metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­copper(II)]bis­­[μ-bis­(3,5-di­methyl-1H-pyrazol-4-yl) selenide]] bis­­(tetra­fluorido­borate) bis­­(tri­phenyl­phosphine oxide) monohydrate]

aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: mcs@univ.kiev.ua

(Received 1 March 2010; accepted 7 April 2010; online 17 April 2010)

The title compound, {[Cu(C10H14N4Se)2(H2O)](BF4)2·2C18H15PO·H2O}n, has a polymeric structure where each CuII ion adopts a square-pyramidal coordination constituted by four N atoms of pyrazole moieties in the equatorial plane and an axial O atom of a water mol­ecule. A pair of bis­(3,5-dimethyl-1H-pyrazol-4-yl) selenide ligands bridges the CuII centres into a chain extending along the c axis. The water mol­ecules, anions and triphenyl­phosphine oxide mol­ecules are involved in inter­molecular hydrogen bonding, which links the chains into a three-dimensional network.

Related literature

For general background, see: Farha et al. (2009[Farha, O. K., Spokoyny, A. M., Mulfort, K. L., Galli, S., Hupp, J. T. & Mirkin, C. A. (2009). Small, 5, 1727-1731.]); Shibahara et al. (2007[Shibahara, S., Kitagawa, H., Kubo, T. & Nakasuji, K. (2007). Inorg. Chem. Commun. 10, 860-862.]); Zhang et al. (2009[Zhang, Y.-B., Zhang, W.-X., Feng, F.-Y., Zhang, J.-P. & Chen, X.-M. (2009). Angew. Chem. Int. Ed. Engl. 48, 5287-5290.]). For related structures, see: Seredyuk et al. (2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.], 2009[Seredyuk, M., Haukka, M., Pavlenko, V. A. & Fritsky, I. O. (2009). Acta Cryst. E65, m1396.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H14N4Se)2(H2O)](BF4)2·2C18H15OP·H2O

  • Mr = 1386.17

  • Monoclinic, C 2/c

  • a = 21.4560 (4) Å

  • b = 15.3590 (4) Å

  • c = 18.4910 (6) Å

  • β = 97.74 (2)°

  • V = 6038.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.70 mm−1

  • T = 100 K

  • 0.09 × 0.07 × 0.04 mm

Data collection
  • Kuma KM4 CCD area-detector diffractometer

  • 34362 measured reflections

  • 6876 independent reflections

  • 6210 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.082

  • S = 1.16

  • 6876 reflections

  • 384 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯F2 0.90 2.14 3.002 (3) 161
O1W—H1W⋯F3 0.90 2.51 3.115 (3) 125
O1W—H2W⋯O2 0.95 1.90 2.785 (3) 155
O1—H1O⋯O2 0.81 1.95 2.752 (2) 173
N1—H1N⋯F4i 0.88 2.06 2.861 (3) 152
N4—H4N⋯O1Wii 0.88 1.86 2.730 (3) 170
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: KM-4-CCD (Kuma, 1999[Kuma (1999). KM-4-CCD Software. Kuma Diffraction, Wrocław, Poland.]); cell refinement: KM-4-CCD; data reduction: KM-4-CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Study of organometallic polymers is a well elaborated research area in coordination chemistry. Infinite molecular polymeric arrays are potentially applicable as specifically ordered crystalline substances with reversible selective sorption (Farha et al., 2009; Zhang et al., 2009), electrical conductivity (Zhang et al., 2009) and molecular magnetism functionality (Shibahara et al., 2007).

The title compound, [Cu(H2O)(C10H14N4Se)2][(BF4)2.(Ph3PO)2.H2O, was prepared in a water–methanolic medium by mixing solutions of Cu(BF4)2.6H2O and the mixture of the ligand bis(3,5-dimethyl-1H-pyrazolyl)selenide (L) and trisphenylphosphine oxide. It has similar structure to the copper compounds reported recently (Seredyuk et al., 2007, 2009). A pyramidal environment of the CuII ion is constituted by four non-coplanar N atoms of pyrazolyl cycles (distances Cu—N are 1.997 (2) and 2.040 (2) Å, distance Cu—O is 2.222 (2) Å). Symmetrically equivalent ligand molecules in cis-bonding configuration are linked to CuII ion in a double-stranded bridge fashion (Fig. 1). Formed one-dimensional linear chain is running along the c axis where each Cu atom deviates from the average position by a value of ±0.279 (0) Å (Fig. 2). One of the pyrazole cycles of the ligand molecule is involved in hydrogen bonding with F atom of the tetrafluoroborate anion (N···F 2.861 (3) Å) which additionally forms a hydrogen bond with the free water molecule (F···OW 3.002 (3) Å). Further, the coordinated water molecule is connected through hydrogen bonds with the free water molecule (O···OW 2.785 (3) Å) and the Ph3PO molecule (O···O 3.115 (3) Å).

Related literature top

For general background, see: Farha et al. (2009); Shibahara et al. (2007); Zhang et al. (2009). For related structures, see: Seredyuk et al. (2007, 2009).

Experimental top

Bis(3,5-dimethyl-1H-pyrazolyl)selenide was prepared according to early reported method (Seredyuk et al., 2007). Copper(II) tetrafluoroborate hexahydrate (0.065 g, 0.19 mmol) in water (5 ml) was added to 5 ml of hot methanol solution of the ligand (0.100 g, 0.37 mmol) and thisphenylphosphine oxide (0.052 g, 0.19 mmol). After several days green crystals of the title compound suitable for X-ray analysis were isolated. Found: C 49.06, H 4.43, N 8.22; C56H62B2CuF8N8O4P2Se2 requires: C 49.16, H 4.57, N 8.19.

Refinement top

The H atoms were located from the difference Fourier map and were constrained to ride on their parent atoms with Uiso = 1.2–1.5Ueq(parent atom). The highest peak is located 0.90 Å from atom F3 and the deepest hole is located 0.67 Å from atom F2.

Structure description top

Study of organometallic polymers is a well elaborated research area in coordination chemistry. Infinite molecular polymeric arrays are potentially applicable as specifically ordered crystalline substances with reversible selective sorption (Farha et al., 2009; Zhang et al., 2009), electrical conductivity (Zhang et al., 2009) and molecular magnetism functionality (Shibahara et al., 2007).

The title compound, [Cu(H2O)(C10H14N4Se)2][(BF4)2.(Ph3PO)2.H2O, was prepared in a water–methanolic medium by mixing solutions of Cu(BF4)2.6H2O and the mixture of the ligand bis(3,5-dimethyl-1H-pyrazolyl)selenide (L) and trisphenylphosphine oxide. It has similar structure to the copper compounds reported recently (Seredyuk et al., 2007, 2009). A pyramidal environment of the CuII ion is constituted by four non-coplanar N atoms of pyrazolyl cycles (distances Cu—N are 1.997 (2) and 2.040 (2) Å, distance Cu—O is 2.222 (2) Å). Symmetrically equivalent ligand molecules in cis-bonding configuration are linked to CuII ion in a double-stranded bridge fashion (Fig. 1). Formed one-dimensional linear chain is running along the c axis where each Cu atom deviates from the average position by a value of ±0.279 (0) Å (Fig. 2). One of the pyrazole cycles of the ligand molecule is involved in hydrogen bonding with F atom of the tetrafluoroborate anion (N···F 2.861 (3) Å) which additionally forms a hydrogen bond with the free water molecule (F···OW 3.002 (3) Å). Further, the coordinated water molecule is connected through hydrogen bonds with the free water molecule (O···OW 2.785 (3) Å) and the Ph3PO molecule (O···O 3.115 (3) Å).

For general background, see: Farha et al. (2009); Shibahara et al. (2007); Zhang et al. (2009). For related structures, see: Seredyuk et al. (2007, 2009).

Computing details top

Data collection: KM-4-CCD (Kuma, 1999); cell refinement: KM-4-CCD (Kuma, 1999); data reduction: KM-4-CCD (Kuma, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of the title compound showing the labeling scheme and 80% probability displacement ellipsoids [(i) 1.5 - x, 1.5 - y, 1 - z; (ii) 1.5 - x, 0.5 + y, 1.5 - z; (iii) -0.5 + x, 1.5 - y, 0.5 + z; (iv) 1 - x, 1 + y, 1.5 - z]. Hydrogen bonds are indicated by dashed lines. H atoms are omitted for clarity.
[Figure 2] Fig. 2. A packing diagram of the title compound. H atoms are omitted for clarity.
catena-Poly[[[aquacopper(II)]bis[µ-bis(3,5-dimethyl-1H- pyrazol-4-yl) selenide] bis(tetrafluoridoborate) bis(triphenylphosphine oxide) monohydrate] top
Crystal data top
[Cu(C10H14N4Se)2(H2O)](BF4)2·2C18H15OP·H2OF(000) = 2820
Mr = 1386.17Dx = 1.525 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 34362 reflections
a = 21.4560 (4) Åθ = 3.1–28.5°
b = 15.3590 (4) ŵ = 1.70 mm1
c = 18.4910 (6) ÅT = 100 K
β = 97.74 (2)°Needle, green
V = 6038.0 (3) Å30.09 × 0.07 × 0.04 mm
Z = 4
Data collection top
Kuma KM4 CCD area-detector
diffractometer
6210 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω scansh = 2727
34362 measured reflectionsk = 1918
6876 independent reflectionsl = 2422
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0323P)2 + 9.8106P]
where P = (Fo2 + 2Fc2)/3
6876 reflections(Δ/σ)max = 0.002
384 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cu(C10H14N4Se)2(H2O)](BF4)2·2C18H15OP·H2OV = 6038.0 (3) Å3
Mr = 1386.17Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.4560 (4) ŵ = 1.70 mm1
b = 15.3590 (4) ÅT = 100 K
c = 18.4910 (6) Å0.09 × 0.07 × 0.04 mm
β = 97.74 (2)°
Data collection top
Kuma KM4 CCD area-detector
diffractometer
6210 reflections with I > 2σ(I)
34362 measured reflectionsRint = 0.045
6876 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.16Δρmax = 0.63 e Å3
6876 reflectionsΔρmin = 0.38 e Å3
384 parameters
Special details top

Experimental. The H atoms were located from the difference Fourier map and were constrained to ride on their parent atoms with Uiso = 1.2–1.5Ueq(parent atom). The highest peak is located 0.90 Å from atom F3 and the deepest hole is located 0.67 Å from atom F2.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.76965 (12)0.52259 (18)0.58609 (14)0.0230 (6)
H1A0.74630.48820.61800.035*
H1B0.75200.51260.53510.035*
H1C0.76640.58450.59770.035*
C20.83728 (11)0.49578 (16)0.59738 (12)0.0161 (5)
C30.87223 (11)0.44383 (15)0.55608 (12)0.0150 (5)
C40.93294 (11)0.43713 (15)0.59578 (12)0.0140 (5)
C50.98757 (11)0.38947 (16)0.57328 (13)0.0163 (5)
H5A1.01320.42960.54850.025*
H5B0.97240.34210.54000.025*
H5C1.01310.36530.61650.025*
C60.97077 (12)0.35740 (16)0.37061 (14)0.0199 (5)
H6A0.98450.34310.32360.030*
H6B0.94940.30700.38850.030*
H6C1.00750.37250.40590.030*
C70.92668 (11)0.43281 (15)0.36128 (12)0.0142 (5)
C80.87522 (11)0.45220 (15)0.39826 (12)0.0134 (5)
C90.84777 (11)0.52685 (16)0.36613 (12)0.0156 (5)
C100.78973 (12)0.57463 (17)0.37889 (14)0.0207 (5)
H10A0.78550.62740.34890.031*
H10B0.79260.59060.43050.031*
H10C0.75300.53720.36560.031*
C110.93216 (12)0.04009 (16)0.84170 (13)0.0172 (5)
C120.97655 (13)0.02714 (16)0.84964 (13)0.0204 (5)
H121.01770.01660.87400.024*
C130.96033 (14)0.10957 (17)0.82184 (15)0.0264 (6)
H130.99060.15510.82690.032*
C140.90039 (15)0.12532 (19)0.78687 (15)0.0326 (7)
H140.88940.18180.76830.039*
C150.85628 (15)0.0592 (2)0.77881 (15)0.0328 (7)
H150.81510.07040.75470.039*
C160.87171 (13)0.02374 (18)0.80581 (14)0.0252 (6)
H160.84130.06900.79990.030*
C170.89479 (12)0.09403 (16)0.99831 (13)0.0192 (5)
H170.90650.03650.98690.023*
C180.86575 (12)0.10921 (18)1.06015 (14)0.0234 (6)
H180.85800.06201.09090.028*
C190.84825 (13)0.19234 (19)1.07704 (15)0.0263 (6)
H190.82850.20241.11930.032*
C200.90673 (11)0.16311 (15)0.95319 (13)0.0151 (5)
C211.07652 (13)0.14666 (17)0.86366 (15)0.0234 (6)
H211.06310.14650.81260.028*
C221.11652 (13)0.14863 (17)1.01317 (15)0.0236 (6)
H221.13040.14961.06420.028*
C231.05261 (12)0.14969 (16)0.98780 (13)0.0183 (5)
H231.02280.15101.02150.022*
C241.03194 (12)0.14881 (15)0.91255 (13)0.0160 (5)
C251.16016 (13)0.14610 (17)0.96428 (16)0.0262 (6)
H251.20380.14530.98190.031*
C260.88851 (13)0.24716 (17)0.97001 (15)0.0244 (6)
H260.89590.29450.93920.029*
C270.85963 (14)0.26146 (19)1.03183 (16)0.0311 (7)
H270.84760.31881.04340.037*
C281.14020 (13)0.14472 (19)0.88991 (16)0.0283 (6)
H281.17030.14240.85670.034*
N10.87644 (9)0.51791 (13)0.65756 (10)0.0159 (4)
H1N0.86550.55100.69260.019*
N20.93546 (9)0.48303 (13)0.65830 (10)0.0132 (4)
N30.93111 (9)0.49421 (12)0.30991 (10)0.0130 (4)
N40.88268 (9)0.55081 (13)0.31437 (10)0.0140 (4)
H4N0.87520.59730.28670.017*
O11.00000.33717 (15)0.75000.0184 (5)
H1O0.98100.30470.77360.028*
O20.93330 (8)0.21702 (11)0.81896 (9)0.0200 (4)
O1W0.84524 (9)0.31134 (11)0.72590 (10)0.0238 (4)
H1W0.80410.29730.72070.036*
H2W0.86870.26520.75050.036*
Cu11.00000.48181 (3)0.75000.01134 (9)
Se10.841882 (11)0.382203 (16)0.468941 (12)0.01567 (7)
P10.94959 (3)0.14841 (4)0.87644 (3)0.01450 (13)
B10.71450 (15)0.1759 (2)0.75026 (17)0.0261 (7)
F40.65217 (8)0.17089 (10)0.76495 (9)0.0292 (4)
F30.75223 (9)0.21024 (12)0.81081 (10)0.0423 (5)
F10.73540 (9)0.09284 (12)0.73760 (10)0.0459 (5)
F20.71809 (9)0.22853 (14)0.68996 (10)0.0503 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0159 (13)0.0333 (15)0.0200 (13)0.0052 (11)0.0030 (10)0.0026 (11)
C20.0145 (12)0.0212 (12)0.0127 (11)0.0000 (10)0.0028 (9)0.0022 (9)
C30.0155 (12)0.0189 (12)0.0111 (11)0.0018 (9)0.0037 (9)0.0021 (9)
C40.0172 (12)0.0148 (11)0.0107 (11)0.0012 (9)0.0045 (9)0.0027 (9)
C50.0153 (12)0.0201 (12)0.0134 (11)0.0030 (10)0.0014 (9)0.0025 (9)
C60.0209 (13)0.0201 (13)0.0197 (12)0.0031 (10)0.0064 (10)0.0033 (10)
C70.0136 (12)0.0179 (12)0.0111 (11)0.0026 (9)0.0016 (9)0.0020 (9)
C80.0115 (11)0.0179 (12)0.0107 (10)0.0023 (9)0.0015 (9)0.0026 (9)
C90.0154 (12)0.0197 (12)0.0116 (11)0.0007 (10)0.0019 (9)0.0018 (9)
C100.0175 (13)0.0262 (14)0.0191 (12)0.0042 (10)0.0045 (10)0.0011 (10)
C110.0211 (13)0.0197 (12)0.0118 (11)0.0025 (10)0.0053 (9)0.0012 (9)
C120.0236 (14)0.0201 (13)0.0184 (12)0.0010 (10)0.0062 (10)0.0004 (10)
C130.0363 (16)0.0205 (13)0.0245 (13)0.0015 (12)0.0119 (12)0.0022 (11)
C140.048 (2)0.0277 (15)0.0234 (14)0.0133 (14)0.0115 (13)0.0091 (12)
C150.0329 (17)0.0432 (18)0.0210 (14)0.0154 (14)0.0015 (12)0.0022 (12)
C160.0229 (14)0.0309 (15)0.0213 (13)0.0015 (11)0.0017 (11)0.0016 (11)
C170.0187 (13)0.0180 (12)0.0218 (13)0.0002 (10)0.0063 (10)0.0014 (10)
C180.0212 (14)0.0280 (14)0.0223 (13)0.0012 (11)0.0078 (11)0.0063 (11)
C190.0238 (14)0.0356 (16)0.0217 (13)0.0007 (12)0.0114 (11)0.0048 (11)
C200.0120 (11)0.0172 (12)0.0164 (11)0.0012 (9)0.0030 (9)0.0016 (9)
C210.0234 (14)0.0269 (14)0.0213 (13)0.0021 (11)0.0084 (11)0.0038 (11)
C220.0214 (14)0.0227 (13)0.0252 (14)0.0010 (11)0.0020 (11)0.0023 (11)
C230.0180 (13)0.0175 (12)0.0201 (12)0.0005 (10)0.0056 (10)0.0008 (9)
C240.0166 (12)0.0127 (11)0.0194 (12)0.0010 (9)0.0045 (10)0.0016 (9)
C250.0141 (13)0.0231 (13)0.0408 (16)0.0011 (10)0.0019 (11)0.0076 (12)
C260.0254 (14)0.0187 (13)0.0318 (15)0.0015 (11)0.0140 (12)0.0033 (11)
C270.0348 (17)0.0221 (14)0.0398 (17)0.0035 (12)0.0177 (14)0.0056 (12)
C280.0199 (14)0.0318 (15)0.0359 (16)0.0044 (11)0.0137 (12)0.0100 (12)
N10.0150 (10)0.0210 (10)0.0121 (9)0.0046 (8)0.0032 (8)0.0002 (8)
N20.0113 (10)0.0175 (10)0.0113 (9)0.0021 (8)0.0029 (7)0.0013 (7)
N30.0120 (10)0.0157 (10)0.0114 (9)0.0017 (8)0.0018 (7)0.0006 (7)
N40.0138 (10)0.0151 (10)0.0135 (9)0.0026 (8)0.0028 (8)0.0017 (7)
O10.0212 (13)0.0162 (12)0.0203 (12)0.0000.0111 (10)0.000
O20.0196 (9)0.0212 (9)0.0195 (9)0.0008 (7)0.0038 (7)0.0072 (7)
O1W0.0204 (10)0.0215 (9)0.0283 (10)0.0019 (8)0.0006 (8)0.0022 (8)
Cu10.0110 (2)0.0155 (2)0.00792 (18)0.0000.00246 (14)0.000
Se10.01537 (13)0.02050 (13)0.01152 (11)0.00501 (10)0.00324 (8)0.00052 (9)
P10.0146 (3)0.0151 (3)0.0144 (3)0.0005 (2)0.0040 (2)0.0027 (2)
B10.0247 (17)0.0276 (16)0.0271 (16)0.0012 (13)0.0066 (13)0.0015 (13)
F40.0275 (9)0.0238 (8)0.0369 (9)0.0034 (7)0.0066 (7)0.0056 (7)
F30.0413 (11)0.0443 (11)0.0420 (10)0.0186 (9)0.0080 (8)0.0179 (8)
F10.0429 (11)0.0384 (10)0.0501 (12)0.0178 (9)0.0167 (9)0.0192 (9)
F20.0476 (12)0.0625 (13)0.0447 (11)0.0072 (10)0.0209 (9)0.0234 (10)
Geometric parameters (Å, º) top
C1—C21.496 (3)C17—H170.9500
C1—H1A0.9800C18—C191.378 (4)
C1—H1B0.9800C18—H180.9500
C1—H1C0.9800C19—C271.393 (4)
C2—N11.345 (3)C19—H190.9500
C2—C31.392 (3)C20—C261.396 (3)
C3—C41.410 (3)C20—P11.806 (2)
C3—Se11.906 (2)C21—C281.387 (4)
C4—N21.349 (3)C21—C241.402 (3)
C4—C51.488 (3)C21—H210.9500
C5—H5A0.9800C22—C251.387 (4)
C5—H5B0.9800C22—C231.388 (4)
C5—H5C0.9800C22—H220.9500
C6—C71.491 (3)C23—C241.402 (3)
C6—H6A0.9800C23—H230.9500
C6—H6B0.9800C24—P11.803 (3)
C6—H6C0.9800C25—C281.384 (4)
C7—N31.351 (3)C25—H250.9500
C7—C81.407 (3)C26—C271.389 (4)
C8—C91.386 (3)C26—H260.9500
C8—Se11.905 (2)C27—H270.9500
C9—N41.344 (3)C28—H280.9500
C9—C101.491 (3)N1—N21.373 (3)
C10—H10A0.9800N1—H1N0.8800
C10—H10B0.9800N2—Cu12.0397 (19)
C10—H10C0.9800N3—N41.366 (3)
C11—C161.398 (4)N3—Cu1i1.9971 (19)
C11—C121.399 (4)N4—H4N0.8800
C11—P11.804 (2)O1—Cu12.222 (2)
C12—C131.393 (4)O1—H1O0.8082
C12—H120.9500O2—P11.5040 (17)
C13—C141.381 (4)O1W—H1W0.9003
C13—H130.9500O1W—H2W0.9489
C14—C151.383 (4)Cu1—N3ii1.9971 (19)
C14—H140.9500Cu1—N3i1.9971 (19)
C15—C161.391 (4)Cu1—N2iii2.0397 (19)
C15—H150.9500B1—F11.383 (4)
C16—H160.9500B1—F21.387 (4)
C17—C181.394 (3)B1—F31.394 (4)
C17—C201.395 (3)B1—F41.402 (4)
C2—C1—H1A109.5C18—C19—H19120.2
C2—C1—H1B109.5C27—C19—H19120.2
H1A—C1—H1B109.5C17—C20—C26119.4 (2)
C2—C1—H1C109.5C17—C20—P1121.94 (18)
H1A—C1—H1C109.5C26—C20—P1118.57 (18)
H1B—C1—H1C109.5C28—C21—C24120.0 (2)
N1—C2—C3106.0 (2)C28—C21—H21120.0
N1—C2—C1122.2 (2)C24—C21—H21120.0
C3—C2—C1131.7 (2)C25—C22—C23120.2 (2)
C2—C3—C4106.5 (2)C25—C22—H22119.9
C2—C3—Se1126.91 (18)C23—C22—H22119.9
C4—C3—Se1126.17 (17)C22—C23—C24120.1 (2)
N2—C4—C3109.6 (2)C22—C23—H23120.0
N2—C4—C5123.7 (2)C24—C23—H23120.0
C3—C4—C5126.7 (2)C21—C24—C23119.2 (2)
C4—C5—H5A109.5C21—C24—P1118.74 (19)
C4—C5—H5B109.5C23—C24—P1122.04 (19)
H5A—C5—H5B109.5C28—C25—C22120.2 (3)
C4—C5—H5C109.5C28—C25—H25119.9
H5A—C5—H5C109.5C22—C25—H25119.9
H5B—C5—H5C109.5C27—C26—C20119.9 (2)
C7—C6—H6A109.5C27—C26—H26120.0
C7—C6—H6B109.5C20—C26—H26120.0
H6A—C6—H6B109.5C26—C27—C19120.5 (3)
C7—C6—H6C109.5C26—C27—H27119.8
H6A—C6—H6C109.5C19—C27—H27119.8
H6B—C6—H6C109.5C25—C28—C21120.4 (2)
N3—C7—C8109.2 (2)C25—C28—H28119.8
N3—C7—C6121.3 (2)C21—C28—H28119.8
C8—C7—C6129.5 (2)C2—N1—N2112.47 (19)
C9—C8—C7106.4 (2)C2—N1—H1N123.8
C9—C8—Se1125.73 (18)N2—N1—H1N123.8
C7—C8—Se1127.30 (18)C4—N2—N1105.36 (18)
N4—C9—C8106.6 (2)C4—N2—Cu1130.69 (16)
N4—C9—C10122.4 (2)N1—N2—Cu1122.26 (14)
C8—C9—C10130.9 (2)C7—N3—N4105.99 (18)
C9—C10—H10A109.5C7—N3—Cu1i130.26 (16)
C9—C10—H10B109.5N4—N3—Cu1i122.83 (14)
H10A—C10—H10B109.5C9—N4—N3111.75 (19)
C9—C10—H10C109.5C9—N4—H4N124.1
H10A—C10—H10C109.5N3—N4—H4N124.1
H10B—C10—H10C109.5Cu1—O1—H1O128.2
C16—C11—C12119.5 (2)H1W—O1W—H2W108.7
C16—C11—P1118.0 (2)N3ii—Cu1—N3i158.75 (11)
C12—C11—P1122.53 (19)N3ii—Cu1—N289.38 (8)
C13—C12—C11120.0 (3)N3i—Cu1—N290.43 (8)
C13—C12—H12120.0N3ii—Cu1—N2iii90.43 (8)
C11—C12—H12120.0N3i—Cu1—N2iii89.38 (8)
C14—C13—C12120.2 (3)N2—Cu1—N2iii178.95 (11)
C14—C13—H13119.9N3ii—Cu1—O1100.62 (6)
C12—C13—H13119.9N3i—Cu1—O1100.62 (6)
C13—C14—C15120.2 (3)N2—Cu1—O190.53 (6)
C13—C14—H14119.9N2iii—Cu1—O190.53 (6)
C15—C14—H14119.9C8—Se1—C3100.52 (10)
C14—C15—C16120.5 (3)O2—P1—C24112.46 (11)
C14—C15—H15119.7O2—P1—C11112.16 (11)
C16—C15—H15119.7C24—P1—C11106.30 (11)
C15—C16—C11119.7 (3)O2—P1—C20111.92 (11)
C15—C16—H16120.2C24—P1—C20106.62 (11)
C11—C16—H16120.2C11—P1—C20106.98 (11)
C18—C17—C20120.1 (2)F1—B1—F2110.3 (2)
C18—C17—H17119.9F1—B1—F3108.6 (3)
C20—C17—H17119.9F2—B1—F3109.7 (3)
C19—C18—C17120.4 (2)F1—B1—F4108.7 (2)
C19—C18—H18119.8F2—B1—F4110.2 (2)
C17—C18—H18119.8F3—B1—F4109.3 (2)
C18—C19—C27119.7 (2)
N1—C2—C3—C40.3 (3)C3—C4—N2—N10.2 (2)
C1—C2—C3—C4176.6 (3)C5—C4—N2—N1178.7 (2)
N1—C2—C3—Se1173.45 (17)C3—C4—N2—Cu1165.24 (16)
C1—C2—C3—Se13.4 (4)C5—C4—N2—Cu116.2 (3)
C2—C3—C4—N20.3 (3)C2—N1—N2—C40.0 (3)
Se1—C3—C4—N2173.53 (16)C2—N1—N2—Cu1166.62 (16)
C2—C3—C4—C5178.8 (2)C8—C7—N3—N40.5 (2)
Se1—C3—C4—C58.0 (3)C6—C7—N3—N4177.6 (2)
N3—C7—C8—C91.3 (3)C8—C7—N3—Cu1i168.54 (16)
C6—C7—C8—C9176.6 (2)C6—C7—N3—Cu1i13.4 (3)
N3—C7—C8—Se1173.23 (16)C8—C9—N4—N31.3 (3)
C6—C7—C8—Se14.7 (4)C10—C9—N4—N3176.2 (2)
C7—C8—C9—N41.6 (3)C7—N3—N4—C90.5 (2)
Se1—C8—C9—N4173.66 (16)Cu1i—N3—N4—C9170.57 (15)
C7—C8—C9—C10175.6 (2)C4—N2—Cu1—N3ii146.4 (2)
Se1—C8—C9—C103.5 (4)N1—N2—Cu1—N3ii16.47 (17)
C16—C11—C12—C130.0 (4)C4—N2—Cu1—N3i54.8 (2)
P1—C11—C12—C13179.83 (19)N1—N2—Cu1—N3i142.28 (17)
C11—C12—C13—C140.5 (4)C4—N2—Cu1—O145.8 (2)
C12—C13—C14—C150.5 (4)N1—N2—Cu1—O1117.09 (17)
C13—C14—C15—C160.1 (4)C9—C8—Se1—C384.4 (2)
C14—C15—C16—C110.4 (4)C7—C8—Se1—C3105.1 (2)
C12—C11—C16—C150.4 (4)C2—C3—Se1—C8106.5 (2)
P1—C11—C16—C15179.4 (2)C4—C3—Se1—C881.6 (2)
C20—C17—C18—C190.4 (4)C21—C24—P1—O251.1 (2)
C17—C18—C19—C270.1 (4)C23—C24—P1—O2130.0 (2)
C18—C17—C20—C260.9 (4)C21—C24—P1—C1172.0 (2)
C18—C17—C20—P1175.1 (2)C23—C24—P1—C11106.8 (2)
C25—C22—C23—C240.4 (4)C21—C24—P1—C20174.10 (19)
C28—C21—C24—C230.5 (4)C23—C24—P1—C207.0 (2)
C28—C21—C24—P1178.4 (2)C16—C11—P1—O252.4 (2)
C22—C23—C24—C210.2 (4)C12—C11—P1—O2127.8 (2)
C22—C23—C24—P1179.02 (19)C16—C11—P1—C24175.71 (19)
C23—C22—C25—C280.1 (4)C12—C11—P1—C244.5 (2)
C17—C20—C26—C270.9 (4)C16—C11—P1—C2070.7 (2)
P1—C20—C26—C27175.2 (2)C12—C11—P1—C20109.1 (2)
C20—C26—C27—C190.5 (4)C17—C20—P1—O2155.2 (2)
C18—C19—C27—C260.1 (5)C26—C20—P1—O228.8 (2)
C22—C25—C28—C210.6 (4)C17—C20—P1—C2481.5 (2)
C24—C21—C28—C250.9 (4)C26—C20—P1—C2494.6 (2)
C3—C2—N1—N20.2 (3)C17—C20—P1—C1131.9 (2)
C1—C2—N1—N2177.0 (2)C26—C20—P1—C11152.0 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z+1/2; (iii) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···F20.902.143.002 (3)161
O1W—H1W···F30.902.513.115 (3)125
O1W—H2W···O20.951.902.785 (3)155
O1—H1O···O20.811.952.752 (2)173
N1—H1N···F4iv0.882.062.861 (3)152
N4—H4N···O1Wv0.881.862.730 (3)170
Symmetry codes: (iv) x+3/2, y+1/2, z+3/2; (v) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C10H14N4Se)2(H2O)](BF4)2·2C18H15OP·H2O
Mr1386.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)21.4560 (4), 15.3590 (4), 18.4910 (6)
β (°) 97.74 (2)
V3)6038.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.09 × 0.07 × 0.04
Data collection
DiffractometerKuma KM4 CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
34362, 6876, 6210
Rint0.045
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.082, 1.16
No. of reflections6876
No. of parameters384
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.38

Computer programs: KM-4-CCD (Kuma, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···F20.902.143.002 (3)161.0
O1W—H1W···F30.902.513.115 (3)124.8
O1W—H2W···O20.951.902.785 (3)154.7
O1—H1O···O20.811.952.752 (2)172.5
N1—H1N···F4i0.882.062.861 (3)151.6
N4—H4N···O1Wii0.881.862.730 (3)170.1
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x, y+1, z1/2.
 

Acknowledgements

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/263-2008)

References

First citationFarha, O. K., Spokoyny, A. M., Mulfort, K. L., Galli, S., Hupp, J. T. & Mirkin, C. A. (2009). Small, 5, 1727–1731.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKuma (1999). KM-4-CCD Software. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSeredyuk, M., Haukka, M., Pavlenko, V. A. & Fritsky, I. O. (2009). Acta Cryst. E65, m1396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibahara, S., Kitagawa, H., Kubo, T. & Nakasuji, K. (2007). Inorg. Chem. Commun. 10, 860–862.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y.-B., Zhang, W.-X., Feng, F.-Y., Zhang, J.-P. & Chen, X.-M. (2009). Angew. Chem. Int. Ed. Engl. 48, 5287–5290.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds