metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(1-ammonio­ethane-1,1-di­yl)di­phospho­nato-κ2O,O′]di­aqua­nickel(II) nona­hydrate

aInstitute of General and Inorganic Chemistry, NAS Ukraine, Kyiv, prosp. Palladina 32/34, 03680, Ukraine
*Correspondence e-mail: complex@ionc.kiev.ua

(Received 7 April 2010; accepted 26 April 2010; online 30 April 2010)

The title compound, [Ni(C2H8NO6P2)2(H2O)2]·9H2O, exhibits a slightly distorted octa­hedral coordination environment around the NiII atom. It contains two mol­ecules of 1-amino­­ethyl­idenediphospho­nic acid in the zwitterionic form, coord­inated via O atoms from two phospho­nate groups and creating two six-membered chelate rings. Two water mol­ecules in cis positions complete the coordination environment of the NiII atom. The title compound contains nine partly disordered solvent water mol­ecules, which create a three-dimensional network of strong O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For general background to the use of organic diphospho­nic acids, see: Matczak-Jon & Videnova-Adrabinska (2005[Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458-2488.]). For applications of transition-metal bis­phospho­nates, see: Eberhardt et al. (2005[Eberhardt, C., Schwarz, M. & Kurth, A. H. (2005). J. Orthop. Sci. 10, 622-626.]). For related structures, see: Li et al. (2007[Li, M., Xiang, J., Wu, S., Chen, S., Yuan, L., Li, H., He, H. & Sun, J. (2007). J. Mol. Struct. 840, 119-124.]); Dudko et al. (2009[Dudko, A., Bon, V., Kozachkova, A. & Pekhnyo, V. (2009). Acta Cryst. E65, m459.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H8NO6P2)2(H2O)2]·9H2O

  • Mr = 664.95

  • Monoclinic, P 21 /c

  • a = 15.1408 (3) Å

  • b = 13.1972 (3) Å

  • c = 12.9344 (3) Å

  • β = 106.1689 (11)°

  • V = 2482.27 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 173 K

  • 0.23 × 0.22 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.778, Tmax = 0.850

  • 48425 measured reflections

  • 6235 independent reflections

  • 5333 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.07

  • 6235 reflections

  • 415 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O15i 0.82 (2) 2.01 (2) 2.807 (2) 166 (2)
N1—H2N⋯O7 0.83 (2) 1.95 (2) 2.773 (2) 172 (2)
N1—H3N⋯O17 0.86 (2) 2.00 (2) 2.843 (2) 169 (2)
N2—H4N⋯O16 0.90 (2) 1.91 (2) 2.774 (2) 160 (2)
N2—H5N⋯O4 0.87 (2) 2.10 (3) 2.955 (2) 169 (2)
N2—H6N⋯O23A 0.87 (2) 1.98 (2) 2.789 (3) 154 (2)
O3—H3O⋯O6ii 0.76 (2) 1.81 (2) 2.5637 (18) 172 (2)
O5—H5O⋯O2i 0.69 (2) 1.91 (2) 2.5930 (18) 170 (3)
O8—H8O⋯O11iii 0.77 (2) 1.74 (2) 2.5075 (18) 176 (3)
O12—H12O⋯O9iv 0.73 (2) 1.79 (2) 2.5209 (18) 172 (3)
O13—H131⋯O6ii 0.88 (3) 1.83 (3) 2.696 (2) 167 (2)
O13—H132⋯O20 0.72 (2) 1.98 (3) 2.678 (2) 162 (3)
O14—H141⋯O9iv 0.73 (2) 1.96 (3) 2.6936 (19) 176 (3)
O14—H142⋯O18 0.81 (2) 1.93 (2) 2.711 (2) 162 (2)
O15—H151⋯O12iv 0.73 (3) 2.40 (3) 3.029 (2) 145 (2)
O15—H152⋯O1 0.84 (3) 1.96 (3) 2.797 (2) 174 (2)
O16—H161⋯O15i 0.88 (3) 1.90 (3) 2.775 (2) 172 (2)
O16—H162⋯O17i 0.78 (3) 2.06 (3) 2.838 (2) 177 (3)
O17—H171⋯O18i 0.81 (3) 2.03 (3) 2.835 (2) 170 (3)
O17—H172⋯O21 0.88 (3) 1.96 (3) 2.786 (2) 155 (2)
O18—H181⋯O22Av 0.95 (3) 1.79 (3) 2.702 (2) 158 (2)
O18—H182⋯O11vi 0.83 (3) 2.02 (3) 2.841 (2) 168 (2)
O19—H191⋯O2 0.81 (3) 1.98 (3) 2.781 (2) 169 (3)
O19—H192⋯O13vii 0.85 (3) 2.23 (3) 3.055 (2) 163 (2)
O20—H201⋯O21viii 0.94 (3) 1.91 (3) 2.829 (3) 164 (3)
O20—H202⋯O22Av 0.90 (3) 2.05 (3) 2.861 (4) 149 (3)
O21—H211⋯O19 0.85 (3) 1.99 (3) 2.814 (2) 163 (3)
O21—H212⋯O19ix 0.88 (3) 2.06 (3) 2.928 (3) 166 (3)
O22A—H221⋯O3 0.94 (3) 1.86 (3) 2.775 (2) 167 (3)
O22A—H222⋯O10ii 0.89 (3) 2.10 (3) 2.958 (3) 161 (2)
O23A—H231⋯O16x 0.76 (3) 2.62 (3) 3.225 (4) 139 (3)
O23A—H232⋯O20xi 0.89 (3) 2.14 (3) 2.951 (4) 150 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z+1; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (viii) x, y+1, z; (ix) -x+1, -y, -z+1; (x) -x, -y+1, -z; (xi) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs for preventing calcification and inhibiting bone resorption (Matczak-Jon & Videnova-Adrabinska, 2005). There is evidence that application of transition metal bisphosphonates can improve fixation of cementless metal implants by enhancing the extent of osseointegration (Eberhardt et al., 2005). In this respect a detailed structure-correlated study of the individual properties and the complex-forming driving factors is desired in order to sufficiently understand bisphosphonate physiological activity.

Several structures of NiII and Zn(II) aminoethylidenediphosphonates have been reported previously (Li et al. 2007). The main difference between these and the title compound is the presence of two water molecules instead of 1,10-phenanthroline in the coordination environment of the transition metal ion (Li et al. 2007).

The asymmetric unit of the title compound contains one molecule of the complex (Fig. 1). Two molecules of 1-aminoethylidenediphosphonic acid chelate the central metal ion via two oxygen atoms from phosphonic groups forming six membered non-planar metallocycles. Two water molecules situated in cis-positions complete the slightly distorted octahedral coordination environment of the NiII. The Ni—O bond lengths have expected values, which correlate with previously reported related structures (Li et al., 2007). The values of the contiguous O—Ni—O angles are in the range of 88.83 (6)° to 92.51 (5)°. The Ni1/O1/P1/C1/P2/O4 and Ni1/O7/P3/C3/P4/O10 metallocycles have envelope conformations with the C1 and C3 atoms 0.8544 (17) Å and 0.7957 (17) Å out of planes, respectively. The dihedral angle between planar fragments Ni1/O1/P1/P2/O4 and Ni1/O7/P3/P4/O10 equals 85.03 (3)°. The coordinated ligands exist in zwitterionic form with proton transfer from one of the phosphonic groups to the amino group, as found for all 1-aminodiphosphonic acids where the amino group does not participate in coordination (Dudko et al., 2009).

The crystal structure of the title compound contains nine solvent water molecules, which interact with the two coordinated water molecules and the hydrophilic phosphonic groups. As a result, a 3-D network of mostly strong O—H···O and N—H···O H-bonds has been found in the structure (Fig. 2; Table 1).

Related literature top

For general background to the use of organic diphosphonic acids, see: Matczak-Jon & Videnova-Adrabinska (2005). For applications of transition-metal bisphosphonates, see: Eberhardt et al. (2005). For related structures, see: Li et al. (2007); Dudko et al. (2009).

Experimental top

Light green crystals of the title compound were obtained from a mixture of 10 ml (10 -2 mol/l) of a water solution of Ni(NO3)2 with a 20 ml (10 -2 mol/l) solution of 1-aminoethylidenediphosphonic acid. The resultant solution was stored in a dark place for slow evaporation. After the 20 days suitable crystals for X-ray data collection were obtained.

Refinement top

The refinement of the structure showed two disordered water molecules. O atoms O22 and O23 were split over two sites with occupancies 0.86/0.14 and 0.81/0.19 respectively. The positions with smaller occupancies were both refined isotropically. Hydrogen atoms were found from difference map only for sites with greater occupancy of disordered atom. H atoms bonded to N and O were located in a difference map and refined with Uiso(H) = 1.5Ueq(N) and Uiso(H) = 1.2Ueq(O) respectively. Methyl hydrogens were geometrically constrained and refined using a riding model with C—H = 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)].

Structure description top

Organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs for preventing calcification and inhibiting bone resorption (Matczak-Jon & Videnova-Adrabinska, 2005). There is evidence that application of transition metal bisphosphonates can improve fixation of cementless metal implants by enhancing the extent of osseointegration (Eberhardt et al., 2005). In this respect a detailed structure-correlated study of the individual properties and the complex-forming driving factors is desired in order to sufficiently understand bisphosphonate physiological activity.

Several structures of NiII and Zn(II) aminoethylidenediphosphonates have been reported previously (Li et al. 2007). The main difference between these and the title compound is the presence of two water molecules instead of 1,10-phenanthroline in the coordination environment of the transition metal ion (Li et al. 2007).

The asymmetric unit of the title compound contains one molecule of the complex (Fig. 1). Two molecules of 1-aminoethylidenediphosphonic acid chelate the central metal ion via two oxygen atoms from phosphonic groups forming six membered non-planar metallocycles. Two water molecules situated in cis-positions complete the slightly distorted octahedral coordination environment of the NiII. The Ni—O bond lengths have expected values, which correlate with previously reported related structures (Li et al., 2007). The values of the contiguous O—Ni—O angles are in the range of 88.83 (6)° to 92.51 (5)°. The Ni1/O1/P1/C1/P2/O4 and Ni1/O7/P3/C3/P4/O10 metallocycles have envelope conformations with the C1 and C3 atoms 0.8544 (17) Å and 0.7957 (17) Å out of planes, respectively. The dihedral angle between planar fragments Ni1/O1/P1/P2/O4 and Ni1/O7/P3/P4/O10 equals 85.03 (3)°. The coordinated ligands exist in zwitterionic form with proton transfer from one of the phosphonic groups to the amino group, as found for all 1-aminodiphosphonic acids where the amino group does not participate in coordination (Dudko et al., 2009).

The crystal structure of the title compound contains nine solvent water molecules, which interact with the two coordinated water molecules and the hydrophilic phosphonic groups. As a result, a 3-D network of mostly strong O—H···O and N—H···O H-bonds has been found in the structure (Fig. 2; Table 1).

For general background to the use of organic diphosphonic acids, see: Matczak-Jon & Videnova-Adrabinska (2005). For applications of transition-metal bisphosphonates, see: Eberhardt et al. (2005). For related structures, see: Li et al. (2007); Dudko et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom labelling scheme and 50% probability displacement ellipsoids for the non-hydrogen atoms. Solvent water molecules are omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound, projection along c axis. Dashed lines indicate hydrogen bonds.
Bis[(1-ammonioethane-1,1-diyl)diphosphonato- κ2O,O']diaquanickel(II) nonahydrate top
Crystal data top
[Ni(C2H8NO6P2)2(H2O)2]·9H2OF(000) = 1392
Mr = 664.95Dx = 1.779 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9144 reflections
a = 15.1408 (3) Åθ = 2.3–28.4°
b = 13.1972 (3) ŵ = 1.14 mm1
c = 12.9344 (3) ÅT = 173 K
β = 106.1689 (11)°Block, light green
V = 2482.27 (9) Å30.23 × 0.22 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6235 independent reflections
Radiation source: fine-focus sealed tube5333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.33 pixels mm-1θmax = 28.4°, θmin = 1.4°
φ and ω scansh = 1720
Absorption correction: numerical
(SADABS; Bruker, 2005)
k = 1517
Tmin = 0.778, Tmax = 0.850l = 1717
48425 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0345P)2 + 1.5506P]
where P = (Fo2 + 2Fc2)/3
6235 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ni(C2H8NO6P2)2(H2O)2]·9H2OV = 2482.27 (9) Å3
Mr = 664.95Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.1408 (3) ŵ = 1.14 mm1
b = 13.1972 (3) ÅT = 173 K
c = 12.9344 (3) Å0.23 × 0.22 × 0.15 mm
β = 106.1689 (11)°
Data collection top
Bruker APEXII CCD
diffractometer
6235 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2005)
5333 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.850Rint = 0.033
48425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.50 e Å3
6235 reflectionsΔρmin = 0.37 e Å3
415 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.254825 (15)0.506019 (16)0.523912 (16)0.01040 (6)
P10.39949 (3)0.31363 (3)0.57666 (3)0.01121 (10)
P20.37259 (3)0.41840 (3)0.35969 (3)0.01008 (9)
P30.06502 (3)0.41352 (3)0.36142 (3)0.01021 (9)
P40.09045 (3)0.64384 (3)0.36384 (3)0.01202 (10)
C10.36922 (12)0.29690 (12)0.42905 (13)0.0115 (3)
C20.43105 (13)0.21769 (14)0.39811 (14)0.0168 (4)
H1C0.42430.15280.43190.025*
H2C0.49530.24000.42290.025*
H3C0.41320.20960.31970.025*
C30.06373 (12)0.52864 (13)0.28050 (13)0.0119 (3)
C40.02889 (13)0.53922 (15)0.19427 (14)0.0179 (4)
H4C0.02840.60080.15200.027*
H5C0.07850.54360.22910.027*
H6C0.03880.48010.14660.027*
N10.27160 (11)0.25917 (12)0.39567 (12)0.0126 (3)
H1N0.2545 (15)0.2521 (17)0.3304 (19)0.019*
H2N0.2367 (16)0.2994 (18)0.4148 (18)0.019*
H3N0.2685 (15)0.2013 (18)0.4245 (17)0.019*
N20.13780 (11)0.51860 (12)0.22423 (12)0.0146 (3)
H4N0.1273 (15)0.4615 (18)0.1846 (18)0.022*
H5N0.1925 (17)0.5163 (17)0.269 (2)0.022*
H6N0.1398 (15)0.5704 (18)0.1835 (18)0.022*
O10.32986 (8)0.38339 (9)0.60142 (9)0.0134 (2)
O20.40603 (9)0.20946 (9)0.62466 (9)0.0160 (3)
O30.49780 (9)0.36086 (10)0.60780 (10)0.0170 (3)
H3O0.5017 (16)0.4180 (18)0.6090 (18)0.020*
O40.31223 (9)0.49330 (9)0.39539 (10)0.0134 (3)
O50.32244 (9)0.39486 (10)0.23893 (10)0.0153 (3)
H5O0.3493 (16)0.3661 (18)0.2144 (19)0.018*
O60.47117 (8)0.44797 (9)0.37730 (10)0.0159 (3)
O70.15774 (8)0.40580 (9)0.44333 (9)0.0129 (2)
O80.05982 (9)0.32515 (10)0.28082 (10)0.0168 (3)
H8O0.0131 (16)0.2986 (18)0.2607 (18)0.020*
O90.01636 (8)0.41774 (10)0.40575 (10)0.0156 (3)
O100.18139 (9)0.62792 (9)0.44657 (9)0.0152 (3)
O110.08907 (9)0.73164 (9)0.28909 (10)0.0166 (3)
O120.00776 (9)0.65624 (10)0.41202 (11)0.0176 (3)
H12O0.0136 (16)0.6311 (18)0.4639 (19)0.021*
O130.35399 (10)0.60034 (11)0.61432 (11)0.0191 (3)
H1310.4115 (18)0.5931 (17)0.6123 (18)0.023*
H1320.3421 (16)0.6536 (19)0.6076 (19)0.023*
O140.18989 (10)0.51133 (10)0.64265 (11)0.0165 (3)
H1410.1422 (18)0.5294 (18)0.6272 (19)0.020*
H1420.2110 (16)0.5442 (17)0.6965 (19)0.020*
O150.19397 (11)0.29225 (11)0.67872 (11)0.0218 (3)
H1510.1539 (18)0.3253 (19)0.673 (2)0.026*
H1520.2340 (17)0.3238 (18)0.6574 (19)0.026*
O160.10537 (12)0.37339 (13)0.06297 (12)0.0288 (3)
H1610.1308 (18)0.317 (2)0.095 (2)0.035*
H1620.1417 (19)0.393 (2)0.035 (2)0.035*
O170.24192 (11)0.06113 (11)0.46573 (12)0.0243 (3)
H1710.2308 (18)0.0144 (19)0.423 (2)0.029*
H1720.2931 (18)0.0380 (19)0.510 (2)0.029*
O180.22367 (11)0.61233 (12)0.83215 (12)0.0263 (3)
H1810.2724 (18)0.6606 (19)0.8440 (19)0.032*
H1820.1789 (18)0.652 (2)0.822 (2)0.032*
O190.55044 (11)0.07361 (13)0.64598 (13)0.0291 (3)
H1910.5136 (19)0.118 (2)0.644 (2)0.035*
H1920.5823 (18)0.0687 (19)0.711 (2)0.035*
O200.30635 (14)0.79284 (13)0.63636 (17)0.0427 (4)
H2010.336 (2)0.851 (2)0.621 (2)0.051*
H2020.332 (2)0.803 (2)0.707 (3)0.051*
O210.39921 (12)0.05323 (13)0.55580 (15)0.0333 (4)
H2110.447 (2)0.024 (2)0.593 (2)0.040*
H2120.4083 (19)0.069 (2)0.493 (2)0.040*
O22A0.67316 (15)0.28256 (16)0.6372 (3)0.0332 (10)0.863 (11)
H2210.613 (2)0.307 (2)0.616 (2)0.040*
H2220.7072 (19)0.321 (2)0.607 (2)0.040*
O23A0.1136 (2)0.6434 (4)0.0445 (4)0.0398 (14)0.81 (2)
H2310.068 (2)0.671 (3)0.025 (3)0.048*
H2320.162 (2)0.684 (2)0.063 (2)0.048*
O22B0.6571 (14)0.2621 (15)0.577 (2)0.058 (6)*0.137 (11)
O23B0.1072 (11)0.6784 (17)0.0740 (16)0.045 (5)*0.19 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00890 (11)0.01126 (11)0.01095 (10)0.00122 (8)0.00259 (8)0.00011 (7)
P10.0109 (2)0.0114 (2)0.01128 (18)0.00152 (16)0.00294 (16)0.00155 (15)
P20.0093 (2)0.0103 (2)0.01103 (18)0.00031 (16)0.00354 (15)0.00037 (14)
P30.0084 (2)0.0113 (2)0.01100 (18)0.00023 (16)0.00281 (15)0.00083 (15)
P40.0118 (2)0.0113 (2)0.01298 (19)0.00264 (16)0.00346 (16)0.00198 (15)
C10.0107 (8)0.0114 (8)0.0126 (7)0.0006 (6)0.0035 (6)0.0004 (6)
C20.0182 (9)0.0159 (9)0.0181 (8)0.0056 (7)0.0081 (7)0.0008 (6)
C30.0098 (8)0.0147 (8)0.0120 (7)0.0008 (6)0.0043 (6)0.0007 (6)
C40.0142 (9)0.0230 (9)0.0141 (8)0.0009 (7)0.0000 (7)0.0028 (7)
N10.0126 (8)0.0116 (7)0.0140 (7)0.0005 (6)0.0041 (6)0.0004 (6)
N20.0133 (8)0.0173 (8)0.0143 (7)0.0009 (6)0.0059 (6)0.0019 (6)
O10.0137 (6)0.0150 (6)0.0122 (5)0.0035 (5)0.0045 (5)0.0013 (4)
O20.0192 (7)0.0135 (6)0.0161 (6)0.0021 (5)0.0062 (5)0.0039 (5)
O30.0121 (6)0.0152 (6)0.0219 (6)0.0008 (5)0.0016 (5)0.0000 (5)
O40.0146 (6)0.0119 (6)0.0157 (6)0.0023 (5)0.0076 (5)0.0011 (4)
O50.0159 (7)0.0181 (7)0.0121 (6)0.0019 (5)0.0043 (5)0.0010 (5)
O60.0109 (6)0.0162 (6)0.0216 (6)0.0006 (5)0.0063 (5)0.0002 (5)
O70.0108 (6)0.0111 (6)0.0152 (6)0.0000 (5)0.0008 (5)0.0004 (4)
O80.0140 (7)0.0168 (6)0.0201 (6)0.0043 (5)0.0056 (5)0.0069 (5)
O90.0106 (6)0.0205 (6)0.0175 (6)0.0024 (5)0.0067 (5)0.0021 (5)
O100.0153 (6)0.0120 (6)0.0163 (6)0.0010 (5)0.0010 (5)0.0004 (4)
O110.0160 (7)0.0148 (6)0.0191 (6)0.0028 (5)0.0053 (5)0.0064 (5)
O120.0185 (7)0.0195 (7)0.0175 (6)0.0064 (5)0.0095 (5)0.0050 (5)
O130.0123 (7)0.0156 (6)0.0281 (7)0.0001 (5)0.0035 (5)0.0060 (5)
O140.0121 (7)0.0230 (7)0.0145 (6)0.0048 (5)0.0035 (5)0.0009 (5)
O150.0212 (8)0.0214 (7)0.0235 (7)0.0042 (6)0.0076 (6)0.0070 (5)
O160.0346 (9)0.0312 (8)0.0223 (7)0.0067 (7)0.0107 (6)0.0034 (6)
O170.0247 (8)0.0186 (7)0.0265 (7)0.0006 (6)0.0018 (6)0.0005 (6)
O180.0244 (8)0.0219 (7)0.0317 (8)0.0003 (6)0.0061 (6)0.0026 (6)
O190.0262 (9)0.0312 (9)0.0286 (8)0.0084 (7)0.0058 (7)0.0019 (6)
O200.0493 (12)0.0245 (9)0.0553 (11)0.0003 (8)0.0161 (9)0.0062 (8)
O210.0259 (9)0.0301 (9)0.0413 (9)0.0024 (7)0.0051 (7)0.0056 (7)
O22A0.0208 (12)0.0242 (11)0.058 (2)0.0042 (8)0.0156 (10)0.0154 (10)
O23A0.0491 (18)0.038 (2)0.0339 (18)0.0057 (12)0.0146 (12)0.0157 (15)
Geometric parameters (Å, º) top
Ni1—O12.0689 (12)N1—H3N0.86 (2)
Ni1—O42.0861 (13)N2—H4N0.90 (2)
Ni1—O72.0355 (12)N2—H5N0.87 (2)
Ni1—O102.0508 (12)N2—H6N0.87 (2)
Ni1—O132.0477 (13)O3—H3O0.76 (2)
Ni1—O142.0424 (14)O5—H5O0.69 (2)
P1—O11.4999 (13)O8—H8O0.77 (2)
P1—O21.5003 (12)O12—H12O0.73 (2)
P1—O31.5596 (14)O13—H1310.88 (3)
P1—C11.8484 (16)O13—H1320.72 (2)
P2—O61.4976 (13)O14—H1410.73 (2)
P2—O41.5035 (13)O14—H1420.81 (2)
P2—O51.5660 (13)O15—H1510.73 (3)
P2—C11.8449 (17)O15—H1520.84 (3)
P3—O91.4978 (13)O16—H1610.88 (3)
P3—O71.5085 (12)O16—H1620.78 (3)
P3—O81.5515 (13)O17—H1710.81 (3)
P3—C31.8419 (17)O17—H1720.88 (3)
P4—O101.5048 (12)O18—H1810.95 (3)
P4—O111.5056 (12)O18—H1820.83 (3)
P4—O121.5547 (14)O19—H1910.81 (3)
P4—C31.8423 (17)O19—H1920.85 (3)
C1—N11.505 (2)O20—H2010.94 (3)
C1—C21.529 (2)O20—H2020.90 (3)
C2—H1C0.9800O21—H2110.85 (3)
C2—H2C0.9800O21—H2120.88 (3)
C2—H3C0.9800O22A—H2210.94 (3)
C3—N21.503 (2)O22A—H2220.89 (3)
C3—C41.536 (2)O23A—H2310.76 (3)
C4—H4C0.9800O23A—H2320.89 (3)
C4—H5C0.9800O22B—H2211.12 (3)
C4—H6C0.9800O22B—H2221.08 (3)
N1—H1N0.82 (2)O23B—H2310.75 (3)
N1—H2N0.83 (2)O23B—H2320.88 (3)
O1—Ni1—O491.65 (5)H2C—C2—H3C109.5
O7—Ni1—O1092.51 (5)N2—C3—C4108.05 (14)
O14—Ni1—O1388.83 (6)N2—C3—P3108.13 (11)
O7—Ni1—O1488.69 (5)C4—C3—P3110.53 (12)
O7—Ni1—O13175.95 (5)N2—C3—P4106.51 (12)
O14—Ni1—O1091.76 (5)C4—C3—P4110.93 (12)
O13—Ni1—O1090.77 (5)P3—C3—P4112.48 (9)
O7—Ni1—O187.74 (5)C3—C4—H4C109.5
O14—Ni1—O188.67 (5)C3—C4—H5C109.5
O13—Ni1—O188.99 (5)H4C—C4—H5C109.5
O10—Ni1—O1179.50 (5)C3—C4—H6C109.5
O7—Ni1—O486.64 (5)H4C—C4—H6C109.5
O14—Ni1—O4175.30 (5)H5C—C4—H6C109.5
O13—Ni1—O495.86 (5)C1—N1—H1N109.7 (16)
O10—Ni1—O487.94 (5)C1—N1—H2N110.9 (15)
O1—P1—O2116.32 (7)H1N—N1—H2N110 (2)
O1—P1—O3112.12 (7)C1—N1—H3N109.8 (14)
O2—P1—O3108.12 (7)H1N—N1—H3N108 (2)
O1—P1—C1107.88 (7)H2N—N1—H3N109 (2)
O2—P1—C1106.67 (7)C3—N2—H4N108.2 (15)
O3—P1—C1105.00 (8)C3—N2—H5N112.4 (16)
O6—P2—O4116.57 (7)H4N—N2—H5N109 (2)
O6—P2—O5112.91 (8)C3—N2—H6N112.4 (15)
O4—P2—O5105.62 (7)H4N—N2—H6N110 (2)
O6—P2—C1108.30 (8)H5N—N2—H6N104 (2)
O4—P2—C1108.70 (8)P1—O1—Ni1134.46 (7)
O5—P2—C1103.96 (7)P1—O3—H3O117.9 (18)
O9—P3—O7115.95 (7)P2—O4—Ni1136.17 (7)
O9—P3—O8113.07 (8)P2—O5—H5O112.4 (19)
O7—P3—O8106.51 (7)P3—O7—Ni1135.55 (7)
O9—P3—C3107.89 (8)P3—O8—H8O116.2 (18)
O7—P3—C3108.38 (7)P4—O10—Ni1136.12 (8)
O8—P3—C3104.34 (7)P4—O12—H12O114.5 (19)
O10—P4—O11114.22 (7)Ni1—O13—H131119.3 (15)
O10—P4—O12114.15 (7)Ni1—O13—H132113.7 (19)
O11—P4—O12107.92 (7)H131—O13—H132108 (2)
O10—P4—C3108.02 (7)Ni1—O14—H141116.7 (19)
O11—P4—C3107.33 (7)Ni1—O14—H142120.6 (17)
O12—P4—C3104.55 (8)H141—O14—H142101 (2)
N1—C1—C2108.83 (14)H151—O15—H152109 (3)
N1—C1—P2107.83 (11)H161—O16—H162102 (3)
C2—C1—P2111.41 (12)H171—O17—H17299 (2)
N1—C1—P1106.09 (11)H181—O18—H182100 (2)
C2—C1—P1110.99 (11)H191—O19—H192106 (3)
P2—C1—P1111.47 (9)H201—O20—H20290 (2)
C1—C2—H1C109.5H211—O21—H212108 (3)
C1—C2—H2C109.5H221—O22A—H222108 (2)
H1C—C2—H2C109.5H231—O23A—H232115 (3)
C1—C2—H3C109.5H221—O22B—H22285 (3)
H1C—C2—H3C109.5H231—O23B—H232117 (4)
O6—P2—C1—N1170.58 (11)O12—P4—C3—C457.74 (14)
O4—P2—C1—N161.89 (12)O10—P4—C3—P355.30 (11)
O5—P2—C1—N150.27 (13)O11—P4—C3—P3178.91 (9)
O6—P2—C1—C251.23 (13)O12—P4—C3—P366.64 (10)
O4—P2—C1—C2178.76 (11)O2—P1—O1—Ni1153.15 (9)
O5—P2—C1—C269.08 (13)O3—P1—O1—Ni181.70 (11)
O6—P2—C1—P173.36 (10)C1—P1—O1—Ni133.43 (12)
O4—P2—C1—P154.17 (11)O7—Ni1—O1—P187.56 (11)
O5—P2—C1—P1166.33 (9)O14—Ni1—O1—P1176.31 (11)
O1—P1—C1—N155.84 (12)O13—Ni1—O1—P194.84 (11)
O2—P1—C1—N169.81 (12)O4—Ni1—O1—P11.00 (11)
O3—P1—C1—N1175.58 (11)O6—P2—O4—Ni1104.40 (11)
O1—P1—C1—C2173.91 (12)O5—P2—O4—Ni1129.32 (11)
O2—P1—C1—C248.25 (14)C1—P2—O4—Ni118.27 (13)
O3—P1—C1—C266.35 (14)O7—Ni1—O4—P279.32 (11)
O1—P1—C1—P261.27 (11)O13—Ni1—O4—P297.48 (11)
O2—P1—C1—P2173.07 (8)O10—Ni1—O4—P2171.96 (11)
O3—P1—C1—P258.47 (11)O1—Ni1—O4—P28.33 (11)
O9—P3—C3—N2172.77 (11)O9—P3—O7—Ni191.92 (12)
O7—P3—C3—N260.95 (12)O8—P3—O7—Ni1141.28 (10)
O8—P3—C3—N252.26 (12)C3—P3—O7—Ni129.52 (13)
O9—P3—C3—C454.68 (14)O14—Ni1—O7—P389.45 (11)
O7—P3—C3—C4179.03 (12)O10—Ni1—O7—P32.25 (11)
O8—P3—C3—C465.82 (14)O1—Ni1—O7—P3178.18 (11)
O9—P3—C3—P469.91 (10)O4—Ni1—O7—P390.04 (11)
O7—P3—C3—P456.38 (11)O11—P4—O10—Ni1146.97 (10)
O8—P3—C3—P4169.59 (9)O12—P4—O10—Ni188.17 (12)
O10—P4—C3—N262.98 (12)C3—P4—O10—Ni127.64 (13)
O11—P4—C3—N260.62 (12)O7—Ni1—O10—P41.17 (12)
O12—P4—C3—N2175.08 (10)O14—Ni1—O10—P487.60 (12)
O10—P4—C3—C4179.67 (12)O13—Ni1—O10—P4176.46 (12)
O11—P4—C3—C456.72 (14)O4—Ni1—O10—P487.71 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O15i0.82 (2)2.01 (2)2.807 (2)166 (2)
N1—H2N···O70.83 (2)1.95 (2)2.773 (2)172 (2)
N1—H3N···O170.86 (2)2.00 (2)2.843 (2)169 (2)
N2—H4N···O160.90 (2)1.91 (2)2.774 (2)160 (2)
N2—H5N···O40.87 (2)2.10 (3)2.955 (2)169 (2)
N2—H6N···O23A0.87 (2)1.98 (2)2.789 (3)154 (2)
O3—H3O···O6ii0.76 (2)1.81 (2)2.5637 (18)172 (2)
O5—H5O···O2i0.69 (2)1.91 (2)2.5930 (18)170 (3)
O8—H8O···O11iii0.77 (2)1.74 (2)2.5075 (18)176 (3)
O12—H12O···O9iv0.73 (2)1.79 (2)2.5209 (18)172 (3)
O13—H131···O6ii0.88 (3)1.83 (3)2.696 (2)167 (2)
O13—H132···O200.72 (2)1.98 (3)2.678 (2)162 (3)
O14—H141···O9iv0.73 (2)1.96 (3)2.6936 (19)176 (3)
O14—H142···O180.81 (2)1.93 (2)2.711 (2)162 (2)
O15—H151···O12iv0.73 (3)2.40 (3)3.029 (2)145 (2)
O15—H152···O10.84 (3)1.96 (3)2.797 (2)174 (2)
O16—H161···O15i0.88 (3)1.90 (3)2.775 (2)172 (2)
O16—H162···O17i0.78 (3)2.06 (3)2.838 (2)177 (3)
O17—H171···O18i0.81 (3)2.03 (3)2.835 (2)170 (3)
O17—H172···O210.88 (3)1.96 (3)2.786 (2)155 (2)
O18—H181···O22Av0.95 (3)1.79 (3)2.702 (2)158 (2)
O18—H182···O11vi0.83 (3)2.02 (3)2.841 (2)168 (2)
O19—H191···O20.81 (3)1.98 (3)2.781 (2)169 (3)
O19—H192···O13vii0.85 (3)2.23 (3)3.055 (2)163 (2)
O20—H201···O21viii0.94 (3)1.91 (3)2.829 (3)164 (3)
O20—H202···O22Av0.90 (3)2.05 (3)2.861 (4)149 (3)
O21—H211···O190.85 (3)1.99 (3)2.814 (2)163 (3)
O21—H212···O19ix0.88 (3)2.06 (3)2.928 (3)166 (3)
O22A—H221···O30.94 (3)1.86 (3)2.775 (2)167 (3)
O22A—H222···O10ii0.89 (3)2.10 (3)2.958 (3)161 (2)
O23A—H231···O16x0.76 (3)2.62 (3)3.225 (4)139 (3)
O23A—H232···O20xi0.89 (3)2.14 (3)2.951 (4)150 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y1/2, z+1/2; (iv) x, y+1, z+1; (v) x+1, y+1/2, z+3/2; (vi) x, y+3/2, z+1/2; (vii) x+1, y1/2, z+3/2; (viii) x, y+1, z; (ix) x+1, y, z+1; (x) x, y+1, z; (xi) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C2H8NO6P2)2(H2O)2]·9H2O
Mr664.95
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)15.1408 (3), 13.1972 (3), 12.9344 (3)
β (°) 106.1689 (11)
V3)2482.27 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.23 × 0.22 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionNumerical
(SADABS; Bruker, 2005)
Tmin, Tmax0.778, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
48425, 6235, 5333
Rint0.033
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.07
No. of reflections6235
No. of parameters415
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.37

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O15i0.82 (2)2.01 (2)2.807 (2)166 (2)
N1—H2N···O70.83 (2)1.95 (2)2.773 (2)172 (2)
N1—H3N···O170.86 (2)2.00 (2)2.843 (2)169 (2)
N2—H4N···O160.90 (2)1.91 (2)2.774 (2)160 (2)
N2—H5N···O40.87 (2)2.10 (3)2.955 (2)169 (2)
N2—H6N···O23A0.87 (2)1.98 (2)2.789 (3)154 (2)
O3—H3O···O6ii0.76 (2)1.81 (2)2.5637 (18)172 (2)
O5—H5O···O2i0.69 (2)1.91 (2)2.5930 (18)170 (3)
O8—H8O···O11iii0.77 (2)1.74 (2)2.5075 (18)176 (3)
O12—H12O···O9iv0.73 (2)1.79 (2)2.5209 (18)172 (3)
O13—H131···O6ii0.88 (3)1.83 (3)2.696 (2)167 (2)
O13—H132···O200.72 (2)1.98 (3)2.678 (2)162 (3)
O14—H141···O9iv0.73 (2)1.96 (3)2.6936 (19)176 (3)
O14—H142···O180.81 (2)1.93 (2)2.711 (2)162 (2)
O15—H151···O12iv0.73 (3)2.40 (3)3.029 (2)145 (2)
O15—H152···O10.84 (3)1.96 (3)2.797 (2)174 (2)
O16—H161···O15i0.88 (3)1.90 (3)2.775 (2)172 (2)
O16—H162···O17i0.78 (3)2.06 (3)2.838 (2)177 (3)
O17—H171···O18i0.81 (3)2.03 (3)2.835 (2)170 (3)
O17—H172···O210.88 (3)1.96 (3)2.786 (2)155 (2)
O18—H181···O22Av0.95 (3)1.79 (3)2.702 (2)158 (2)
O18—H182···O11vi0.83 (3)2.02 (3)2.841 (2)168 (2)
O19—H191···O20.81 (3)1.98 (3)2.781 (2)169 (3)
O19—H192···O13vii0.85 (3)2.23 (3)3.055 (2)163 (2)
O20—H201···O21viii0.94 (3)1.91 (3)2.829 (3)164 (3)
O20—H202···O22Av0.90 (3)2.05 (3)2.861 (4)149 (3)
O21—H211···O190.85 (3)1.99 (3)2.814 (2)163 (3)
O21—H212···O19ix0.88 (3)2.06 (3)2.928 (3)166 (3)
O22A—H221···O30.94 (3)1.86 (3)2.775 (2)167 (3)
O22A—H222···O10ii0.89 (3)2.10 (3)2.958 (3)161 (2)
O23A—H231···O16x0.76 (3)2.62 (3)3.225 (4)139 (3)
O23A—H232···O20xi0.89 (3)2.14 (3)2.951 (4)150 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y1/2, z+1/2; (iv) x, y+1, z+1; (v) x+1, y+1/2, z+3/2; (vi) x, y+3/2, z+1/2; (vii) x+1, y1/2, z+3/2; (viii) x, y+1, z; (ix) x+1, y, z+1; (x) x, y+1, z; (xi) x, y+3/2, z1/2.
 

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDudko, A., Bon, V., Kozachkova, A. & Pekhnyo, V. (2009). Acta Cryst. E65, m459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEberhardt, C., Schwarz, M. & Kurth, A. H. (2005). J. Orthop. Sci. 10, 622–626.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, M., Xiang, J., Wu, S., Chen, S., Yuan, L., Li, H., He, H. & Sun, J. (2007). J. Mol. Struct. 840, 119–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds