inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Nonapotassium trialuminium hexa­phosphate

aKey Laboratory of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
*Correspondence e-mail: bccrd@mail.ipc.ac.cn

(Received 21 January 2010; accepted 8 April 2010; online 17 April 2010)

In the title compound, K9Al3(PO4)6, the anionic substructure is built of inter­linked [PO4] and [AlO4] tetra­hedra. Each O atom of the [AlO4] tetra­hedron is common to a positionally different [PO4] tetra­hedron; thus, each [AlO4] tetra­hedron is surrounded by four positionally different [PO4] tetra­hedra. On the other hand, each [PO4] tetra­hedron shares its two O atoms with two positionally different [AlO4] tetra­hedra; the other two phosphate O atoms are terminal ones coordinated by K atoms. The terminal O atoms are usually closer to the K atoms than the bridging O atoms between the [AlO4] and [PO4] tetra­hedra. There are nine symmetry-independent K atoms in the structure. The coordination numbers of the K atoms are 6 or 7 or 8 up to a distance of 3.31 Å. There are channels in the anionic substructure oriented along the [10[\overline{1}]] direction that are filled by K atoms.

Related literature

For applications of metal phosphates, see: Barone & Nancollas (1978[Barone, J. P. & Nancollas, G. H. (1978). J. Dent. Res. 57, 735-742.]); Dickinson et al. (1996[Dickinson, M. R., Gloster, L. A. W., Hopps, N. W. & King, T. A. (1996). Opt. Commun. 132, 275-278.]). For non-centrosymmetric phosphates with non-linear optical properties, see: Noor & Dam (1986[Noor, J. W. & Dam, B. (1986). J. Cryst. Growth, 76, 243-250.]); Aguilo & Wuensdregt (1985[Aguilo, M. & Wuensdregt, C. F. (1985). J. Cryst. Growth, 83, 549-559]); Masse & Grenier (1971[Masse, R. & Grenier, J. C. (1971). Bull. Soc. Fr. Mineral. Cristallogr. 94, 437-439.]). For the non-centrosymmetric structures of A3Al2(PO4)3 (A = K, Rb and Tl), which have three-dimensional [Al2P3O12]3− frameworks, see: Nandini Devi & Vidyasagar (2000[Nandini Devi, R. & Vidyasagar, K. (2000). Inorg. Chem. 39, 2391-2396.]). For the structure of KAlP2O7, see: Ng & Calvo (1973[Ng, H. N. & Calvo, C. (1973). Can. J. Chem. 51, 2613-2620.]);

Experimental

Crystal data
  • K9Al3(PO4)6

  • Mr = 1002.66

  • Monoclinic, P 21 /c

  • a = 20.289 (4) Å

  • b = 9.835 (2) Å

  • c = 13.521 (3) Å

  • β = 100.56 (3)°

  • V = 2652.2 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 113 K

  • 0.26 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: numerical (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.622, Tmax = 0.713

  • 35263 measured reflections

  • 11751 independent reflections

  • 10169 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.059

  • S = 1.10

  • 11751 reflections

  • 380 parameters

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Characterization of K—O coordination spheres; coordination number as well as minimal and maximal distances (Å) within the coordination spheres for each K atom are given

Atom K Coordination number K—O distances
K1 8 2.6202 (10)–3.2026 (12)
K2 7 2.5994 (9)–2.9721 (10)
K3 6 2.6337 (11)–2.9790 (11)
K4 6 2.7005 (10)–3.0451 (10)
K5 8 2.6787 (9)–3.3087 (12)
K6 7 2.6690 (10)–3.0404 (9)
K7 7 2.6369 (9)–3.0973 (10)
K8 7 2.5736 (9)–3.0747 (10)
K9 7 2.6965 (9)–3.3094 (11)

Table 2
Characterization of K—O coordination spheres; the minimal and maximal K—O distances (Å) for the terminal and bridging O atoms (there is only one bridging oxygen in the coordination spheres of K2, K3, and K8)

Atom K K—Oterminal / K—Obridge distances
K1 2.6202 (12)–3.2027 (18) / 3.0287 (14)–3.1684 (16)
K2 2.5994 (12)–2.9722 (14) / 2.8588 (14)
K3 2.6337 (13)–2.9790 (14) / 2.8348 (13)
K4 2.7006 (13)–2.7762 (15) / 2.9576 (15)–3.0451 (13)
K5 2.6787 (11)–3.3088 (19) / 3.1012 (15)–3.2476 (15)
K6 2.6690 (14)–2.9869 (16) / 2.8236 (13)–3.0405 (13)
K7 2.6368 (12)–2.9005 (15) / 2.7891 (14)–3.0974 (13)
K8 2.5737 (12)–3.0747 (13) / 2.9491 (13)
K9 2.6965 (2)–2.8865 (13) / 2.9783 (12)–3.3095 (16)

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]).

Supporting information


Comment top

Various metal phosphates have been widely used due to their good optical and chemical properties. For example, Ca5(PO4)3F has been used in dentistry (Barone & Nancollas, 1978) and Sr5(PO4)3F (Dickinson et al., 1996) has been used as a laser crystal in laser technology. Especially, some non-centrosymmetric phosphates have been used as important crystals with nonlinear optical properties, such as KH2PO4 (KDP) (Noor & Dam, 1986), NH4H2PO4 (ADP) (Aguilo & Wuensdregt, 1985) and KTiOPO4 (KTP) (Masse & Grenier, 1971). Aluminophosphates have attracted much attention because of their diverse structures.

Aluminophosphates contain 1D, 2D or 3D infinite frameworks with varying chemical composition. Nandini Devi & Vidyasagar (2000) reported non-centrosymmetric structures of A3Al2(PO4)3 (A=K, Rb and Tl). These compounds have 3D [Al2P3O12]3- frameworks. The latter study has inspired us to investigate the A2O—Al2O3—P2O5 (A=K, Rb, Cs) system in order to search for new functional materials. As a result of our study a new aluminophosphate, the title structure K9Al3(PO4)6, has been discovered.

In K9Al3(PO4)6, all the aluminium and phosphorus atoms adopt the tetrahedral coordination. Each [AlO4] tetrahedron shares each of its O atoms with a positionally different neighbour [PO4] tetrahedron, while each [PO4] tetrahedron shares its two O atoms with two different neighbour [AlO4] tetrahedral. There are two pairs of chemically different O atoms around the P atoms: The terminal and the bridging oxygens that are involved in P-O-Al connections (Fig. 1). The P-O distance to the bridging oxygens vary in the interval 1.5645 (10) - 1.5881 (8) Å, while the P-O distances to the terminal oxygens are in the interval 1.4993 (10) - 1.5087 (9) Å.

There are channels in the anionic substructure along [1 0 1] (Fig. 2). These channels are filled by K atoms (Fig. 3). The coordination numbers of K atoms are 6 or 7 or 8 up to the distance 3.31 Å (Tab. 1). The terminal phosphate oxygens tend to be closer to K atoms than the bridging ones (Tab. 2).

Related literature top

For related literature, see: Nandini Devi & Vidyasagar (2000); Ng & Calvo (1973).

For related literature, see: Aguilo & Wuensdregt (1985); Barone & Nancollas (1978); Dickinson et al. (1996); Masse & Grenier (1971); Noor & Dam (1986).

Experimental top

Single crystals of K9Al3(PO4)6 have been obtained by the high temperature solution method in a electric resistance furnace. Starting materials of the analytical grade KH2PO4 (136.15 g) and K2CO3 (69.03 g), high purity Al2O3 (51.08 g) and KF (58.33 g), in the respective molar ratio 2:1:1:2, were mixed and melt in a platinum crucible with a diameter of 60 mm and a height of 60 mm at 1273 K. The solution was stirred with a platinum plate for 24 hours. After the solution had been cooled to 1123 K at a rate of 10 Kh-1, a platinum wire attached to an alumina shaft was slowly dipped into the solution, which was then followed by a slow cooling at the rate of 0.5 Kh-1. Thus, a few colourless, transparent plate K9Al3(PO4)6 crystals with typical size of 3 × 3 × 0.5 mm crystallized on the platinum wire. After one week, the crystals were drawn out from the solution at 1050 K and cooled down to room temperature at the rate of 10 Kh-1.

Refinement top

All the atomic have been refined anisotropically. The maximal (0.542 eÅ-3) and minimal (-0.519 eÅ-3) electron density peaks are situated 0.67 Å from O16 and 0.56 Å from P4, respectively.

Structure description top

Various metal phosphates have been widely used due to their good optical and chemical properties. For example, Ca5(PO4)3F has been used in dentistry (Barone & Nancollas, 1978) and Sr5(PO4)3F (Dickinson et al., 1996) has been used as a laser crystal in laser technology. Especially, some non-centrosymmetric phosphates have been used as important crystals with nonlinear optical properties, such as KH2PO4 (KDP) (Noor & Dam, 1986), NH4H2PO4 (ADP) (Aguilo & Wuensdregt, 1985) and KTiOPO4 (KTP) (Masse & Grenier, 1971). Aluminophosphates have attracted much attention because of their diverse structures.

Aluminophosphates contain 1D, 2D or 3D infinite frameworks with varying chemical composition. Nandini Devi & Vidyasagar (2000) reported non-centrosymmetric structures of A3Al2(PO4)3 (A=K, Rb and Tl). These compounds have 3D [Al2P3O12]3- frameworks. The latter study has inspired us to investigate the A2O—Al2O3—P2O5 (A=K, Rb, Cs) system in order to search for new functional materials. As a result of our study a new aluminophosphate, the title structure K9Al3(PO4)6, has been discovered.

In K9Al3(PO4)6, all the aluminium and phosphorus atoms adopt the tetrahedral coordination. Each [AlO4] tetrahedron shares each of its O atoms with a positionally different neighbour [PO4] tetrahedron, while each [PO4] tetrahedron shares its two O atoms with two different neighbour [AlO4] tetrahedral. There are two pairs of chemically different O atoms around the P atoms: The terminal and the bridging oxygens that are involved in P-O-Al connections (Fig. 1). The P-O distance to the bridging oxygens vary in the interval 1.5645 (10) - 1.5881 (8) Å, while the P-O distances to the terminal oxygens are in the interval 1.4993 (10) - 1.5087 (9) Å.

There are channels in the anionic substructure along [1 0 1] (Fig. 2). These channels are filled by K atoms (Fig. 3). The coordination numbers of K atoms are 6 or 7 or 8 up to the distance 3.31 Å (Tab. 1). The terminal phosphate oxygens tend to be closer to K atoms than the bridging ones (Tab. 2).

For related literature, see: Nandini Devi & Vidyasagar (2000); Ng & Calvo (1973).

For related literature, see: Aguilo & Wuensdregt (1985); Barone & Nancollas (1978); Dickinson et al. (1996); Masse & Grenier (1971); Noor & Dam (1986).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. Unit cell of K9Al3(PO4)6. The displacement ellipsoids are drawn at the 90% probability level.
[Figure 2] Fig. 2. Anionic framework of K9Al3(PO4)6, viewed along [1 0 1].
[Figure 3] Fig. 3. Anionic framework of K9Al3(PO4)6 filled with K atoms, viewed along [101].
Nonapotassium trialuminium hexaphosphate top
Crystal data top
K9Al3(PO4)6F(000) = 1968
Mr = 1002.66Dx = 2.511 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11243 reflections
a = 20.289 (4) Åθ = 1.5–36.1°
b = 9.835 (2) ŵ = 2.02 mm1
c = 13.521 (3) ÅT = 113 K
β = 100.56 (3)°Block, colorless
V = 2652.2 (9) Å30.26 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART 1000
diffractometer
11751 independent reflections
Radiation source: rotating anode10169 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.028
Detector resolution: 7.31 pixels mm-1θmax = 36.4°, θmin = 2.0°
ω and φ scansh = 3232
Absorption correction: numerical
(CrystalClear; Rigaku/MSC, 2005)
k = 1514
Tmin = 0.622, Tmax = 0.713l = 2121
35263 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0289P)2 + 0.2004P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.002
S = 1.10Δρmax = 0.54 e Å3
11751 reflectionsΔρmin = 0.52 e Å3
380 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0094 (3)
0 constraints
Crystal data top
K9Al3(PO4)6V = 2652.2 (9) Å3
Mr = 1002.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.289 (4) ŵ = 2.02 mm1
b = 9.835 (2) ÅT = 113 K
c = 13.521 (3) Å0.26 × 0.20 × 0.18 mm
β = 100.56 (3)°
Data collection top
Bruker SMART 1000
diffractometer
11751 independent reflections
Absorption correction: numerical
(CrystalClear; Rigaku/MSC, 2005)
10169 reflections with I > 2σ(I)
Tmin = 0.622, Tmax = 0.713Rint = 0.028
35263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023380 parameters
wR(F2) = 0.0590 restraints
S = 1.10Δρmax = 0.54 e Å3
11751 reflectionsΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.298252 (13)0.34947 (3)0.33480 (2)0.00581 (5)
P20.533853 (13)0.58644 (3)0.36009 (2)0.00594 (5)
P30.187195 (13)0.57954 (3)0.69175 (2)0.00569 (5)
P40.043493 (13)0.14690 (3)0.10689 (2)0.00566 (5)
P50.356473 (13)0.65268 (3)0.99111 (2)0.00556 (5)
P60.134551 (13)0.14154 (3)0.50989 (2)0.00546 (5)
Al10.089399 (16)0.07540 (3)0.02839 (2)0.00532 (6)
Al20.248584 (16)0.06371 (3)0.38928 (2)0.00494 (6)
Al30.404521 (16)0.56335 (3)0.44487 (2)0.00506 (6)
O10.30136 (4)0.20134 (8)0.37989 (6)0.01040 (14)
O20.30827 (5)0.34641 (8)0.22768 (6)0.01385 (16)
O30.23519 (4)0.41939 (8)0.35084 (7)0.01469 (16)
O40.36066 (5)0.41798 (8)0.40128 (7)0.01553 (18)
O50.57090 (4)0.71131 (8)0.40329 (6)0.01132 (15)
O60.54290 (4)0.54825 (8)0.25534 (6)0.00961 (14)
O70.45662 (4)0.60301 (9)0.35924 (6)0.01063 (14)
O80.55470 (4)0.45990 (7)0.43131 (6)0.00885 (14)
O90.24384 (4)0.56940 (8)0.63432 (6)0.01142 (15)
O100.11777 (4)0.54245 (7)0.62321 (6)0.00823 (14)
O110.17814 (4)0.71622 (8)0.73771 (6)0.01017 (14)
O120.19385 (4)0.46544 (8)0.77559 (6)0.00888 (14)
O130.09231 (4)0.25724 (7)0.06586 (6)0.00840 (13)
O140.01158 (4)0.14074 (7)0.03954 (6)0.00818 (14)
O150.07987 (4)0.00350 (7)0.09080 (6)0.00757 (13)
O160.01117 (4)0.16378 (8)0.21565 (6)0.01014 (14)
O170.34118 (4)0.65873 (8)1.09580 (6)0.01213 (15)
O180.35063 (4)0.79852 (7)0.94185 (6)0.00881 (14)
O190.42285 (4)0.58847 (8)0.98471 (7)0.01214 (15)
O200.29847 (4)0.57812 (8)0.91867 (6)0.01111 (15)
O210.20437 (4)0.09364 (8)0.48639 (6)0.00835 (13)
O220.11949 (4)0.05905 (7)0.59700 (6)0.00888 (14)
O230.14854 (4)0.29353 (7)0.54464 (6)0.00891 (14)
O240.08212 (4)0.14116 (8)0.41564 (6)0.01017 (14)
K10.287854 (12)0.17131 (2)0.079146 (18)0.00949 (4)
K20.420108 (12)0.44811 (2)0.178588 (19)0.01038 (4)
K30.233669 (12)0.57239 (2)0.160286 (19)0.01005 (4)
K40.551481 (12)0.66477 (2)0.075535 (18)0.00984 (4)
K50.370503 (13)0.84243 (2)0.243608 (19)0.01203 (5)
K60.054431 (12)0.67635 (2)0.106782 (18)0.00886 (4)
K70.213027 (11)0.66267 (2)0.427477 (18)0.00950 (4)
K80.058558 (12)0.93957 (2)0.292875 (18)0.01007 (4)
K90.116931 (12)0.29859 (2)0.266699 (19)0.01164 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.00581 (11)0.00550 (10)0.00599 (12)0.00069 (8)0.00070 (9)0.00048 (8)
P20.00578 (11)0.00678 (10)0.00535 (11)0.00080 (8)0.00123 (9)0.00050 (8)
P30.00625 (11)0.00554 (10)0.00511 (11)0.00021 (8)0.00058 (9)0.00017 (8)
P40.00518 (11)0.00625 (10)0.00552 (11)0.00004 (8)0.00088 (8)0.00072 (8)
P50.00535 (11)0.00497 (10)0.00632 (12)0.00068 (8)0.00096 (9)0.00019 (8)
P60.00536 (11)0.00549 (10)0.00549 (11)0.00029 (8)0.00088 (8)0.00015 (8)
Al10.00504 (13)0.00500 (12)0.00582 (14)0.00004 (9)0.00069 (11)0.00028 (10)
Al20.00504 (13)0.00437 (12)0.00522 (14)0.00060 (9)0.00042 (10)0.00012 (10)
Al30.00478 (13)0.00426 (12)0.00582 (14)0.00029 (9)0.00011 (10)0.00015 (10)
O10.0108 (3)0.0065 (3)0.0133 (4)0.0026 (2)0.0007 (3)0.0015 (3)
O20.0213 (4)0.0131 (4)0.0086 (4)0.0002 (3)0.0065 (3)0.0005 (3)
O30.0110 (4)0.0129 (4)0.0217 (5)0.0031 (3)0.0072 (3)0.0006 (3)
O40.0157 (4)0.0068 (3)0.0195 (4)0.0029 (3)0.0091 (3)0.0002 (3)
O50.0147 (4)0.0073 (3)0.0115 (4)0.0024 (3)0.0013 (3)0.0000 (3)
O60.0100 (3)0.0133 (3)0.0060 (3)0.0015 (3)0.0026 (3)0.0003 (3)
O70.0071 (3)0.0172 (4)0.0079 (4)0.0033 (3)0.0023 (3)0.0021 (3)
O80.0114 (3)0.0071 (3)0.0071 (3)0.0011 (2)0.0006 (3)0.0011 (3)
O90.0096 (3)0.0145 (4)0.0112 (4)0.0004 (3)0.0045 (3)0.0001 (3)
O100.0077 (3)0.0085 (3)0.0073 (3)0.0005 (2)0.0018 (3)0.0011 (3)
O110.0130 (4)0.0069 (3)0.0100 (4)0.0001 (3)0.0004 (3)0.0022 (3)
O120.0094 (3)0.0087 (3)0.0073 (3)0.0019 (2)0.0016 (3)0.0030 (3)
O130.0081 (3)0.0079 (3)0.0094 (3)0.0018 (2)0.0020 (3)0.0008 (3)
O140.0064 (3)0.0083 (3)0.0108 (4)0.0005 (2)0.0042 (3)0.0004 (3)
O150.0091 (3)0.0068 (3)0.0072 (3)0.0023 (2)0.0026 (3)0.0008 (2)
O160.0112 (4)0.0116 (3)0.0069 (4)0.0002 (3)0.0004 (3)0.0022 (3)
O170.0165 (4)0.0117 (3)0.0093 (4)0.0007 (3)0.0054 (3)0.0000 (3)
O180.0083 (3)0.0057 (3)0.0119 (4)0.0020 (2)0.0005 (3)0.0018 (3)
O190.0080 (3)0.0113 (3)0.0175 (4)0.0025 (3)0.0033 (3)0.0004 (3)
O200.0107 (3)0.0078 (3)0.0130 (4)0.0045 (3)0.0027 (3)0.0008 (3)
O210.0077 (3)0.0107 (3)0.0070 (3)0.0023 (2)0.0022 (3)0.0001 (3)
O220.0101 (3)0.0092 (3)0.0078 (3)0.0004 (2)0.0028 (3)0.0015 (3)
O230.0072 (3)0.0051 (3)0.0139 (4)0.0009 (2)0.0006 (3)0.0007 (3)
O240.0083 (3)0.0133 (3)0.0079 (4)0.0006 (3)0.0011 (3)0.0007 (3)
K10.00909 (9)0.00962 (9)0.00989 (10)0.00004 (7)0.00210 (8)0.00004 (7)
K20.01006 (9)0.00876 (9)0.01141 (11)0.00028 (7)0.00044 (8)0.00135 (8)
K30.00859 (9)0.00980 (9)0.01165 (11)0.00057 (7)0.00156 (8)0.00163 (8)
K40.01018 (9)0.01036 (9)0.00913 (10)0.00115 (7)0.00219 (8)0.00072 (7)
K50.01415 (11)0.01086 (10)0.01155 (11)0.00281 (7)0.00362 (8)0.00148 (8)
K60.00872 (9)0.00997 (9)0.00819 (10)0.00093 (7)0.00236 (7)0.00127 (7)
K70.00723 (9)0.01039 (9)0.01103 (10)0.00059 (7)0.00207 (8)0.00037 (7)
K80.01277 (10)0.00765 (9)0.01026 (10)0.00019 (7)0.00335 (8)0.00097 (7)
K90.01126 (10)0.01316 (10)0.01026 (10)0.00163 (7)0.00134 (8)0.00316 (8)
Geometric parameters (Å, º) top
P1—O21.4993 (10)O16—K6ix2.7060 (11)
P1—O31.5030 (9)O16—K8xi2.7225 (10)
P1—O41.5645 (10)O16—K8ix2.8730 (10)
P1—O11.5760 (8)O16—K92.8864 (10)
P2—O51.5011 (9)O17—K3xii2.6337 (11)
P2—O61.5087 (9)O17—K5xii2.6788 (10)
P2—O71.5734 (9)O17—K2xii2.7296 (10)
P2—O81.5829 (8)O18—Al3viii1.7396 (8)
P3—O91.5036 (10)O18—K7viii2.7891 (10)
P3—O111.5062 (8)O18—K5viii3.1088 (10)
P3—O101.5803 (9)O19—K4iv2.7005 (10)
P3—O121.5831 (8)O19—K4xii2.7761 (11)
P4—O131.5049 (8)O19—K2xii2.9721 (10)
P4—O161.5056 (9)O19—K5viii3.3087 (12)
P4—O141.5667 (9)O20—Al2vi1.7264 (8)
P4—O151.5881 (8)O20—K7viii3.0973 (10)
P5—O191.5043 (9)O20—K5viii3.1013 (12)
P5—O171.5049 (9)O21—K3vi2.8347 (9)
P5—O201.5682 (9)O21—K1vi3.0012 (10)
P5—O181.5767 (8)O22—K3vi2.6539 (10)
P6—O241.5029 (10)O22—K6vi2.6802 (9)
P6—O221.5068 (9)O22—K9vi2.6965 (9)
P6—O231.5770 (8)O23—Al1vi1.7472 (8)
P6—O211.5794 (9)O23—K1vi2.8007 (10)
Al1—O141.7366 (9)O23—K9vi3.3094 (11)
Al1—O10i1.7457 (9)O24—K8xi2.5736 (9)
Al1—O23i1.7472 (8)O24—K92.7337 (10)
Al1—O15ii1.7671 (9)O24—K6ix2.7531 (10)
Al2—O20i1.7264 (8)K1—O9i2.6837 (10)
Al2—O11.7449 (9)K1—O23i2.8007 (10)
Al2—O211.7457 (10)K1—O5v2.8591 (11)
Al2—O12i1.7472 (10)K1—O21i3.0012 (10)
Al3—O41.7295 (9)K1—O1i3.0286 (10)
Al3—O18iii1.7396 (8)K1—O4i3.1684 (13)
Al3—O8iv1.7411 (10)K1—O3i3.2026 (12)
Al3—O71.7490 (10)K2—O5v2.5994 (9)
O1—K4v2.9576 (11)K2—O17xiii2.7296 (10)
O1—K1vi3.0286 (10)K2—O19xiii2.9721 (10)
O2—K12.6202 (10)K3—O17xiii2.6337 (11)
O2—K22.6725 (11)K3—O22i2.6539 (10)
O2—K32.7486 (10)K3—O11iii2.6683 (9)
O3—K72.6779 (10)K3—O21i2.8347 (9)
O3—K92.7316 (11)K4—O19iv2.7005 (10)
O3—K32.9790 (11)K4—O5iii2.7205 (10)
O3—K1vi3.2026 (12)K4—O19xiii2.7761 (11)
O4—K4v3.0451 (10)K4—O1vii2.9576 (11)
O4—K1vi3.1684 (13)K4—O4vii3.0451 (10)
O5—K2vii2.5994 (9)K5—O6vii2.6787 (9)
O5—K4viii2.7205 (10)K5—O17xiii2.6788 (10)
O5—K1vii2.8591 (11)K5—O9iii2.8544 (12)
O6—K5v2.6787 (9)K5—O20iii3.1013 (12)
O6—K22.7029 (11)K5—O18iii3.1088 (10)
O6—K42.7219 (9)K5—O8vii3.2476 (11)
O7—K22.8587 (10)K5—O19iii3.3087 (12)
O7—K53.1685 (10)K6—O13x2.6690 (10)
O8—Al3iv1.7411 (10)K6—O22i2.6803 (9)
O8—K5v3.2476 (11)K6—O16xiv2.7060 (11)
O9—K1vi2.6837 (10)K6—O24xiv2.7531 (10)
O9—K5viii2.8544 (12)K6—O14x2.8235 (10)
O9—K72.9005 (11)K6—O11iii2.9867 (12)
O10—Al1vi1.7457 (9)K6—O10iii3.0404 (9)
O10—K8viii2.7834 (11)K7—O13xiv2.6369 (9)
O10—K6viii3.0404 (9)K7—O18iii2.7891 (10)
O11—K3viii2.6683 (9)K7—O11iii2.7995 (10)
O11—K7viii2.7995 (10)K7—O15xiv3.0928 (10)
O11—K6viii2.9867 (12)K7—O20iii3.0973 (10)
O11—K8viii3.0747 (10)K8—O24xv2.5736 (9)
O12—Al2vi1.7472 (10)K8—O13xiv2.6179 (9)
O12—K8viii2.9492 (10)K8—O16xv2.7225 (10)
O12—K9vi3.0206 (9)K8—O10iii2.7834 (11)
O13—K8ix2.6179 (9)K8—O16xiv2.8730 (10)
O13—K7ix2.6369 (9)K8—O12iii2.9492 (10)
O13—K6x2.6690 (10)K8—O11iii3.0747 (10)
O14—K6x2.8235 (10)K9—O22i2.6965 (9)
O15—Al1ii1.7671 (9)K9—O15xiv2.9782 (9)
O15—K9ix2.9782 (9)K9—O12i3.0206 (9)
O15—K7ix3.0928 (10)K9—O23i3.3094 (11)
O2—P1—O3114.74 (6)O6—K4—O1vii95.55 (4)
O2—P1—O4108.96 (6)O19xiii—K4—O1vii162.75 (3)
O3—P1—O4109.93 (5)O19iv—K4—O4vii130.06 (3)
O2—P1—O1110.62 (5)O5iii—K4—O4vii63.12 (3)
O3—P1—O1109.99 (5)O6—K4—O4vii112.61 (3)
O4—P1—O1101.83 (5)O19xiii—K4—O4vii138.74 (2)
O5—P2—O6115.50 (5)O1vii—K4—O4vii47.89 (2)
O5—P2—O7110.19 (5)O6vii—K5—O17xiii124.71 (3)
O6—P2—O7108.14 (5)O6vii—K5—O9iii107.49 (3)
O5—P2—O8110.34 (5)O17xiii—K5—O9iii76.28 (3)
O6—P2—O8108.08 (5)O6vii—K5—O20iii101.89 (3)
O7—P2—O8103.92 (5)O17xiii—K5—O20iii131.91 (3)
O9—P3—O11115.78 (5)O9iii—K5—O20iii79.22 (3)
O9—P3—O10111.44 (5)O6vii—K5—O18iii121.40 (3)
O11—P3—O10106.55 (4)O17xiii—K5—O18iii107.24 (3)
O9—P3—O12110.48 (5)O9iii—K5—O18iii109.57 (3)
O11—P3—O12109.75 (5)O20iii—K5—O18iii45.61 (2)
O10—P3—O12101.90 (5)O6vii—K5—O7104.90 (3)
O13—P4—O16114.83 (5)O17xiii—K5—O783.91 (3)
O13—P4—O14107.75 (5)O9iii—K5—O7147.55 (2)
O16—P4—O14110.03 (5)O20iii—K5—O796.03 (2)
O13—P4—O15109.38 (5)O18iii—K5—O752.43 (2)
O16—P4—O15109.88 (5)O6vii—K5—O8vii48.81 (2)
O14—P4—O15104.43 (4)O17xiii—K5—O8vii76.48 (3)
O19—P5—O17114.32 (6)O9iii—K5—O8vii90.66 (3)
O19—P5—O20110.19 (5)O20iii—K5—O8vii144.56 (2)
O17—P5—O20110.20 (5)O18iii—K5—O8vii159.77 (2)
O19—P5—O18110.88 (5)O7—K5—O8vii109.55 (3)
O17—P5—O18110.42 (5)O6vii—K5—O19iii75.39 (3)
O20—P5—O1899.89 (5)O17xiii—K5—O19iii149.41 (2)
O24—P6—O22116.61 (5)O9iii—K5—O19iii122.93 (3)
O24—P6—O23108.41 (4)O20iii—K5—O19iii46.16 (2)
O22—P6—O23109.19 (5)O18iii—K5—O19iii46.45 (2)
O24—P6—O21110.50 (5)O7—K5—O19iii67.55 (3)
O22—P6—O21108.33 (5)O8vii—K5—O19iii122.41 (2)
O23—P6—O21102.92 (4)O13x—K6—O22i86.84 (3)
O14—Al1—O10i111.38 (5)O13x—K6—O16xiv168.34 (2)
O14—Al1—O23i109.29 (4)O22i—K6—O16xiv104.31 (3)
O10i—Al1—O23i105.73 (4)O13x—K6—O24xiv112.32 (4)
O14—Al1—O15ii107.00 (5)O22i—K6—O24xiv112.38 (3)
O10i—Al1—O15ii110.15 (4)O16xiv—K6—O24xiv66.94 (4)
O23i—Al1—O15ii113.35 (5)O13x—K6—O14x53.63 (3)
O20i—Al2—O1107.57 (5)O22i—K6—O14x133.66 (3)
O20i—Al2—O21108.87 (4)O16xiv—K6—O14x117.48 (3)
O1—Al2—O21109.31 (4)O24xiv—K6—O14x70.39 (3)
O20i—Al2—O12i108.74 (4)O13x—K6—O11iii94.96 (3)
O1—Al2—O12i111.28 (4)O22i—K6—O11iii88.10 (3)
O21—Al2—O12i110.98 (4)O16xiv—K6—O11iii82.20 (3)
O4—Al3—O18iii110.83 (5)O24xiv—K6—O11iii146.01 (3)
O4—Al3—O8iv110.07 (4)O14x—K6—O11iii115.41 (3)
O18iii—Al3—O8iv108.12 (4)O13x—K6—O10iii69.86 (2)
O4—Al3—O7107.13 (5)O22i—K6—O10iii125.73 (3)
O18iii—Al3—O7105.30 (4)O16xiv—K6—O10iii100.27 (3)
O8iv—Al3—O7115.31 (4)O24xiv—K6—O10iii121.72 (2)
O2—K1—O9i112.37 (3)O14x—K6—O10iii67.14 (3)
O2—K1—O23i93.41 (4)O11iii—K6—O10iii48.47 (2)
O9i—K1—O23i77.18 (3)O13xiv—K7—O3123.45 (3)
O2—K1—O5v80.25 (4)O13xiv—K7—O18iii150.88 (2)
O9i—K1—O5v118.54 (3)O3—K7—O18iii84.97 (3)
O23i—K1—O5v164.26 (2)O13xiv—K7—O11iii78.51 (4)
O2—K1—O21i79.16 (3)O3—K7—O11iii93.31 (3)
O9i—K1—O21i127.19 (3)O18iii—K7—O11iii95.01 (4)
O23i—K1—O21i50.22 (2)O13xiv—K7—O996.66 (4)
O5v—K1—O21i114.15 (3)O3—K7—O993.94 (3)
O2—K1—O1i112.50 (3)O18iii—K7—O986.56 (4)
O9i—K1—O1i134.51 (3)O11iii—K7—O9172.69 (2)
O23i—K1—O1i93.09 (4)O13xiv—K7—O15xiv51.54 (2)
O5v—K1—O1i76.36 (4)O3—K7—O15xiv73.92 (3)
O21i—K1—O1i56.35 (3)O18iii—K7—O15xiv157.43 (2)
O2—K1—O4i137.20 (3)O11iii—K7—O15xiv94.11 (3)
O9i—K1—O4i101.05 (3)O9—K7—O15xiv87.00 (3)
O23i—K1—O4i120.30 (3)O13xiv—K7—O20iii103.94 (3)
O5v—K1—O4i60.10 (3)O3—K7—O20iii125.85 (3)
O21i—K1—O4i101.67 (3)O18iii—K7—O20iii47.93 (2)
O1i—K1—O4i46.26 (2)O11iii—K7—O20iii70.36 (3)
O2—K1—O3i154.13 (3)O9—K7—O20iii105.91 (3)
O9i—K1—O3i87.31 (3)O15xiv—K7—O20iii154.20 (2)
O23i—K1—O3i74.07 (4)O24xv—K8—O13xiv93.69 (3)
O5v—K1—O3i105.70 (4)O24xv—K8—O16xv69.23 (3)
O21i—K1—O3i75.45 (3)O13xiv—K8—O16xv151.96 (3)
O1i—K1—O3i47.66 (2)O24xv—K8—O10iii115.18 (3)
O4i—K1—O3i46.44 (3)O13xiv—K8—O10iii123.38 (3)
O5v—K2—O284.23 (3)O16xv—K8—O10iii84.54 (3)
O5v—K2—O6110.99 (3)O24xv—K8—O16xiv140.75 (3)
O2—K2—O6143.69 (3)O13xiv—K8—O16xiv54.79 (3)
O5v—K2—O17xiii125.94 (3)O16xv—K8—O16xiv127.063 (19)
O2—K2—O17xiii85.69 (3)O10iii—K8—O16xiv102.63 (2)
O6—K2—O17xiii108.13 (3)O24xv—K8—O12iii75.02 (3)
O5v—K2—O7144.48 (3)O13xiv—K8—O12iii98.75 (3)
O2—K2—O794.94 (3)O16xv—K8—O12iii97.98 (3)
O6—K2—O753.24 (3)O10iii—K8—O12iii50.65 (3)
O17xiii—K2—O789.24 (3)O16xiv—K8—O12iii127.26 (2)
O5v—K2—O19xiii91.51 (3)O24xv—K8—O11iii118.61 (3)
O2—K2—O19xiii123.16 (3)O13xiv—K8—O11iii73.93 (3)
O6—K2—O19xiii90.25 (3)O16xv—K8—O11iii133.49 (3)
O17xiii—K2—O19xiii52.44 (3)O10iii—K8—O11iii49.66 (3)
O7—K2—O19xiii117.53 (3)O16xiv—K8—O11iii78.05 (3)
O17xiii—K3—O22i141.01 (3)O12iii—K8—O11iii49.56 (2)
O17xiii—K3—O11iii108.28 (3)O22i—K9—O388.63 (4)
O22i—K3—O11iii95.71 (3)O22i—K9—O24165.65 (3)
O17xiii—K3—O286.06 (3)O3—K9—O24105.39 (3)
O22i—K3—O296.21 (3)O22i—K9—O16101.07 (4)
O11iii—K3—O2138.28 (3)O3—K9—O16169.42 (3)
O17xiii—K3—O21i88.37 (3)O24—K9—O1664.73 (3)
O22i—K3—O21i54.13 (3)O22i—K9—O15xiv104.22 (3)
O11iii—K3—O21i137.29 (3)O3—K9—O15xiv75.10 (3)
O2—K3—O21i80.11 (3)O24—K9—O15xiv77.10 (3)
O17xiii—K3—O3124.84 (3)O16—K9—O15xiv98.19 (3)
O22i—K3—O384.42 (4)O22i—K9—O12i112.94 (3)
O11iii—K3—O389.56 (3)O3—K9—O12i87.10 (3)
O2—K3—O352.20 (3)O24—K9—O12i71.65 (3)
O21i—K3—O3113.19 (3)O16—K9—O12i92.90 (3)
O19iv—K4—O5iii95.09 (3)O15xiv—K9—O12i138.23 (3)
O19iv—K4—O685.91 (3)O22i—K9—O23i48.17 (2)
O5iii—K4—O6175.02 (3)O3—K9—O23i101.27 (3)
O19iv—K4—O19xiii80.50 (3)O24—K9—O23i129.23 (3)
O5iii—K4—O19xiii90.82 (4)O16—K9—O23i88.46 (3)
O6—K4—O19xiii94.15 (4)O15xiv—K9—O23i152.38 (2)
O19iv—K4—O1vii86.01 (3)O12i—K9—O23i67.43 (2)
O5iii—K4—O1vii79.67 (4)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z+1; (v) x+1, y1/2, z+1/2; (vi) x, y+1/2, z+1/2; (vii) x+1, y+1/2, z+1/2; (viii) x, y+3/2, z+1/2; (ix) x, y1/2, z+1/2; (x) x, y+1, z; (xi) x, y1, z; (xii) x, y, z+1; (xiii) x, y, z1; (xiv) x, y+1/2, z+1/2; (xv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaK9Al3(PO4)6
Mr1002.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)20.289 (4), 9.835 (2), 13.521 (3)
β (°) 100.56 (3)
V3)2652.2 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.02
Crystal size (mm)0.26 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART 1000
Absorption correctionNumerical
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.622, 0.713
No. of measured, independent and
observed [I > 2σ(I)] reflections
35263, 11751, 10169
Rint0.028
(sin θ/λ)max1)0.834
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.059, 1.10
No. of reflections11751
No. of parameters380
Δρmax, Δρmin (e Å3)0.54, 0.52

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), CrystalStructure (Rigaku/MSC, 2005).

Characterization of K—O coordination spheres; coordination number as well as minimal and maximal distances (Å) within the coordination spheres for each K atom are given. top
atom Kcoord. numberK—O distances (Å)
K182.6202 (10)–3.2026 (12)
K272.5994 (9)–2.9721 (10)
K362.6337 (11)–2.9790 (11)
K462.7005 (10)–3.0451 (10)
K582.6787 (9)–3.3087 (12)
K672.6690 (10)–3.0404 (9)
K772.6369 (9)–3.0973 (10)
K872.5736 (9)–3.0747 (10)
K972.6965 (9)–3.3094 (11)
Characterization of K—O coordination spheres; the minimal and maximal K—O distances (Å) for the terminal and bridging oxygens (there is only one bridging oxygen in the coordination spheres of K2, K3, and K8). top
atom KK—Oterminal / K—Obridge distances (Å)
K12.6202 (12)–3.2027 (18) / 3.0287 (14)–3.1684 (16)
K22.5994 (12)–2.9722 (14) / 2.8588 (14)
K32.6337 (13)–2.9790 (14) / 2.8348 (13)
K42.7006 (13)–2.7762 (15) / 2.9576 (15)–3.0451 (13)
K52.6787 (11)–3.3088 (19) / 3.1012 (15)–3.2476 (15)
K62.6690 (14)–2.9869 (16) / 2.8236 (13)–3.0405 (13)
K72.6368 (12)–2.9005 (15) / 2.7891 (14)–3.0974 (13)
K82.5737 (12)–3.0747 (13) / 2.9491 (13)
K92.6965 (2)–2.8865 (13) / 2.9783 (12)–3.3095 (16)
 

Footnotes

Current address: Graduate School of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China.

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China under grant No. 50672104.

References

First citationAguilo, M. & Wuensdregt, C. F. (1985). J. Cryst. Growth, 83, 549–559  CrossRef Web of Science Google Scholar
First citationBarone, J. P. & Nancollas, G. H. (1978). J. Dent. Res. 57, 735–742.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDickinson, M. R., Gloster, L. A. W., Hopps, N. W. & King, T. A. (1996). Opt. Commun. 132, 275–278.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMasse, R. & Grenier, J. C. (1971). Bull. Soc. Fr. Mineral. Cristallogr. 94, 437–439.  CAS Google Scholar
First citationNandini Devi, R. & Vidyasagar, K. (2000). Inorg. Chem. 39, 2391–2396.  CrossRef PubMed CAS Google Scholar
First citationNg, H. N. & Calvo, C. (1973). Can. J. Chem. 51, 2613–2620.  CrossRef CAS Web of Science Google Scholar
First citationNoor, J. W. & Dam, B. (1986). J. Cryst. Growth, 76, 243–250.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds