0450 (7)0.0045 (6)0.0039 (6)0.0072 (6)
C40.0596 (9)0.0545 (9)0.0576 (9)0.0024 (7)0.0206 (7)0.0064 (7)
C50.0631 (9)0.0544 (9)0.0659 (10)0.0012 (7)0.0148 (8)0.0071 (7)
C60.0416 (7)0.0524 (8)0.0438 (7)0.0029 (6)0.0028 (6)0.0038 (6)
C70.0703 (10)0.0606 (10)0.0669 (10)0.0008 (8)0.0296 (8)0.0013 (7)
C80.0746 (11)0.0555 (9)0.0707 (10)0.0005 (8)0.0216 (9)0.0062 (8)
C90.0601 (9)0.0614 (10)0.0605 (9)0.0063 (7)0.0208 (7)0.0002 (7)
C100.0591 (8)0.0562 (9)0.0578 (9)0.0015 (7)0.0184 (7)0.0038 (7)
C110.0460 (7)0.0424 (7)0.0491 (8)0.0020 (6)0.0019 (6)0.0038 (6)
C120.0569 (8)0.0524 (8)0.0564 (9)0.0040 (7)0.0123 (7)0.0008 (7)
C130.0711 (10)0.0460 (8)0.0619 (9)0.0055 (7)0.0024 (8)0.0063 (7)
C140.0701 (9)0.0429 (8)0.0653 (9)0.0085 (7)0.0010 (8)0.0015 (7)
C150.0536 (8)0.0473 (8)0.0673 (9)0.0062 (6)0.0098 (7)0.0008 (7)
C160.0434 (7)0.0412 (7)0.0532 (8)0.0010 (6)0.0036 (6)0.0006 (6)
C170.0436 (7)0.0486 (8)0.0559 (8)0.0043 (6)0.0107 (6)0.0010 (6)
C180.0419 (7)0.0512 (8)0.0504 (8)0.0016 (6)0.0037 (6)0.0006 (6)
C190.0486 (8)0.0563 (9)0.0572 (8)0.0028 (6)0.0138 (7)0.0076 (7)
C200.0420 (7)0.0605 (9)0.0615 (9)0.0020 (7)0.0072 (7)0.0113 (7)
N20.0542 (7)0.0556 (7)0.0592 (7)0.0048 (6)0.0051 (6)0.0036 (6)
O10.0508 (5)0.0404 (5)0.0718 (6)0.0025 (4)0.0210 (5)0.0003 (4)
O20.0639 (6)0.0475 (6)0.0672 (7)0.0036 (5)0.0183 (5)0.0005 (5)
O30.0661 (6)0.0540 (6)0.0743 (7)0.0046 (5)0.0293 (6)0.0030 (5)
O40.0492 (5)0.0462 (6)0.0635 (6)0.0002 (4)0.0167 (4)0.0052 (4)
O50.0635 (7)0.0599 (7)0.0888 (8)0.0060 (5)0.0230 (6)0.0003 (6)
O60.0665 (7)0.0639 (7)0.0812 (8)0.0023 (5)0.0319 (6)0.0154 (6)
O70.0797 (7)0.0581 (7)0.0750 (7)0.0155 (5)0.0260 (6)0.0135 (5)
Geometric parameters (Å, º) top
N1—C11.325 (2)C12—H120.9300
N1—C51.3342 (18)C13—C141.362 (2)
C1—C21.374 (2)C13—H130.9300
C1—H10.9300C14—C151.386 (2)
C2—C31.3885 (18)C14—H140.9300
C2—H20.9300C15—C161.3861 (19)
C3—C41.392 (2)C15—H150.9300
C3—C61.489 (2)C16—O11.3695 (16)
C4—C51.371 (2)C17—O11.4208 (15)
C4—H40.9300C17—C181.495 (2)
C5—H50.9300C17—H17A0.9700
C6—C101.3818 (18)C17—H17B0.9700
C6—C71.384 (2)C18—O21.2105 (16)
C7—C81.370 (2)C18—O31.3083 (16)
C7—H70.9300C19—O41.4136 (15)
C8—N21.3237 (18)C19—C201.505 (2)
C8—H80.9300C19—H19A0.9700
C9—N21.3320 (19)C19—H19B0.9700
C9—C101.376 (2)C20—O51.2113 (18)
C9—H90.9300C20—O61.3002 (16)
C10—H100.9300O3—H230.8499
C11—O41.3803 (17)O6—H240.8500
C11—C121.3812 (19)O7—H210.8499
C11—C161.4025 (18)O7—H220.8501
C12—C131.390 (2)
C1—N1—C5117.34 (13)C14—C13—C12119.87 (13)
N1—C1—C2123.17 (12)C14—C13—H13120.1
N1—C1—H1118.4C12—C13—H13120.1
C2—C1—H1118.4C13—C14—C15120.36 (13)
C1—C2—C3120.17 (14)C13—C14—H14119.8
C1—C2—H2119.9C15—C14—H14119.8
C3—C2—H2119.9C16—C15—C14120.67 (13)
C2—C3—C4116.16 (13)C16—C15—H15119.7
C2—C3—C6122.24 (13)C14—C15—H15119.7
C4—C3—C6121.60 (11)O1—C16—C15124.87 (11)
C5—C4—C3119.96 (12)O1—C16—C11116.23 (11)
C5—C4—H4120.0C15—C16—C11118.90 (12)
C3—C4—H4120.0O1—C17—C18109.80 (10)
N1—C5—C4123.18 (14)O1—C17—H17A109.7
N1—C5—H5118.4C18—C17—H17A109.7
C4—C5—H5118.4O1—C17—H17B109.7
C10—C6—C7115.98 (13)C18—C17—H17B109.7
C10—C6—C3122.33 (12)H17A—C17—H17B108.2
C7—C6—C3121.68 (12)O2—C18—O3124.09 (13)
C8—C7—C6120.14 (13)O2—C18—C17124.94 (12)
C8—C7—H7119.9O3—C18—C17110.98 (11)
C6—C7—H7119.9O4—C19—C20109.62 (11)
N2—C8—C7123.49 (14)O4—C19—H19A109.7
N2—C8—H8118.3C20—C19—H19A109.7
C7—C8—H8118.3O4—C19—H19B109.7
N2—C9—C10122.64 (12)C20—C19—H19B109.7
N2—C9—H9118.7H19A—C19—H19B108.2
C10—C9—H9118.7O5—C20—O6125.43 (14)
C9—C10—C6120.57 (13)O5—C20—C19124.30 (12)
C9—C10—H10119.7O6—C20—C19110.26 (13)
C6—C10—H10119.7C8—N2—C9117.18 (13)
O4—C11—C12124.82 (11)C16—O1—C17116.18 (10)
O4—C11—C16115.56 (11)C18—O3—H23108.1
C12—C11—C16119.61 (11)C11—O4—C19116.26 (10)
C11—C12—C13120.59 (12)C20—O6—H24114.3
C11—C12—H12119.7H21—O7—H22103.2
C13—C12—H12119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H23···N2i0.851.762.6051 (19)173
O6—H24···N10.851.742.5871 (19)176
O7—H21···O50.852.072.8817 (19)160
O7—H22···O20.851.972.7826 (17)161
Symmetry code: (i) x1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H8N2·C10H10O6·H2O
Mr400.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)11.566 (5), 9.712 (5), 16.810 (7)
β (°) 90.81 (2)
V3)1888.2 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.979, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
18105, 4306, 2654
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 0.97
No. of reflections4306
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H23···N2i0.851.762.6051 (19)172.6
O6—H24···N10.851.742.5871 (19)175.7
O7—H21···O50.852.072.8817 (19)159.7
O7—H22···O20.851.972.7826 (17)160.5
Symmetry code: (i) x1, y1/2, z1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (50733002–01) and Jilin University for supporting this study.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMirci, L. E. (1990). Rom. Patent No. 07 43 205.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoleimannejad, J., Aghabozorg, H., Najafi, S., Nasibipour, M. & Attar Gharamaleki, J. (2009). Acta Cryst. E65, o532–o533.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, B., Wang, X.-Q., Wang, R.-J., Shen, G.-Q. & Shen, D.-Z. (2006). Acta Cryst. E62, o2757–o2758.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds