metal-organic compounds
Bis[(1-ammonioethane-1,1-diyl)diphosphonato-κ2O,O′]diaquanickel(II) nonahydrate
aInstitute of General and Inorganic Chemistry, NAS Ukraine, Kyiv, prosp. Palladina 32/34, 03680, Ukraine
*Correspondence e-mail: complex@ionc.kiev.ua
The title compound, [Ni(C2H8NO6P2)2(H2O)2]·9H2O, exhibits a slightly distorted octahedral coordination environment around the NiII atom. It contains two molecules of 1-aminoethylidenediphosphonic acid in the zwitterionic form, coordinated via O atoms from two phosphonate groups and creating two six-membered chelate rings. Two water molecules in cis positions complete the coordination environment of the NiII atom. The title compound contains nine partly disordered solvent water molecules, which create a three-dimensional network of strong O—H⋯O and N—H⋯O hydrogen bonds.
Related literature
For general background to the use of organic diphosphonic acids, see: Matczak-Jon & Videnova-Adrabinska (2005). For applications of transition-metal bisphosphonates, see: Eberhardt et al. (2005). For related structures, see: Li et al. (2007); Dudko et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S160053681001531X/ez2208sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681001531X/ez2208Isup2.hkl
Light green crystals of the title compound were obtained from a mixture of 10 ml (10 -2 mol/l) of a water solution of Ni(NO3)2 with a 20 ml (10 -2 mol/l) solution of 1-aminoethylidenediphosphonic acid. The resultant solution was stored in a dark place for slow evaporation. After the 20 days suitable crystals for X-ray data collection were obtained.
The
of the structure showed two disordered water molecules. O atoms O22 and O23 were split over two sites with occupancies 0.86/0.14 and 0.81/0.19 respectively. The positions with smaller occupancies were both refined isotropically. Hydrogen atoms were found from difference map only for sites with greater occupancy of disordered atom. H atoms bonded to N and O were located in a difference map and refined with Uiso(H) = 1.5Ueq(N) and Uiso(H) = 1.2Ueq(O) respectively. Methyl hydrogens were geometrically constrained and refined using a riding model with C—H = 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)].Organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs for preventing calcification and inhibiting bone resorption (Matczak-Jon & Videnova-Adrabinska, 2005). There is evidence that application of transition metal bisphosphonates can improve fixation of cementless metal implants by enhancing the extent of osseointegration (Eberhardt et al., 2005). In this respect a detailed structure-correlated study of the individual properties and the complex-forming driving factors is desired in order to sufficiently understand bisphosphonate physiological activity.
Several structures of NiII and Zn(II) aminoethylidenediphosphonates have been reported previously (Li et al. 2007). The main difference between these and the title compound is the presence of two water molecules instead of 1,10-phenanthroline in the coordination environment of the transition metal ion (Li et al. 2007).
The
of the title compound contains one molecule of the complex (Fig. 1). Two molecules of 1-aminoethylidenediphosphonic acid chelate the central metal ion via two oxygen atoms from phosphonic groups forming six membered non-planar metallocycles. Two water molecules situated in cis-positions complete the slightly distorted octahedral coordination environment of the NiII. The Ni—O bond lengths have expected values, which correlate with previously reported related structures (Li et al., 2007). The values of the contiguous O—Ni—O angles are in the range of 88.83 (6)° to 92.51 (5)°. The Ni1/O1/P1/C1/P2/O4 and Ni1/O7/P3/C3/P4/O10 metallocycles have envelope conformations with the C1 and C3 atoms 0.8544 (17) Å and 0.7957 (17) Å out of planes, respectively. The dihedral angle between planar fragments Ni1/O1/P1/P2/O4 and Ni1/O7/P3/P4/O10 equals 85.03 (3)°. The coordinated ligands exist in zwitterionic form with proton transfer from one of the phosphonic groups to the amino group, as found for all 1-aminodiphosphonic acids where the amino group does not participate in coordination (Dudko et al., 2009).The
of the title compound contains nine solvent water molecules, which interact with the two coordinated water molecules and the hydrophilic phosphonic groups. As a result, a 3-D network of mostly strong O—H···O and N—H···O H-bonds has been found in the structure (Fig. 2; Table 1).For general background to the use of organic diphosphonic acids, see: Matczak-Jon & Videnova-Adrabinska (2005). For applications of transition-metal bisphosphonates, see: Eberhardt et al. (2005). For related structures, see: Li et al. (2007); Dudko et al. (2009).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound showing the atom labelling scheme and 50% probability displacement ellipsoids for the non-hydrogen atoms. Solvent water molecules are omitted for clarity. | |
Fig. 2. Crystal packing of the title compound, projection along c axis. Dashed lines indicate hydrogen bonds. |
[Ni(C2H8NO6P2)2(H2O)2]·9H2O | F(000) = 1392 |
Mr = 664.95 | Dx = 1.779 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9144 reflections |
a = 15.1408 (3) Å | θ = 2.3–28.4° |
b = 13.1972 (3) Å | µ = 1.14 mm−1 |
c = 12.9344 (3) Å | T = 173 K |
β = 106.1689 (11)° | Block, light green |
V = 2482.27 (9) Å3 | 0.23 × 0.22 × 0.15 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 6235 independent reflections |
Radiation source: fine-focus sealed tube | 5333 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 8.33 pixels mm-1 | θmax = 28.4°, θmin = 1.4° |
φ and ω scans | h = −17→20 |
Absorption correction: numerical (SADABS; Bruker, 2005) | k = −15→17 |
Tmin = 0.778, Tmax = 0.850 | l = −17→17 |
48425 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.072 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0345P)2 + 1.5506P] where P = (Fo2 + 2Fc2)/3 |
6235 reflections | (Δ/σ)max = 0.001 |
415 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
[Ni(C2H8NO6P2)2(H2O)2]·9H2O | V = 2482.27 (9) Å3 |
Mr = 664.95 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.1408 (3) Å | µ = 1.14 mm−1 |
b = 13.1972 (3) Å | T = 173 K |
c = 12.9344 (3) Å | 0.23 × 0.22 × 0.15 mm |
β = 106.1689 (11)° |
Bruker APEXII CCD diffractometer | 6235 independent reflections |
Absorption correction: numerical (SADABS; Bruker, 2005) | 5333 reflections with I > 2σ(I) |
Tmin = 0.778, Tmax = 0.850 | Rint = 0.033 |
48425 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.072 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.50 e Å−3 |
6235 reflections | Δρmin = −0.37 e Å−3 |
415 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.254825 (15) | 0.506019 (16) | 0.523912 (16) | 0.01040 (6) | |
P1 | 0.39949 (3) | 0.31363 (3) | 0.57666 (3) | 0.01121 (10) | |
P2 | 0.37259 (3) | 0.41840 (3) | 0.35969 (3) | 0.01008 (9) | |
P3 | 0.06502 (3) | 0.41352 (3) | 0.36142 (3) | 0.01021 (9) | |
P4 | 0.09045 (3) | 0.64384 (3) | 0.36384 (3) | 0.01202 (10) | |
C1 | 0.36922 (12) | 0.29690 (12) | 0.42905 (13) | 0.0115 (3) | |
C2 | 0.43105 (13) | 0.21769 (14) | 0.39811 (14) | 0.0168 (4) | |
H1C | 0.4243 | 0.1528 | 0.4319 | 0.025* | |
H2C | 0.4953 | 0.2400 | 0.4229 | 0.025* | |
H3C | 0.4132 | 0.2096 | 0.3197 | 0.025* | |
C3 | 0.06373 (12) | 0.52864 (13) | 0.28050 (13) | 0.0119 (3) | |
C4 | −0.02889 (13) | 0.53922 (15) | 0.19427 (14) | 0.0179 (4) | |
H4C | −0.0284 | 0.6008 | 0.1520 | 0.027* | |
H5C | −0.0785 | 0.5436 | 0.2291 | 0.027* | |
H6C | −0.0388 | 0.4801 | 0.1466 | 0.027* | |
N1 | 0.27160 (11) | 0.25917 (12) | 0.39567 (12) | 0.0126 (3) | |
H1N | 0.2545 (15) | 0.2521 (17) | 0.3304 (19) | 0.019* | |
H2N | 0.2367 (16) | 0.2994 (18) | 0.4148 (18) | 0.019* | |
H3N | 0.2685 (15) | 0.2013 (18) | 0.4245 (17) | 0.019* | |
N2 | 0.13780 (11) | 0.51860 (12) | 0.22423 (12) | 0.0146 (3) | |
H4N | 0.1273 (15) | 0.4615 (18) | 0.1846 (18) | 0.022* | |
H5N | 0.1925 (17) | 0.5163 (17) | 0.269 (2) | 0.022* | |
H6N | 0.1398 (15) | 0.5704 (18) | 0.1835 (18) | 0.022* | |
O1 | 0.32986 (8) | 0.38339 (9) | 0.60142 (9) | 0.0134 (2) | |
O2 | 0.40603 (9) | 0.20946 (9) | 0.62466 (9) | 0.0160 (3) | |
O3 | 0.49780 (9) | 0.36086 (10) | 0.60780 (10) | 0.0170 (3) | |
H3O | 0.5017 (16) | 0.4180 (18) | 0.6090 (18) | 0.020* | |
O4 | 0.31223 (9) | 0.49330 (9) | 0.39539 (10) | 0.0134 (3) | |
O5 | 0.32244 (9) | 0.39486 (10) | 0.23893 (10) | 0.0153 (3) | |
H5O | 0.3493 (16) | 0.3661 (18) | 0.2144 (19) | 0.018* | |
O6 | 0.47117 (8) | 0.44797 (9) | 0.37730 (10) | 0.0159 (3) | |
O7 | 0.15774 (8) | 0.40580 (9) | 0.44333 (9) | 0.0129 (2) | |
O8 | 0.05982 (9) | 0.32515 (10) | 0.28082 (10) | 0.0168 (3) | |
H8O | 0.0131 (16) | 0.2986 (18) | 0.2607 (18) | 0.020* | |
O9 | −0.01636 (8) | 0.41774 (10) | 0.40575 (10) | 0.0156 (3) | |
O10 | 0.18139 (9) | 0.62792 (9) | 0.44657 (9) | 0.0152 (3) | |
O11 | 0.08907 (9) | 0.73164 (9) | 0.28909 (10) | 0.0166 (3) | |
O12 | 0.00776 (9) | 0.65624 (10) | 0.41202 (11) | 0.0176 (3) | |
H12O | 0.0136 (16) | 0.6311 (18) | 0.4639 (19) | 0.021* | |
O13 | 0.35399 (10) | 0.60034 (11) | 0.61432 (11) | 0.0191 (3) | |
H131 | 0.4115 (18) | 0.5931 (17) | 0.6123 (18) | 0.023* | |
H132 | 0.3421 (16) | 0.6536 (19) | 0.6076 (19) | 0.023* | |
O14 | 0.18989 (10) | 0.51133 (10) | 0.64265 (11) | 0.0165 (3) | |
H141 | 0.1422 (18) | 0.5294 (18) | 0.6272 (19) | 0.020* | |
H142 | 0.2110 (16) | 0.5442 (17) | 0.6965 (19) | 0.020* | |
O15 | 0.19397 (11) | 0.29225 (11) | 0.67872 (11) | 0.0218 (3) | |
H151 | 0.1539 (18) | 0.3253 (19) | 0.673 (2) | 0.026* | |
H152 | 0.2340 (17) | 0.3238 (18) | 0.6574 (19) | 0.026* | |
O16 | 0.10537 (12) | 0.37339 (13) | 0.06297 (12) | 0.0288 (3) | |
H161 | 0.1308 (18) | 0.317 (2) | 0.095 (2) | 0.035* | |
H162 | 0.1417 (19) | 0.393 (2) | 0.035 (2) | 0.035* | |
O17 | 0.24192 (11) | 0.06113 (11) | 0.46573 (12) | 0.0243 (3) | |
H171 | 0.2308 (18) | 0.0144 (19) | 0.423 (2) | 0.029* | |
H172 | 0.2931 (18) | 0.0380 (19) | 0.510 (2) | 0.029* | |
O18 | 0.22367 (11) | 0.61233 (12) | 0.83215 (12) | 0.0263 (3) | |
H181 | 0.2724 (18) | 0.6606 (19) | 0.8440 (19) | 0.032* | |
H182 | 0.1789 (18) | 0.652 (2) | 0.822 (2) | 0.032* | |
O19 | 0.55044 (11) | 0.07361 (13) | 0.64598 (13) | 0.0291 (3) | |
H191 | 0.5136 (19) | 0.118 (2) | 0.644 (2) | 0.035* | |
H192 | 0.5823 (18) | 0.0687 (19) | 0.711 (2) | 0.035* | |
O20 | 0.30635 (14) | 0.79284 (13) | 0.63636 (17) | 0.0427 (4) | |
H201 | 0.336 (2) | 0.851 (2) | 0.621 (2) | 0.051* | |
H202 | 0.332 (2) | 0.803 (2) | 0.707 (3) | 0.051* | |
O21 | 0.39921 (12) | −0.05323 (13) | 0.55580 (15) | 0.0333 (4) | |
H211 | 0.447 (2) | −0.024 (2) | 0.593 (2) | 0.040* | |
H212 | 0.4083 (19) | −0.069 (2) | 0.493 (2) | 0.040* | |
O22A | 0.67316 (15) | 0.28256 (16) | 0.6372 (3) | 0.0332 (10) | 0.863 (11) |
H221 | 0.613 (2) | 0.307 (2) | 0.616 (2) | 0.040* | |
H222 | 0.7072 (19) | 0.321 (2) | 0.607 (2) | 0.040* | |
O23A | 0.1136 (2) | 0.6434 (4) | 0.0445 (4) | 0.0398 (14) | 0.81 (2) |
H231 | 0.068 (2) | 0.671 (3) | 0.025 (3) | 0.048* | |
H232 | 0.162 (2) | 0.684 (2) | 0.063 (2) | 0.048* | |
O22B | 0.6571 (14) | 0.2621 (15) | 0.577 (2) | 0.058 (6)* | 0.137 (11) |
O23B | 0.1072 (11) | 0.6784 (17) | 0.0740 (16) | 0.045 (5)* | 0.19 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.00890 (11) | 0.01126 (11) | 0.01095 (10) | 0.00122 (8) | 0.00259 (8) | −0.00011 (7) |
P1 | 0.0109 (2) | 0.0114 (2) | 0.01128 (18) | 0.00152 (16) | 0.00294 (16) | 0.00155 (15) |
P2 | 0.0093 (2) | 0.0103 (2) | 0.01103 (18) | 0.00031 (16) | 0.00354 (15) | 0.00037 (14) |
P3 | 0.0084 (2) | 0.0113 (2) | 0.01100 (18) | −0.00023 (16) | 0.00281 (15) | −0.00083 (15) |
P4 | 0.0118 (2) | 0.0113 (2) | 0.01298 (19) | 0.00264 (16) | 0.00346 (16) | 0.00198 (15) |
C1 | 0.0107 (8) | 0.0114 (8) | 0.0126 (7) | 0.0006 (6) | 0.0035 (6) | 0.0004 (6) |
C2 | 0.0182 (9) | 0.0159 (9) | 0.0181 (8) | 0.0056 (7) | 0.0081 (7) | 0.0008 (6) |
C3 | 0.0098 (8) | 0.0147 (8) | 0.0120 (7) | 0.0008 (6) | 0.0043 (6) | 0.0007 (6) |
C4 | 0.0142 (9) | 0.0230 (9) | 0.0141 (8) | 0.0009 (7) | 0.0000 (7) | 0.0028 (7) |
N1 | 0.0126 (8) | 0.0116 (7) | 0.0140 (7) | −0.0005 (6) | 0.0041 (6) | −0.0004 (6) |
N2 | 0.0133 (8) | 0.0173 (8) | 0.0143 (7) | 0.0009 (6) | 0.0059 (6) | 0.0019 (6) |
O1 | 0.0137 (6) | 0.0150 (6) | 0.0122 (5) | 0.0035 (5) | 0.0045 (5) | 0.0013 (4) |
O2 | 0.0192 (7) | 0.0135 (6) | 0.0161 (6) | 0.0021 (5) | 0.0062 (5) | 0.0039 (5) |
O3 | 0.0121 (6) | 0.0152 (6) | 0.0219 (6) | −0.0008 (5) | 0.0016 (5) | 0.0000 (5) |
O4 | 0.0146 (6) | 0.0119 (6) | 0.0157 (6) | 0.0023 (5) | 0.0076 (5) | 0.0011 (4) |
O5 | 0.0159 (7) | 0.0181 (7) | 0.0121 (6) | 0.0019 (5) | 0.0043 (5) | −0.0010 (5) |
O6 | 0.0109 (6) | 0.0162 (6) | 0.0216 (6) | −0.0006 (5) | 0.0063 (5) | 0.0002 (5) |
O7 | 0.0108 (6) | 0.0111 (6) | 0.0152 (6) | 0.0000 (5) | 0.0008 (5) | 0.0004 (4) |
O8 | 0.0140 (7) | 0.0168 (6) | 0.0201 (6) | −0.0043 (5) | 0.0056 (5) | −0.0069 (5) |
O9 | 0.0106 (6) | 0.0205 (6) | 0.0175 (6) | 0.0024 (5) | 0.0067 (5) | 0.0021 (5) |
O10 | 0.0153 (6) | 0.0120 (6) | 0.0163 (6) | 0.0010 (5) | 0.0010 (5) | 0.0004 (4) |
O11 | 0.0160 (7) | 0.0148 (6) | 0.0191 (6) | 0.0028 (5) | 0.0053 (5) | 0.0064 (5) |
O12 | 0.0185 (7) | 0.0195 (7) | 0.0175 (6) | 0.0064 (5) | 0.0095 (5) | 0.0050 (5) |
O13 | 0.0123 (7) | 0.0156 (6) | 0.0281 (7) | 0.0001 (5) | 0.0035 (5) | −0.0060 (5) |
O14 | 0.0121 (7) | 0.0230 (7) | 0.0145 (6) | 0.0048 (5) | 0.0035 (5) | −0.0009 (5) |
O15 | 0.0212 (8) | 0.0214 (7) | 0.0235 (7) | 0.0042 (6) | 0.0076 (6) | 0.0070 (5) |
O16 | 0.0346 (9) | 0.0312 (8) | 0.0223 (7) | 0.0067 (7) | 0.0107 (6) | 0.0034 (6) |
O17 | 0.0247 (8) | 0.0186 (7) | 0.0265 (7) | −0.0006 (6) | 0.0018 (6) | 0.0005 (6) |
O18 | 0.0244 (8) | 0.0219 (7) | 0.0317 (8) | 0.0003 (6) | 0.0061 (6) | −0.0026 (6) |
O19 | 0.0262 (9) | 0.0312 (9) | 0.0286 (8) | 0.0084 (7) | 0.0058 (7) | −0.0019 (6) |
O20 | 0.0493 (12) | 0.0245 (9) | 0.0553 (11) | −0.0003 (8) | 0.0161 (9) | −0.0062 (8) |
O21 | 0.0259 (9) | 0.0301 (9) | 0.0413 (9) | 0.0024 (7) | 0.0051 (7) | −0.0056 (7) |
O22A | 0.0208 (12) | 0.0242 (11) | 0.058 (2) | 0.0042 (8) | 0.0156 (10) | 0.0154 (10) |
O23A | 0.0491 (18) | 0.038 (2) | 0.0339 (18) | 0.0057 (12) | 0.0146 (12) | 0.0157 (15) |
Ni1—O1 | 2.0689 (12) | N1—H3N | 0.86 (2) |
Ni1—O4 | 2.0861 (13) | N2—H4N | 0.90 (2) |
Ni1—O7 | 2.0355 (12) | N2—H5N | 0.87 (2) |
Ni1—O10 | 2.0508 (12) | N2—H6N | 0.87 (2) |
Ni1—O13 | 2.0477 (13) | O3—H3O | 0.76 (2) |
Ni1—O14 | 2.0424 (14) | O5—H5O | 0.69 (2) |
P1—O1 | 1.4999 (13) | O8—H8O | 0.77 (2) |
P1—O2 | 1.5003 (12) | O12—H12O | 0.73 (2) |
P1—O3 | 1.5596 (14) | O13—H131 | 0.88 (3) |
P1—C1 | 1.8484 (16) | O13—H132 | 0.72 (2) |
P2—O6 | 1.4976 (13) | O14—H141 | 0.73 (2) |
P2—O4 | 1.5035 (13) | O14—H142 | 0.81 (2) |
P2—O5 | 1.5660 (13) | O15—H151 | 0.73 (3) |
P2—C1 | 1.8449 (17) | O15—H152 | 0.84 (3) |
P3—O9 | 1.4978 (13) | O16—H161 | 0.88 (3) |
P3—O7 | 1.5085 (12) | O16—H162 | 0.78 (3) |
P3—O8 | 1.5515 (13) | O17—H171 | 0.81 (3) |
P3—C3 | 1.8419 (17) | O17—H172 | 0.88 (3) |
P4—O10 | 1.5048 (12) | O18—H181 | 0.95 (3) |
P4—O11 | 1.5056 (12) | O18—H182 | 0.83 (3) |
P4—O12 | 1.5547 (14) | O19—H191 | 0.81 (3) |
P4—C3 | 1.8423 (17) | O19—H192 | 0.85 (3) |
C1—N1 | 1.505 (2) | O20—H201 | 0.94 (3) |
C1—C2 | 1.529 (2) | O20—H202 | 0.90 (3) |
C2—H1C | 0.9800 | O21—H211 | 0.85 (3) |
C2—H2C | 0.9800 | O21—H212 | 0.88 (3) |
C2—H3C | 0.9800 | O22A—H221 | 0.94 (3) |
C3—N2 | 1.503 (2) | O22A—H222 | 0.89 (3) |
C3—C4 | 1.536 (2) | O23A—H231 | 0.76 (3) |
C4—H4C | 0.9800 | O23A—H232 | 0.89 (3) |
C4—H5C | 0.9800 | O22B—H221 | 1.12 (3) |
C4—H6C | 0.9800 | O22B—H222 | 1.08 (3) |
N1—H1N | 0.82 (2) | O23B—H231 | 0.75 (3) |
N1—H2N | 0.83 (2) | O23B—H232 | 0.88 (3) |
O1—Ni1—O4 | 91.65 (5) | H2C—C2—H3C | 109.5 |
O7—Ni1—O10 | 92.51 (5) | N2—C3—C4 | 108.05 (14) |
O14—Ni1—O13 | 88.83 (6) | N2—C3—P3 | 108.13 (11) |
O7—Ni1—O14 | 88.69 (5) | C4—C3—P3 | 110.53 (12) |
O7—Ni1—O13 | 175.95 (5) | N2—C3—P4 | 106.51 (12) |
O14—Ni1—O10 | 91.76 (5) | C4—C3—P4 | 110.93 (12) |
O13—Ni1—O10 | 90.77 (5) | P3—C3—P4 | 112.48 (9) |
O7—Ni1—O1 | 87.74 (5) | C3—C4—H4C | 109.5 |
O14—Ni1—O1 | 88.67 (5) | C3—C4—H5C | 109.5 |
O13—Ni1—O1 | 88.99 (5) | H4C—C4—H5C | 109.5 |
O10—Ni1—O1 | 179.50 (5) | C3—C4—H6C | 109.5 |
O7—Ni1—O4 | 86.64 (5) | H4C—C4—H6C | 109.5 |
O14—Ni1—O4 | 175.30 (5) | H5C—C4—H6C | 109.5 |
O13—Ni1—O4 | 95.86 (5) | C1—N1—H1N | 109.7 (16) |
O10—Ni1—O4 | 87.94 (5) | C1—N1—H2N | 110.9 (15) |
O1—P1—O2 | 116.32 (7) | H1N—N1—H2N | 110 (2) |
O1—P1—O3 | 112.12 (7) | C1—N1—H3N | 109.8 (14) |
O2—P1—O3 | 108.12 (7) | H1N—N1—H3N | 108 (2) |
O1—P1—C1 | 107.88 (7) | H2N—N1—H3N | 109 (2) |
O2—P1—C1 | 106.67 (7) | C3—N2—H4N | 108.2 (15) |
O3—P1—C1 | 105.00 (8) | C3—N2—H5N | 112.4 (16) |
O6—P2—O4 | 116.57 (7) | H4N—N2—H5N | 109 (2) |
O6—P2—O5 | 112.91 (8) | C3—N2—H6N | 112.4 (15) |
O4—P2—O5 | 105.62 (7) | H4N—N2—H6N | 110 (2) |
O6—P2—C1 | 108.30 (8) | H5N—N2—H6N | 104 (2) |
O4—P2—C1 | 108.70 (8) | P1—O1—Ni1 | 134.46 (7) |
O5—P2—C1 | 103.96 (7) | P1—O3—H3O | 117.9 (18) |
O9—P3—O7 | 115.95 (7) | P2—O4—Ni1 | 136.17 (7) |
O9—P3—O8 | 113.07 (8) | P2—O5—H5O | 112.4 (19) |
O7—P3—O8 | 106.51 (7) | P3—O7—Ni1 | 135.55 (7) |
O9—P3—C3 | 107.89 (8) | P3—O8—H8O | 116.2 (18) |
O7—P3—C3 | 108.38 (7) | P4—O10—Ni1 | 136.12 (8) |
O8—P3—C3 | 104.34 (7) | P4—O12—H12O | 114.5 (19) |
O10—P4—O11 | 114.22 (7) | Ni1—O13—H131 | 119.3 (15) |
O10—P4—O12 | 114.15 (7) | Ni1—O13—H132 | 113.7 (19) |
O11—P4—O12 | 107.92 (7) | H131—O13—H132 | 108 (2) |
O10—P4—C3 | 108.02 (7) | Ni1—O14—H141 | 116.7 (19) |
O11—P4—C3 | 107.33 (7) | Ni1—O14—H142 | 120.6 (17) |
O12—P4—C3 | 104.55 (8) | H141—O14—H142 | 101 (2) |
N1—C1—C2 | 108.83 (14) | H151—O15—H152 | 109 (3) |
N1—C1—P2 | 107.83 (11) | H161—O16—H162 | 102 (3) |
C2—C1—P2 | 111.41 (12) | H171—O17—H172 | 99 (2) |
N1—C1—P1 | 106.09 (11) | H181—O18—H182 | 100 (2) |
C2—C1—P1 | 110.99 (11) | H191—O19—H192 | 106 (3) |
P2—C1—P1 | 111.47 (9) | H201—O20—H202 | 90 (2) |
C1—C2—H1C | 109.5 | H211—O21—H212 | 108 (3) |
C1—C2—H2C | 109.5 | H221—O22A—H222 | 108 (2) |
H1C—C2—H2C | 109.5 | H231—O23A—H232 | 115 (3) |
C1—C2—H3C | 109.5 | H221—O22B—H222 | 85 (3) |
H1C—C2—H3C | 109.5 | H231—O23B—H232 | 117 (4) |
O6—P2—C1—N1 | −170.58 (11) | O12—P4—C3—C4 | 57.74 (14) |
O4—P2—C1—N1 | 61.89 (12) | O10—P4—C3—P3 | 55.30 (11) |
O5—P2—C1—N1 | −50.27 (13) | O11—P4—C3—P3 | 178.91 (9) |
O6—P2—C1—C2 | −51.23 (13) | O12—P4—C3—P3 | −66.64 (10) |
O4—P2—C1—C2 | −178.76 (11) | O2—P1—O1—Ni1 | −153.15 (9) |
O5—P2—C1—C2 | 69.08 (13) | O3—P1—O1—Ni1 | 81.70 (11) |
O6—P2—C1—P1 | 73.36 (10) | C1—P1—O1—Ni1 | −33.43 (12) |
O4—P2—C1—P1 | −54.17 (11) | O7—Ni1—O1—P1 | 87.56 (11) |
O5—P2—C1—P1 | −166.33 (9) | O14—Ni1—O1—P1 | 176.31 (11) |
O1—P1—C1—N1 | −55.84 (12) | O13—Ni1—O1—P1 | −94.84 (11) |
O2—P1—C1—N1 | 69.81 (12) | O4—Ni1—O1—P1 | 1.00 (11) |
O3—P1—C1—N1 | −175.58 (11) | O6—P2—O4—Ni1 | −104.40 (11) |
O1—P1—C1—C2 | −173.91 (12) | O5—P2—O4—Ni1 | 129.32 (11) |
O2—P1—C1—C2 | −48.25 (14) | C1—P2—O4—Ni1 | 18.27 (13) |
O3—P1—C1—C2 | 66.35 (14) | O7—Ni1—O4—P2 | −79.32 (11) |
O1—P1—C1—P2 | 61.27 (11) | O13—Ni1—O4—P2 | 97.48 (11) |
O2—P1—C1—P2 | −173.07 (8) | O10—Ni1—O4—P2 | −171.96 (11) |
O3—P1—C1—P2 | −58.47 (11) | O1—Ni1—O4—P2 | 8.33 (11) |
O9—P3—C3—N2 | −172.77 (11) | O9—P3—O7—Ni1 | −91.92 (12) |
O7—P3—C3—N2 | 60.95 (12) | O8—P3—O7—Ni1 | 141.28 (10) |
O8—P3—C3—N2 | −52.26 (12) | C3—P3—O7—Ni1 | 29.52 (13) |
O9—P3—C3—C4 | −54.68 (14) | O14—Ni1—O7—P3 | 89.45 (11) |
O7—P3—C3—C4 | 179.03 (12) | O10—Ni1—O7—P3 | −2.25 (11) |
O8—P3—C3—C4 | 65.82 (14) | O1—Ni1—O7—P3 | 178.18 (11) |
O9—P3—C3—P4 | 69.91 (10) | O4—Ni1—O7—P3 | −90.04 (11) |
O7—P3—C3—P4 | −56.38 (11) | O11—P4—O10—Ni1 | −146.97 (10) |
O8—P3—C3—P4 | −169.59 (9) | O12—P4—O10—Ni1 | 88.17 (12) |
O10—P4—C3—N2 | −62.98 (12) | C3—P4—O10—Ni1 | −27.64 (13) |
O11—P4—C3—N2 | 60.62 (12) | O7—Ni1—O10—P4 | 1.17 (12) |
O12—P4—C3—N2 | 175.08 (10) | O14—Ni1—O10—P4 | −87.60 (12) |
O10—P4—C3—C4 | 179.67 (12) | O13—Ni1—O10—P4 | −176.46 (12) |
O11—P4—C3—C4 | −56.72 (14) | O4—Ni1—O10—P4 | 87.71 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O15i | 0.82 (2) | 2.01 (2) | 2.807 (2) | 166 (2) |
N1—H2N···O7 | 0.83 (2) | 1.95 (2) | 2.773 (2) | 172 (2) |
N1—H3N···O17 | 0.86 (2) | 2.00 (2) | 2.843 (2) | 169 (2) |
N2—H4N···O16 | 0.90 (2) | 1.91 (2) | 2.774 (2) | 160 (2) |
N2—H5N···O4 | 0.87 (2) | 2.10 (3) | 2.955 (2) | 169 (2) |
N2—H6N···O23A | 0.87 (2) | 1.98 (2) | 2.789 (3) | 154 (2) |
O3—H3O···O6ii | 0.76 (2) | 1.81 (2) | 2.5637 (18) | 172 (2) |
O5—H5O···O2i | 0.69 (2) | 1.91 (2) | 2.5930 (18) | 170 (3) |
O8—H8O···O11iii | 0.77 (2) | 1.74 (2) | 2.5075 (18) | 176 (3) |
O12—H12O···O9iv | 0.73 (2) | 1.79 (2) | 2.5209 (18) | 172 (3) |
O13—H131···O6ii | 0.88 (3) | 1.83 (3) | 2.696 (2) | 167 (2) |
O13—H132···O20 | 0.72 (2) | 1.98 (3) | 2.678 (2) | 162 (3) |
O14—H141···O9iv | 0.73 (2) | 1.96 (3) | 2.6936 (19) | 176 (3) |
O14—H142···O18 | 0.81 (2) | 1.93 (2) | 2.711 (2) | 162 (2) |
O15—H151···O12iv | 0.73 (3) | 2.40 (3) | 3.029 (2) | 145 (2) |
O15—H152···O1 | 0.84 (3) | 1.96 (3) | 2.797 (2) | 174 (2) |
O16—H161···O15i | 0.88 (3) | 1.90 (3) | 2.775 (2) | 172 (2) |
O16—H162···O17i | 0.78 (3) | 2.06 (3) | 2.838 (2) | 177 (3) |
O17—H171···O18i | 0.81 (3) | 2.03 (3) | 2.835 (2) | 170 (3) |
O17—H172···O21 | 0.88 (3) | 1.96 (3) | 2.786 (2) | 155 (2) |
O18—H181···O22Av | 0.95 (3) | 1.79 (3) | 2.702 (2) | 158 (2) |
O18—H182···O11vi | 0.83 (3) | 2.02 (3) | 2.841 (2) | 168 (2) |
O19—H191···O2 | 0.81 (3) | 1.98 (3) | 2.781 (2) | 169 (3) |
O19—H192···O13vii | 0.85 (3) | 2.23 (3) | 3.055 (2) | 163 (2) |
O20—H201···O21viii | 0.94 (3) | 1.91 (3) | 2.829 (3) | 164 (3) |
O20—H202···O22Av | 0.90 (3) | 2.05 (3) | 2.861 (4) | 149 (3) |
O21—H211···O19 | 0.85 (3) | 1.99 (3) | 2.814 (2) | 163 (3) |
O21—H212···O19ix | 0.88 (3) | 2.06 (3) | 2.928 (3) | 166 (3) |
O22A—H221···O3 | 0.94 (3) | 1.86 (3) | 2.775 (2) | 167 (3) |
O22A—H222···O10ii | 0.89 (3) | 2.10 (3) | 2.958 (3) | 161 (2) |
O23A—H231···O16x | 0.76 (3) | 2.62 (3) | 3.225 (4) | 139 (3) |
O23A—H232···O20xi | 0.89 (3) | 2.14 (3) | 2.951 (4) | 150 (3) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) −x, y−1/2, −z+1/2; (iv) −x, −y+1, −z+1; (v) −x+1, y+1/2, −z+3/2; (vi) x, −y+3/2, z+1/2; (vii) −x+1, y−1/2, −z+3/2; (viii) x, y+1, z; (ix) −x+1, −y, −z+1; (x) −x, −y+1, −z; (xi) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C2H8NO6P2)2(H2O)2]·9H2O |
Mr | 664.95 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 15.1408 (3), 13.1972 (3), 12.9344 (3) |
β (°) | 106.1689 (11) |
V (Å3) | 2482.27 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.14 |
Crystal size (mm) | 0.23 × 0.22 × 0.15 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Numerical (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.778, 0.850 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 48425, 6235, 5333 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.670 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.072, 1.07 |
No. of reflections | 6235 |
No. of parameters | 415 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.50, −0.37 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O15i | 0.82 (2) | 2.01 (2) | 2.807 (2) | 166 (2) |
N1—H2N···O7 | 0.83 (2) | 1.95 (2) | 2.773 (2) | 172 (2) |
N1—H3N···O17 | 0.86 (2) | 2.00 (2) | 2.843 (2) | 169 (2) |
N2—H4N···O16 | 0.90 (2) | 1.91 (2) | 2.774 (2) | 160 (2) |
N2—H5N···O4 | 0.87 (2) | 2.10 (3) | 2.955 (2) | 169 (2) |
N2—H6N···O23A | 0.87 (2) | 1.98 (2) | 2.789 (3) | 154 (2) |
O3—H3O···O6ii | 0.76 (2) | 1.81 (2) | 2.5637 (18) | 172 (2) |
O5—H5O···O2i | 0.69 (2) | 1.91 (2) | 2.5930 (18) | 170 (3) |
O8—H8O···O11iii | 0.77 (2) | 1.74 (2) | 2.5075 (18) | 176 (3) |
O12—H12O···O9iv | 0.73 (2) | 1.79 (2) | 2.5209 (18) | 172 (3) |
O13—H131···O6ii | 0.88 (3) | 1.83 (3) | 2.696 (2) | 167 (2) |
O13—H132···O20 | 0.72 (2) | 1.98 (3) | 2.678 (2) | 162 (3) |
O14—H141···O9iv | 0.73 (2) | 1.96 (3) | 2.6936 (19) | 176 (3) |
O14—H142···O18 | 0.81 (2) | 1.93 (2) | 2.711 (2) | 162 (2) |
O15—H151···O12iv | 0.73 (3) | 2.40 (3) | 3.029 (2) | 145 (2) |
O15—H152···O1 | 0.84 (3) | 1.96 (3) | 2.797 (2) | 174 (2) |
O16—H161···O15i | 0.88 (3) | 1.90 (3) | 2.775 (2) | 172 (2) |
O16—H162···O17i | 0.78 (3) | 2.06 (3) | 2.838 (2) | 177 (3) |
O17—H171···O18i | 0.81 (3) | 2.03 (3) | 2.835 (2) | 170 (3) |
O17—H172···O21 | 0.88 (3) | 1.96 (3) | 2.786 (2) | 155 (2) |
O18—H181···O22Av | 0.95 (3) | 1.79 (3) | 2.702 (2) | 158 (2) |
O18—H182···O11vi | 0.83 (3) | 2.02 (3) | 2.841 (2) | 168 (2) |
O19—H191···O2 | 0.81 (3) | 1.98 (3) | 2.781 (2) | 169 (3) |
O19—H192···O13vii | 0.85 (3) | 2.23 (3) | 3.055 (2) | 163 (2) |
O20—H201···O21viii | 0.94 (3) | 1.91 (3) | 2.829 (3) | 164 (3) |
O20—H202···O22Av | 0.90 (3) | 2.05 (3) | 2.861 (4) | 149 (3) |
O21—H211···O19 | 0.85 (3) | 1.99 (3) | 2.814 (2) | 163 (3) |
O21—H212···O19ix | 0.88 (3) | 2.06 (3) | 2.928 (3) | 166 (3) |
O22A—H221···O3 | 0.94 (3) | 1.86 (3) | 2.775 (2) | 167 (3) |
O22A—H222···O10ii | 0.89 (3) | 2.10 (3) | 2.958 (3) | 161 (2) |
O23A—H231···O16x | 0.76 (3) | 2.62 (3) | 3.225 (4) | 139 (3) |
O23A—H232···O20xi | 0.89 (3) | 2.14 (3) | 2.951 (4) | 150 (3) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) −x, y−1/2, −z+1/2; (iv) −x, −y+1, −z+1; (v) −x+1, y+1/2, −z+3/2; (vi) x, −y+3/2, z+1/2; (vii) −x+1, y−1/2, −z+3/2; (viii) x, y+1, z; (ix) −x+1, −y, −z+1; (x) −x, −y+1, −z; (xi) x, −y+3/2, z−1/2. |
References
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dudko, A., Bon, V., Kozachkova, A. & Pekhnyo, V. (2009). Acta Cryst. E65, m459. Web of Science CSD CrossRef IUCr Journals Google Scholar
Eberhardt, C., Schwarz, M. & Kurth, A. H. (2005). J. Orthop. Sci. 10, 622–626. Web of Science CrossRef PubMed CAS Google Scholar
Li, M., Xiang, J., Wu, S., Chen, S., Yuan, L., Li, H., He, H. & Sun, J. (2007). J. Mol. Struct. 840, 119–124. Web of Science CSD CrossRef CAS Google Scholar
Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs for preventing calcification and inhibiting bone resorption (Matczak-Jon & Videnova-Adrabinska, 2005). There is evidence that application of transition metal bisphosphonates can improve fixation of cementless metal implants by enhancing the extent of osseointegration (Eberhardt et al., 2005). In this respect a detailed structure-correlated study of the individual properties and the complex-forming driving factors is desired in order to sufficiently understand bisphosphonate physiological activity.
Several structures of NiII and Zn(II) aminoethylidenediphosphonates have been reported previously (Li et al. 2007). The main difference between these and the title compound is the presence of two water molecules instead of 1,10-phenanthroline in the coordination environment of the transition metal ion (Li et al. 2007).
The asymmetric unit of the title compound contains one molecule of the complex (Fig. 1). Two molecules of 1-aminoethylidenediphosphonic acid chelate the central metal ion via two oxygen atoms from phosphonic groups forming six membered non-planar metallocycles. Two water molecules situated in cis-positions complete the slightly distorted octahedral coordination environment of the NiII. The Ni—O bond lengths have expected values, which correlate with previously reported related structures (Li et al., 2007). The values of the contiguous O—Ni—O angles are in the range of 88.83 (6)° to 92.51 (5)°. The Ni1/O1/P1/C1/P2/O4 and Ni1/O7/P3/C3/P4/O10 metallocycles have envelope conformations with the C1 and C3 atoms 0.8544 (17) Å and 0.7957 (17) Å out of planes, respectively. The dihedral angle between planar fragments Ni1/O1/P1/P2/O4 and Ni1/O7/P3/P4/O10 equals 85.03 (3)°. The coordinated ligands exist in zwitterionic form with proton transfer from one of the phosphonic groups to the amino group, as found for all 1-aminodiphosphonic acids where the amino group does not participate in coordination (Dudko et al., 2009).
The crystal structure of the title compound contains nine solvent water molecules, which interact with the two coordinated water molecules and the hydrophilic phosphonic groups. As a result, a 3-D network of mostly strong O—H···O and N—H···O H-bonds has been found in the structure (Fig. 2; Table 1).