inorganic compounds
Nonapotassium trialuminium hexaphosphate
aKey Laboratory of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
*Correspondence e-mail: bccrd@mail.ipc.ac.cn
In the title compound, K9Al3(PO4)6, the anionic is built of interlinked [PO4] and [AlO4] tetrahedra. Each O atom of the [AlO4] tetrahedron is common to a positionally different [PO4] tetrahedron; thus, each [AlO4] tetrahedron is surrounded by four positionally different [PO4] tetrahedra. On the other hand, each [PO4] tetrahedron shares its two O atoms with two positionally different [AlO4] tetrahedra; the other two phosphate O atoms are terminal ones coordinated by K atoms. The terminal O atoms are usually closer to the K atoms than the bridging O atoms between the [AlO4] and [PO4] tetrahedra. There are nine symmetry-independent K atoms in the structure. The coordination numbers of the K atoms are 6 or 7 or 8 up to a distance of 3.31 Å. There are channels in the anionic oriented along the [10] direction that are filled by K atoms.
Related literature
For applications of metal phosphates, see: Barone & Nancollas (1978); Dickinson et al. (1996). For non-centrosymmetric phosphates with non-linear optical properties, see: Noor & Dam (1986); Aguilo & Wuensdregt (1985); Masse & Grenier (1971). For the non-centrosymmetric structures of A3Al2(PO4)3 (A = K, Rb and Tl), which have three-dimensional [Al2P3O12]3− frameworks, see: Nandini Devi & Vidyasagar (2000). For the structure of KAlP2O7, see: Ng & Calvo (1973);
Experimental
Crystal data
|
Refinement
|
|
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).
Supporting information
https://doi.org/10.1107/S160053681001305X/fb2181sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681001305X/fb2181Isup2.hkl
Single crystals of K9Al3(PO4)6 have been obtained by the high temperature solution method in a
furnace. Starting materials of the analytical grade KH2PO4 (136.15 g) and K2CO3 (69.03 g), high purity Al2O3 (51.08 g) and KF (58.33 g), in the respective molar ratio 2:1:1:2, were mixed and melt in a platinum crucible with a diameter of 60 mm and a height of 60 mm at 1273 K. The solution was stirred with a platinum plate for 24 hours. After the solution had been cooled to 1123 K at a rate of 10 Kh-1, a platinum wire attached to an alumina shaft was slowly dipped into the solution, which was then followed by a slow cooling at the rate of 0.5 Kh-1. Thus, a few colourless, transparent plate K9Al3(PO4)6 crystals with typical size of 3 × 3 × 0.5 mm crystallized on the platinum wire. After one week, the crystals were drawn out from the solution at 1050 K and cooled down to room temperature at the rate of 10 Kh-1.All the atomic have been refined anisotropically. The maximal (0.542 eÅ-3) and minimal (-0.519 eÅ-3) electron density peaks are situated 0.67 Å from O16 and 0.56 Å from P4, respectively.
Various metal phosphates have been widely used due to their good optical and chemical properties. For example, Ca5(PO4)3F has been used in dentistry (Barone & Nancollas, 1978) and Sr5(PO4)3F (Dickinson et al., 1996) has been used as a laser crystal in laser technology. Especially, some non-centrosymmetric phosphates have been used as important crystals with nonlinear optical properties, such as KH2PO4 (KDP) (Noor & Dam, 1986), NH4H2PO4 (ADP) (Aguilo & Wuensdregt, 1985) and KTiOPO4 (KTP) (Masse & Grenier, 1971). Aluminophosphates have attracted much attention because of their diverse structures.
Aluminophosphates contain 1D, 2D or 3D infinite frameworks with varying chemical composition. Nandini Devi & Vidyasagar (2000) reported non-centrosymmetric structures of A3Al2(PO4)3 (A=K, Rb and Tl). These compounds have 3D [Al2P3O12]3- frameworks. The latter study has inspired us to investigate the A2O—Al2O3—P2O5 (A=K, Rb, Cs) system in order to search for new functional materials. As a result of our study a new aluminophosphate, the title structure K9Al3(PO4)6, has been discovered.
In K9Al3(PO4)6, all the aluminium and phosphorus atoms adopt the tetrahedral coordination. Each [AlO4] tetrahedron shares each of its O atoms with a positionally different neighbour [PO4] tetrahedron, while each [PO4] tetrahedron shares its two O atoms with two different neighbour [AlO4] tetrahedral. There are two pairs of chemically different O atoms around the P atoms: The terminal and the bridging oxygens that are involved in P-O-Al connections (Fig. 1). The P-O distance to the bridging oxygens vary in the interval 1.5645 (10) - 1.5881 (8) Å, while the P-O distances to the terminal oxygens are in the interval 1.4993 (10) - 1.5087 (9) Å.
There are channels in the anionic 1] (Fig. 2). These channels are filled by K atoms (Fig. 3). The coordination numbers of K atoms are 6 or 7 or 8 up to the distance 3.31 Å (Tab. 1). The terminal phosphate oxygens tend to be closer to K atoms than the bridging ones (Tab. 2).
along [1 0For related literature, see: Nandini Devi & Vidyasagar (2000); Ng & Calvo (1973).
For related literature, see: Aguilo & Wuensdregt (1985); Barone & Nancollas (1978); Dickinson et al. (1996); Masse & Grenier (1971); Noor & Dam (1986).
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).K9Al3(PO4)6 | F(000) = 1968 |
Mr = 1002.66 | Dx = 2.511 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 11243 reflections |
a = 20.289 (4) Å | θ = 1.5–36.1° |
b = 9.835 (2) Å | µ = 2.02 mm−1 |
c = 13.521 (3) Å | T = 113 K |
β = 100.56 (3)° | Block, colorless |
V = 2652.2 (9) Å3 | 0.26 × 0.20 × 0.18 mm |
Z = 4 |
Bruker SMART 1000 diffractometer | 11751 independent reflections |
Radiation source: rotating anode | 10169 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.028 |
Detector resolution: 7.31 pixels mm-1 | θmax = 36.4°, θmin = 2.0° |
ω and φ scans | h = −32→32 |
Absorption correction: numerical (CrystalClear; Rigaku/MSC, 2005) | k = −15→14 |
Tmin = 0.622, Tmax = 0.713 | l = −21→21 |
35263 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | w = 1/[σ2(Fo2) + (0.0289P)2 + 0.2004P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.059 | (Δ/σ)max = 0.002 |
S = 1.10 | Δρmax = 0.54 e Å−3 |
11751 reflections | Δρmin = −0.52 e Å−3 |
380 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0094 (3) |
0 constraints |
K9Al3(PO4)6 | V = 2652.2 (9) Å3 |
Mr = 1002.66 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 20.289 (4) Å | µ = 2.02 mm−1 |
b = 9.835 (2) Å | T = 113 K |
c = 13.521 (3) Å | 0.26 × 0.20 × 0.18 mm |
β = 100.56 (3)° |
Bruker SMART 1000 diffractometer | 11751 independent reflections |
Absorption correction: numerical (CrystalClear; Rigaku/MSC, 2005) | 10169 reflections with I > 2σ(I) |
Tmin = 0.622, Tmax = 0.713 | Rint = 0.028 |
35263 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 380 parameters |
wR(F2) = 0.059 | 0 restraints |
S = 1.10 | Δρmax = 0.54 e Å−3 |
11751 reflections | Δρmin = −0.52 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.298252 (13) | 0.34947 (3) | 0.33480 (2) | 0.00581 (5) | |
P2 | 0.533853 (13) | 0.58644 (3) | 0.36009 (2) | 0.00594 (5) | |
P3 | 0.187195 (13) | 0.57954 (3) | 0.69175 (2) | 0.00569 (5) | |
P4 | −0.043493 (13) | 0.14690 (3) | 0.10689 (2) | 0.00566 (5) | |
P5 | 0.356473 (13) | 0.65268 (3) | 0.99111 (2) | 0.00556 (5) | |
P6 | 0.134551 (13) | 0.14154 (3) | 0.50989 (2) | 0.00546 (5) | |
Al1 | 0.089399 (16) | 0.07540 (3) | 0.02839 (2) | 0.00532 (6) | |
Al2 | 0.248584 (16) | 0.06371 (3) | 0.38928 (2) | 0.00494 (6) | |
Al3 | 0.404521 (16) | 0.56335 (3) | 0.44487 (2) | 0.00506 (6) | |
O1 | 0.30136 (4) | 0.20134 (8) | 0.37989 (6) | 0.01040 (14) | |
O2 | 0.30827 (5) | 0.34641 (8) | 0.22768 (6) | 0.01385 (16) | |
O3 | 0.23519 (4) | 0.41939 (8) | 0.35084 (7) | 0.01469 (16) | |
O4 | 0.36066 (5) | 0.41798 (8) | 0.40128 (7) | 0.01553 (18) | |
O5 | 0.57090 (4) | 0.71131 (8) | 0.40329 (6) | 0.01132 (15) | |
O6 | 0.54290 (4) | 0.54825 (8) | 0.25534 (6) | 0.00961 (14) | |
O7 | 0.45662 (4) | 0.60301 (9) | 0.35924 (6) | 0.01063 (14) | |
O8 | 0.55470 (4) | 0.45990 (7) | 0.43131 (6) | 0.00885 (14) | |
O9 | 0.24384 (4) | 0.56940 (8) | 0.63432 (6) | 0.01142 (15) | |
O10 | 0.11777 (4) | 0.54245 (7) | 0.62321 (6) | 0.00823 (14) | |
O11 | 0.17814 (4) | 0.71622 (8) | 0.73771 (6) | 0.01017 (14) | |
O12 | 0.19385 (4) | 0.46544 (8) | 0.77559 (6) | 0.00888 (14) | |
O13 | −0.09231 (4) | 0.25724 (7) | 0.06586 (6) | 0.00840 (13) | |
O14 | 0.01158 (4) | 0.14074 (7) | 0.03954 (6) | 0.00818 (14) | |
O15 | −0.07987 (4) | 0.00350 (7) | 0.09080 (6) | 0.00757 (13) | |
O16 | −0.01117 (4) | 0.16378 (8) | 0.21565 (6) | 0.01014 (14) | |
O17 | 0.34118 (4) | 0.65873 (8) | 1.09580 (6) | 0.01213 (15) | |
O18 | 0.35063 (4) | 0.79852 (7) | 0.94185 (6) | 0.00881 (14) | |
O19 | 0.42285 (4) | 0.58847 (8) | 0.98471 (7) | 0.01214 (15) | |
O20 | 0.29847 (4) | 0.57812 (8) | 0.91867 (6) | 0.01111 (15) | |
O21 | 0.20437 (4) | 0.09364 (8) | 0.48639 (6) | 0.00835 (13) | |
O22 | 0.11949 (4) | 0.05905 (7) | 0.59700 (6) | 0.00888 (14) | |
O23 | 0.14854 (4) | 0.29353 (7) | 0.54464 (6) | 0.00891 (14) | |
O24 | 0.08212 (4) | 0.14116 (8) | 0.41564 (6) | 0.01017 (14) | |
K1 | 0.287854 (12) | 0.17131 (2) | 0.079146 (18) | 0.00949 (4) | |
K2 | 0.420108 (12) | 0.44811 (2) | 0.178588 (19) | 0.01038 (4) | |
K3 | 0.233669 (12) | 0.57239 (2) | 0.160286 (19) | 0.01005 (4) | |
K4 | 0.551481 (12) | 0.66477 (2) | 0.075535 (18) | 0.00984 (4) | |
K5 | 0.370503 (13) | 0.84243 (2) | 0.243608 (19) | 0.01203 (5) | |
K6 | 0.054431 (12) | 0.67635 (2) | 0.106782 (18) | 0.00886 (4) | |
K7 | 0.213027 (11) | 0.66267 (2) | 0.427477 (18) | 0.00950 (4) | |
K8 | 0.058558 (12) | 0.93957 (2) | 0.292875 (18) | 0.01007 (4) | |
K9 | 0.116931 (12) | 0.29859 (2) | 0.266699 (19) | 0.01164 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.00581 (11) | 0.00550 (10) | 0.00599 (12) | −0.00069 (8) | 0.00070 (9) | −0.00048 (8) |
P2 | 0.00578 (11) | 0.00678 (10) | 0.00535 (11) | 0.00080 (8) | 0.00123 (9) | 0.00050 (8) |
P3 | 0.00625 (11) | 0.00554 (10) | 0.00511 (11) | −0.00021 (8) | 0.00058 (9) | 0.00017 (8) |
P4 | 0.00518 (11) | 0.00625 (10) | 0.00552 (11) | −0.00004 (8) | 0.00088 (8) | −0.00072 (8) |
P5 | 0.00535 (11) | 0.00497 (10) | 0.00632 (12) | −0.00068 (8) | 0.00096 (9) | −0.00019 (8) |
P6 | 0.00536 (11) | 0.00549 (10) | 0.00549 (11) | 0.00029 (8) | 0.00088 (8) | 0.00015 (8) |
Al1 | 0.00504 (13) | 0.00500 (12) | 0.00582 (14) | −0.00004 (9) | 0.00069 (11) | −0.00028 (10) |
Al2 | 0.00504 (13) | 0.00437 (12) | 0.00522 (14) | 0.00060 (9) | 0.00042 (10) | −0.00012 (10) |
Al3 | 0.00478 (13) | 0.00426 (12) | 0.00582 (14) | 0.00029 (9) | 0.00011 (10) | −0.00015 (10) |
O1 | 0.0108 (3) | 0.0065 (3) | 0.0133 (4) | −0.0026 (2) | 0.0007 (3) | 0.0015 (3) |
O2 | 0.0213 (4) | 0.0131 (4) | 0.0086 (4) | 0.0002 (3) | 0.0065 (3) | 0.0005 (3) |
O3 | 0.0110 (4) | 0.0129 (4) | 0.0217 (5) | 0.0031 (3) | 0.0072 (3) | −0.0006 (3) |
O4 | 0.0157 (4) | 0.0068 (3) | 0.0195 (4) | −0.0029 (3) | −0.0091 (3) | 0.0002 (3) |
O5 | 0.0147 (4) | 0.0073 (3) | 0.0115 (4) | −0.0024 (3) | 0.0013 (3) | 0.0000 (3) |
O6 | 0.0100 (3) | 0.0133 (3) | 0.0060 (3) | 0.0015 (3) | 0.0026 (3) | −0.0003 (3) |
O7 | 0.0071 (3) | 0.0172 (4) | 0.0079 (4) | 0.0033 (3) | 0.0023 (3) | 0.0021 (3) |
O8 | 0.0114 (3) | 0.0071 (3) | 0.0071 (3) | 0.0011 (2) | −0.0006 (3) | 0.0011 (3) |
O9 | 0.0096 (3) | 0.0145 (4) | 0.0112 (4) | −0.0004 (3) | 0.0045 (3) | −0.0001 (3) |
O10 | 0.0077 (3) | 0.0085 (3) | 0.0073 (3) | 0.0005 (2) | −0.0018 (3) | −0.0011 (3) |
O11 | 0.0130 (4) | 0.0069 (3) | 0.0100 (4) | 0.0001 (3) | 0.0004 (3) | −0.0022 (3) |
O12 | 0.0094 (3) | 0.0087 (3) | 0.0073 (3) | −0.0019 (2) | −0.0016 (3) | 0.0030 (3) |
O13 | 0.0081 (3) | 0.0079 (3) | 0.0094 (3) | 0.0018 (2) | 0.0020 (3) | 0.0008 (3) |
O14 | 0.0064 (3) | 0.0083 (3) | 0.0108 (4) | 0.0005 (2) | 0.0042 (3) | 0.0004 (3) |
O15 | 0.0091 (3) | 0.0068 (3) | 0.0072 (3) | −0.0023 (2) | 0.0026 (3) | −0.0008 (2) |
O16 | 0.0112 (4) | 0.0116 (3) | 0.0069 (4) | 0.0002 (3) | −0.0004 (3) | −0.0022 (3) |
O17 | 0.0165 (4) | 0.0117 (3) | 0.0093 (4) | −0.0007 (3) | 0.0054 (3) | 0.0000 (3) |
O18 | 0.0083 (3) | 0.0057 (3) | 0.0119 (4) | −0.0020 (2) | 0.0005 (3) | 0.0018 (3) |
O19 | 0.0080 (3) | 0.0113 (3) | 0.0175 (4) | 0.0025 (3) | 0.0033 (3) | 0.0004 (3) |
O20 | 0.0107 (3) | 0.0078 (3) | 0.0130 (4) | −0.0045 (3) | −0.0027 (3) | 0.0008 (3) |
O21 | 0.0077 (3) | 0.0107 (3) | 0.0070 (3) | 0.0023 (2) | 0.0022 (3) | 0.0001 (3) |
O22 | 0.0101 (3) | 0.0092 (3) | 0.0078 (3) | −0.0004 (2) | 0.0028 (3) | 0.0015 (3) |
O23 | 0.0072 (3) | 0.0051 (3) | 0.0139 (4) | 0.0009 (2) | 0.0006 (3) | −0.0007 (3) |
O24 | 0.0083 (3) | 0.0133 (3) | 0.0079 (4) | 0.0006 (3) | −0.0011 (3) | −0.0007 (3) |
K1 | 0.00909 (9) | 0.00962 (9) | 0.00989 (10) | −0.00004 (7) | 0.00210 (8) | 0.00004 (7) |
K2 | 0.01006 (9) | 0.00876 (9) | 0.01141 (11) | −0.00028 (7) | −0.00044 (8) | −0.00135 (8) |
K3 | 0.00859 (9) | 0.00980 (9) | 0.01165 (11) | −0.00057 (7) | 0.00156 (8) | −0.00163 (8) |
K4 | 0.01018 (9) | 0.01036 (9) | 0.00913 (10) | −0.00115 (7) | 0.00219 (8) | 0.00072 (7) |
K5 | 0.01415 (11) | 0.01086 (10) | 0.01155 (11) | −0.00281 (7) | 0.00362 (8) | −0.00148 (8) |
K6 | 0.00872 (9) | 0.00997 (9) | 0.00819 (10) | 0.00093 (7) | 0.00236 (7) | 0.00127 (7) |
K7 | 0.00723 (9) | 0.01039 (9) | 0.01103 (10) | 0.00059 (7) | 0.00207 (8) | 0.00037 (7) |
K8 | 0.01277 (10) | 0.00765 (9) | 0.01026 (10) | 0.00019 (7) | 0.00335 (8) | 0.00097 (7) |
K9 | 0.01126 (10) | 0.01316 (10) | 0.01026 (10) | −0.00163 (7) | 0.00134 (8) | 0.00316 (8) |
P1—O2 | 1.4993 (10) | O16—K6ix | 2.7060 (11) |
P1—O3 | 1.5030 (9) | O16—K8xi | 2.7225 (10) |
P1—O4 | 1.5645 (10) | O16—K8ix | 2.8730 (10) |
P1—O1 | 1.5760 (8) | O16—K9 | 2.8864 (10) |
P2—O5 | 1.5011 (9) | O17—K3xii | 2.6337 (11) |
P2—O6 | 1.5087 (9) | O17—K5xii | 2.6788 (10) |
P2—O7 | 1.5734 (9) | O17—K2xii | 2.7296 (10) |
P2—O8 | 1.5829 (8) | O18—Al3viii | 1.7396 (8) |
P3—O9 | 1.5036 (10) | O18—K7viii | 2.7891 (10) |
P3—O11 | 1.5062 (8) | O18—K5viii | 3.1088 (10) |
P3—O10 | 1.5803 (9) | O19—K4iv | 2.7005 (10) |
P3—O12 | 1.5831 (8) | O19—K4xii | 2.7761 (11) |
P4—O13 | 1.5049 (8) | O19—K2xii | 2.9721 (10) |
P4—O16 | 1.5056 (9) | O19—K5viii | 3.3087 (12) |
P4—O14 | 1.5667 (9) | O20—Al2vi | 1.7264 (8) |
P4—O15 | 1.5881 (8) | O20—K7viii | 3.0973 (10) |
P5—O19 | 1.5043 (9) | O20—K5viii | 3.1013 (12) |
P5—O17 | 1.5049 (9) | O21—K3vi | 2.8347 (9) |
P5—O20 | 1.5682 (9) | O21—K1vi | 3.0012 (10) |
P5—O18 | 1.5767 (8) | O22—K3vi | 2.6539 (10) |
P6—O24 | 1.5029 (10) | O22—K6vi | 2.6802 (9) |
P6—O22 | 1.5068 (9) | O22—K9vi | 2.6965 (9) |
P6—O23 | 1.5770 (8) | O23—Al1vi | 1.7472 (8) |
P6—O21 | 1.5794 (9) | O23—K1vi | 2.8007 (10) |
Al1—O14 | 1.7366 (9) | O23—K9vi | 3.3094 (11) |
Al1—O10i | 1.7457 (9) | O24—K8xi | 2.5736 (9) |
Al1—O23i | 1.7472 (8) | O24—K9 | 2.7337 (10) |
Al1—O15ii | 1.7671 (9) | O24—K6ix | 2.7531 (10) |
Al2—O20i | 1.7264 (8) | K1—O9i | 2.6837 (10) |
Al2—O1 | 1.7449 (9) | K1—O23i | 2.8007 (10) |
Al2—O21 | 1.7457 (10) | K1—O5v | 2.8591 (11) |
Al2—O12i | 1.7472 (10) | K1—O21i | 3.0012 (10) |
Al3—O4 | 1.7295 (9) | K1—O1i | 3.0286 (10) |
Al3—O18iii | 1.7396 (8) | K1—O4i | 3.1684 (13) |
Al3—O8iv | 1.7411 (10) | K1—O3i | 3.2026 (12) |
Al3—O7 | 1.7490 (10) | K2—O5v | 2.5994 (9) |
O1—K4v | 2.9576 (11) | K2—O17xiii | 2.7296 (10) |
O1—K1vi | 3.0286 (10) | K2—O19xiii | 2.9721 (10) |
O2—K1 | 2.6202 (10) | K3—O17xiii | 2.6337 (11) |
O2—K2 | 2.6725 (11) | K3—O22i | 2.6539 (10) |
O2—K3 | 2.7486 (10) | K3—O11iii | 2.6683 (9) |
O3—K7 | 2.6779 (10) | K3—O21i | 2.8347 (9) |
O3—K9 | 2.7316 (11) | K4—O19iv | 2.7005 (10) |
O3—K3 | 2.9790 (11) | K4—O5iii | 2.7205 (10) |
O3—K1vi | 3.2026 (12) | K4—O19xiii | 2.7761 (11) |
O4—K4v | 3.0451 (10) | K4—O1vii | 2.9576 (11) |
O4—K1vi | 3.1684 (13) | K4—O4vii | 3.0451 (10) |
O5—K2vii | 2.5994 (9) | K5—O6vii | 2.6787 (9) |
O5—K4viii | 2.7205 (10) | K5—O17xiii | 2.6788 (10) |
O5—K1vii | 2.8591 (11) | K5—O9iii | 2.8544 (12) |
O6—K5v | 2.6787 (9) | K5—O20iii | 3.1013 (12) |
O6—K2 | 2.7029 (11) | K5—O18iii | 3.1088 (10) |
O6—K4 | 2.7219 (9) | K5—O8vii | 3.2476 (11) |
O7—K2 | 2.8587 (10) | K5—O19iii | 3.3087 (12) |
O7—K5 | 3.1685 (10) | K6—O13x | 2.6690 (10) |
O8—Al3iv | 1.7411 (10) | K6—O22i | 2.6803 (9) |
O8—K5v | 3.2476 (11) | K6—O16xiv | 2.7060 (11) |
O9—K1vi | 2.6837 (10) | K6—O24xiv | 2.7531 (10) |
O9—K5viii | 2.8544 (12) | K6—O14x | 2.8235 (10) |
O9—K7 | 2.9005 (11) | K6—O11iii | 2.9867 (12) |
O10—Al1vi | 1.7457 (9) | K6—O10iii | 3.0404 (9) |
O10—K8viii | 2.7834 (11) | K7—O13xiv | 2.6369 (9) |
O10—K6viii | 3.0404 (9) | K7—O18iii | 2.7891 (10) |
O11—K3viii | 2.6683 (9) | K7—O11iii | 2.7995 (10) |
O11—K7viii | 2.7995 (10) | K7—O15xiv | 3.0928 (10) |
O11—K6viii | 2.9867 (12) | K7—O20iii | 3.0973 (10) |
O11—K8viii | 3.0747 (10) | K8—O24xv | 2.5736 (9) |
O12—Al2vi | 1.7472 (10) | K8—O13xiv | 2.6179 (9) |
O12—K8viii | 2.9492 (10) | K8—O16xv | 2.7225 (10) |
O12—K9vi | 3.0206 (9) | K8—O10iii | 2.7834 (11) |
O13—K8ix | 2.6179 (9) | K8—O16xiv | 2.8730 (10) |
O13—K7ix | 2.6369 (9) | K8—O12iii | 2.9492 (10) |
O13—K6x | 2.6690 (10) | K8—O11iii | 3.0747 (10) |
O14—K6x | 2.8235 (10) | K9—O22i | 2.6965 (9) |
O15—Al1ii | 1.7671 (9) | K9—O15xiv | 2.9782 (9) |
O15—K9ix | 2.9782 (9) | K9—O12i | 3.0206 (9) |
O15—K7ix | 3.0928 (10) | K9—O23i | 3.3094 (11) |
O2—P1—O3 | 114.74 (6) | O6—K4—O1vii | 95.55 (4) |
O2—P1—O4 | 108.96 (6) | O19xiii—K4—O1vii | 162.75 (3) |
O3—P1—O4 | 109.93 (5) | O19iv—K4—O4vii | 130.06 (3) |
O2—P1—O1 | 110.62 (5) | O5iii—K4—O4vii | 63.12 (3) |
O3—P1—O1 | 109.99 (5) | O6—K4—O4vii | 112.61 (3) |
O4—P1—O1 | 101.83 (5) | O19xiii—K4—O4vii | 138.74 (2) |
O5—P2—O6 | 115.50 (5) | O1vii—K4—O4vii | 47.89 (2) |
O5—P2—O7 | 110.19 (5) | O6vii—K5—O17xiii | 124.71 (3) |
O6—P2—O7 | 108.14 (5) | O6vii—K5—O9iii | 107.49 (3) |
O5—P2—O8 | 110.34 (5) | O17xiii—K5—O9iii | 76.28 (3) |
O6—P2—O8 | 108.08 (5) | O6vii—K5—O20iii | 101.89 (3) |
O7—P2—O8 | 103.92 (5) | O17xiii—K5—O20iii | 131.91 (3) |
O9—P3—O11 | 115.78 (5) | O9iii—K5—O20iii | 79.22 (3) |
O9—P3—O10 | 111.44 (5) | O6vii—K5—O18iii | 121.40 (3) |
O11—P3—O10 | 106.55 (4) | O17xiii—K5—O18iii | 107.24 (3) |
O9—P3—O12 | 110.48 (5) | O9iii—K5—O18iii | 109.57 (3) |
O11—P3—O12 | 109.75 (5) | O20iii—K5—O18iii | 45.61 (2) |
O10—P3—O12 | 101.90 (5) | O6vii—K5—O7 | 104.90 (3) |
O13—P4—O16 | 114.83 (5) | O17xiii—K5—O7 | 83.91 (3) |
O13—P4—O14 | 107.75 (5) | O9iii—K5—O7 | 147.55 (2) |
O16—P4—O14 | 110.03 (5) | O20iii—K5—O7 | 96.03 (2) |
O13—P4—O15 | 109.38 (5) | O18iii—K5—O7 | 52.43 (2) |
O16—P4—O15 | 109.88 (5) | O6vii—K5—O8vii | 48.81 (2) |
O14—P4—O15 | 104.43 (4) | O17xiii—K5—O8vii | 76.48 (3) |
O19—P5—O17 | 114.32 (6) | O9iii—K5—O8vii | 90.66 (3) |
O19—P5—O20 | 110.19 (5) | O20iii—K5—O8vii | 144.56 (2) |
O17—P5—O20 | 110.20 (5) | O18iii—K5—O8vii | 159.77 (2) |
O19—P5—O18 | 110.88 (5) | O7—K5—O8vii | 109.55 (3) |
O17—P5—O18 | 110.42 (5) | O6vii—K5—O19iii | 75.39 (3) |
O20—P5—O18 | 99.89 (5) | O17xiii—K5—O19iii | 149.41 (2) |
O24—P6—O22 | 116.61 (5) | O9iii—K5—O19iii | 122.93 (3) |
O24—P6—O23 | 108.41 (4) | O20iii—K5—O19iii | 46.16 (2) |
O22—P6—O23 | 109.19 (5) | O18iii—K5—O19iii | 46.45 (2) |
O24—P6—O21 | 110.50 (5) | O7—K5—O19iii | 67.55 (3) |
O22—P6—O21 | 108.33 (5) | O8vii—K5—O19iii | 122.41 (2) |
O23—P6—O21 | 102.92 (4) | O13x—K6—O22i | 86.84 (3) |
O14—Al1—O10i | 111.38 (5) | O13x—K6—O16xiv | 168.34 (2) |
O14—Al1—O23i | 109.29 (4) | O22i—K6—O16xiv | 104.31 (3) |
O10i—Al1—O23i | 105.73 (4) | O13x—K6—O24xiv | 112.32 (4) |
O14—Al1—O15ii | 107.00 (5) | O22i—K6—O24xiv | 112.38 (3) |
O10i—Al1—O15ii | 110.15 (4) | O16xiv—K6—O24xiv | 66.94 (4) |
O23i—Al1—O15ii | 113.35 (5) | O13x—K6—O14x | 53.63 (3) |
O20i—Al2—O1 | 107.57 (5) | O22i—K6—O14x | 133.66 (3) |
O20i—Al2—O21 | 108.87 (4) | O16xiv—K6—O14x | 117.48 (3) |
O1—Al2—O21 | 109.31 (4) | O24xiv—K6—O14x | 70.39 (3) |
O20i—Al2—O12i | 108.74 (4) | O13x—K6—O11iii | 94.96 (3) |
O1—Al2—O12i | 111.28 (4) | O22i—K6—O11iii | 88.10 (3) |
O21—Al2—O12i | 110.98 (4) | O16xiv—K6—O11iii | 82.20 (3) |
O4—Al3—O18iii | 110.83 (5) | O24xiv—K6—O11iii | 146.01 (3) |
O4—Al3—O8iv | 110.07 (4) | O14x—K6—O11iii | 115.41 (3) |
O18iii—Al3—O8iv | 108.12 (4) | O13x—K6—O10iii | 69.86 (2) |
O4—Al3—O7 | 107.13 (5) | O22i—K6—O10iii | 125.73 (3) |
O18iii—Al3—O7 | 105.30 (4) | O16xiv—K6—O10iii | 100.27 (3) |
O8iv—Al3—O7 | 115.31 (4) | O24xiv—K6—O10iii | 121.72 (2) |
O2—K1—O9i | 112.37 (3) | O14x—K6—O10iii | 67.14 (3) |
O2—K1—O23i | 93.41 (4) | O11iii—K6—O10iii | 48.47 (2) |
O9i—K1—O23i | 77.18 (3) | O13xiv—K7—O3 | 123.45 (3) |
O2—K1—O5v | 80.25 (4) | O13xiv—K7—O18iii | 150.88 (2) |
O9i—K1—O5v | 118.54 (3) | O3—K7—O18iii | 84.97 (3) |
O23i—K1—O5v | 164.26 (2) | O13xiv—K7—O11iii | 78.51 (4) |
O2—K1—O21i | 79.16 (3) | O3—K7—O11iii | 93.31 (3) |
O9i—K1—O21i | 127.19 (3) | O18iii—K7—O11iii | 95.01 (4) |
O23i—K1—O21i | 50.22 (2) | O13xiv—K7—O9 | 96.66 (4) |
O5v—K1—O21i | 114.15 (3) | O3—K7—O9 | 93.94 (3) |
O2—K1—O1i | 112.50 (3) | O18iii—K7—O9 | 86.56 (4) |
O9i—K1—O1i | 134.51 (3) | O11iii—K7—O9 | 172.69 (2) |
O23i—K1—O1i | 93.09 (4) | O13xiv—K7—O15xiv | 51.54 (2) |
O5v—K1—O1i | 76.36 (4) | O3—K7—O15xiv | 73.92 (3) |
O21i—K1—O1i | 56.35 (3) | O18iii—K7—O15xiv | 157.43 (2) |
O2—K1—O4i | 137.20 (3) | O11iii—K7—O15xiv | 94.11 (3) |
O9i—K1—O4i | 101.05 (3) | O9—K7—O15xiv | 87.00 (3) |
O23i—K1—O4i | 120.30 (3) | O13xiv—K7—O20iii | 103.94 (3) |
O5v—K1—O4i | 60.10 (3) | O3—K7—O20iii | 125.85 (3) |
O21i—K1—O4i | 101.67 (3) | O18iii—K7—O20iii | 47.93 (2) |
O1i—K1—O4i | 46.26 (2) | O11iii—K7—O20iii | 70.36 (3) |
O2—K1—O3i | 154.13 (3) | O9—K7—O20iii | 105.91 (3) |
O9i—K1—O3i | 87.31 (3) | O15xiv—K7—O20iii | 154.20 (2) |
O23i—K1—O3i | 74.07 (4) | O24xv—K8—O13xiv | 93.69 (3) |
O5v—K1—O3i | 105.70 (4) | O24xv—K8—O16xv | 69.23 (3) |
O21i—K1—O3i | 75.45 (3) | O13xiv—K8—O16xv | 151.96 (3) |
O1i—K1—O3i | 47.66 (2) | O24xv—K8—O10iii | 115.18 (3) |
O4i—K1—O3i | 46.44 (3) | O13xiv—K8—O10iii | 123.38 (3) |
O5v—K2—O2 | 84.23 (3) | O16xv—K8—O10iii | 84.54 (3) |
O5v—K2—O6 | 110.99 (3) | O24xv—K8—O16xiv | 140.75 (3) |
O2—K2—O6 | 143.69 (3) | O13xiv—K8—O16xiv | 54.79 (3) |
O5v—K2—O17xiii | 125.94 (3) | O16xv—K8—O16xiv | 127.063 (19) |
O2—K2—O17xiii | 85.69 (3) | O10iii—K8—O16xiv | 102.63 (2) |
O6—K2—O17xiii | 108.13 (3) | O24xv—K8—O12iii | 75.02 (3) |
O5v—K2—O7 | 144.48 (3) | O13xiv—K8—O12iii | 98.75 (3) |
O2—K2—O7 | 94.94 (3) | O16xv—K8—O12iii | 97.98 (3) |
O6—K2—O7 | 53.24 (3) | O10iii—K8—O12iii | 50.65 (3) |
O17xiii—K2—O7 | 89.24 (3) | O16xiv—K8—O12iii | 127.26 (2) |
O5v—K2—O19xiii | 91.51 (3) | O24xv—K8—O11iii | 118.61 (3) |
O2—K2—O19xiii | 123.16 (3) | O13xiv—K8—O11iii | 73.93 (3) |
O6—K2—O19xiii | 90.25 (3) | O16xv—K8—O11iii | 133.49 (3) |
O17xiii—K2—O19xiii | 52.44 (3) | O10iii—K8—O11iii | 49.66 (3) |
O7—K2—O19xiii | 117.53 (3) | O16xiv—K8—O11iii | 78.05 (3) |
O17xiii—K3—O22i | 141.01 (3) | O12iii—K8—O11iii | 49.56 (2) |
O17xiii—K3—O11iii | 108.28 (3) | O22i—K9—O3 | 88.63 (4) |
O22i—K3—O11iii | 95.71 (3) | O22i—K9—O24 | 165.65 (3) |
O17xiii—K3—O2 | 86.06 (3) | O3—K9—O24 | 105.39 (3) |
O22i—K3—O2 | 96.21 (3) | O22i—K9—O16 | 101.07 (4) |
O11iii—K3—O2 | 138.28 (3) | O3—K9—O16 | 169.42 (3) |
O17xiii—K3—O21i | 88.37 (3) | O24—K9—O16 | 64.73 (3) |
O22i—K3—O21i | 54.13 (3) | O22i—K9—O15xiv | 104.22 (3) |
O11iii—K3—O21i | 137.29 (3) | O3—K9—O15xiv | 75.10 (3) |
O2—K3—O21i | 80.11 (3) | O24—K9—O15xiv | 77.10 (3) |
O17xiii—K3—O3 | 124.84 (3) | O16—K9—O15xiv | 98.19 (3) |
O22i—K3—O3 | 84.42 (4) | O22i—K9—O12i | 112.94 (3) |
O11iii—K3—O3 | 89.56 (3) | O3—K9—O12i | 87.10 (3) |
O2—K3—O3 | 52.20 (3) | O24—K9—O12i | 71.65 (3) |
O21i—K3—O3 | 113.19 (3) | O16—K9—O12i | 92.90 (3) |
O19iv—K4—O5iii | 95.09 (3) | O15xiv—K9—O12i | 138.23 (3) |
O19iv—K4—O6 | 85.91 (3) | O22i—K9—O23i | 48.17 (2) |
O5iii—K4—O6 | 175.02 (3) | O3—K9—O23i | 101.27 (3) |
O19iv—K4—O19xiii | 80.50 (3) | O24—K9—O23i | 129.23 (3) |
O5iii—K4—O19xiii | 90.82 (4) | O16—K9—O23i | 88.46 (3) |
O6—K4—O19xiii | 94.15 (4) | O15xiv—K9—O23i | 152.38 (2) |
O19iv—K4—O1vii | 86.01 (3) | O12i—K9—O23i | 67.43 (2) |
O5iii—K4—O1vii | 79.67 (4) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y, −z; (iii) x, −y+3/2, z−1/2; (iv) −x+1, −y+1, −z+1; (v) −x+1, y−1/2, −z+1/2; (vi) x, −y+1/2, z+1/2; (vii) −x+1, y+1/2, −z+1/2; (viii) x, −y+3/2, z+1/2; (ix) −x, y−1/2, −z+1/2; (x) −x, −y+1, −z; (xi) x, y−1, z; (xii) x, y, z+1; (xiii) x, y, z−1; (xiv) −x, y+1/2, −z+1/2; (xv) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | K9Al3(PO4)6 |
Mr | 1002.66 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 113 |
a, b, c (Å) | 20.289 (4), 9.835 (2), 13.521 (3) |
β (°) | 100.56 (3) |
V (Å3) | 2652.2 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.02 |
Crystal size (mm) | 0.26 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART 1000 |
Absorption correction | Numerical (CrystalClear; Rigaku/MSC, 2005) |
Tmin, Tmax | 0.622, 0.713 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 35263, 11751, 10169 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.834 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.059, 1.10 |
No. of reflections | 11751 |
No. of parameters | 380 |
Δρmax, Δρmin (e Å−3) | 0.54, −0.52 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), CrystalStructure (Rigaku/MSC, 2005).
atom K | coord. number | K—O distances (Å) |
K1 | 8 | 2.6202 (10)–3.2026 (12) |
K2 | 7 | 2.5994 (9)–2.9721 (10) |
K3 | 6 | 2.6337 (11)–2.9790 (11) |
K4 | 6 | 2.7005 (10)–3.0451 (10) |
K5 | 8 | 2.6787 (9)–3.3087 (12) |
K6 | 7 | 2.6690 (10)–3.0404 (9) |
K7 | 7 | 2.6369 (9)–3.0973 (10) |
K8 | 7 | 2.5736 (9)–3.0747 (10) |
K9 | 7 | 2.6965 (9)–3.3094 (11) |
atom K | K—Oterminal / K—Obridge distances (Å) |
K1 | 2.6202 (12)–3.2027 (18) / 3.0287 (14)–3.1684 (16) |
K2 | 2.5994 (12)–2.9722 (14) / 2.8588 (14) |
K3 | 2.6337 (13)–2.9790 (14) / 2.8348 (13) |
K4 | 2.7006 (13)–2.7762 (15) / 2.9576 (15)–3.0451 (13) |
K5 | 2.6787 (11)–3.3088 (19) / 3.1012 (15)–3.2476 (15) |
K6 | 2.6690 (14)–2.9869 (16) / 2.8236 (13)–3.0405 (13) |
K7 | 2.6368 (12)–2.9005 (15) / 2.7891 (14)–3.0974 (13) |
K8 | 2.5737 (12)–3.0747 (13) / 2.9491 (13) |
K9 | 2.6965 (2)–2.8865 (13) / 2.9783 (12)–3.3095 (16) |
Footnotes
‡Current address: Graduate School of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China.
Acknowledgements
This work was supported financially by the National Natural Science Foundation of China under grant No. 50672104.
References
Aguilo, M. & Wuensdregt, C. F. (1985). J. Cryst. Growth, 83, 549–559 CrossRef Web of Science Google Scholar
Barone, J. P. & Nancollas, G. H. (1978). J. Dent. Res. 57, 735–742. CrossRef CAS PubMed Web of Science Google Scholar
Dickinson, M. R., Gloster, L. A. W., Hopps, N. W. & King, T. A. (1996). Opt. Commun. 132, 275–278. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Masse, R. & Grenier, J. C. (1971). Bull. Soc. Fr. Mineral. Cristallogr. 94, 437–439. CAS Google Scholar
Nandini Devi, R. & Vidyasagar, K. (2000). Inorg. Chem. 39, 2391–2396. CrossRef PubMed CAS Google Scholar
Ng, H. N. & Calvo, C. (1973). Can. J. Chem. 51, 2613–2620. CrossRef CAS Web of Science Google Scholar
Noor, J. W. & Dam, B. (1986). J. Cryst. Growth, 76, 243–250. CrossRef CAS Web of Science Google Scholar
Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Various metal phosphates have been widely used due to their good optical and chemical properties. For example, Ca5(PO4)3F has been used in dentistry (Barone & Nancollas, 1978) and Sr5(PO4)3F (Dickinson et al., 1996) has been used as a laser crystal in laser technology. Especially, some non-centrosymmetric phosphates have been used as important crystals with nonlinear optical properties, such as KH2PO4 (KDP) (Noor & Dam, 1986), NH4H2PO4 (ADP) (Aguilo & Wuensdregt, 1985) and KTiOPO4 (KTP) (Masse & Grenier, 1971). Aluminophosphates have attracted much attention because of their diverse structures.
Aluminophosphates contain 1D, 2D or 3D infinite frameworks with varying chemical composition. Nandini Devi & Vidyasagar (2000) reported non-centrosymmetric structures of A3Al2(PO4)3 (A=K, Rb and Tl). These compounds have 3D [Al2P3O12]3- frameworks. The latter study has inspired us to investigate the A2O—Al2O3—P2O5 (A=K, Rb, Cs) system in order to search for new functional materials. As a result of our study a new aluminophosphate, the title structure K9Al3(PO4)6, has been discovered.
In K9Al3(PO4)6, all the aluminium and phosphorus atoms adopt the tetrahedral coordination. Each [AlO4] tetrahedron shares each of its O atoms with a positionally different neighbour [PO4] tetrahedron, while each [PO4] tetrahedron shares its two O atoms with two different neighbour [AlO4] tetrahedral. There are two pairs of chemically different O atoms around the P atoms: The terminal and the bridging oxygens that are involved in P-O-Al connections (Fig. 1). The P-O distance to the bridging oxygens vary in the interval 1.5645 (10) - 1.5881 (8) Å, while the P-O distances to the terminal oxygens are in the interval 1.4993 (10) - 1.5087 (9) Å.
There are channels in the anionic substructure along [1 0 1] (Fig. 2). These channels are filled by K atoms (Fig. 3). The coordination numbers of K atoms are 6 or 7 or 8 up to the distance 3.31 Å (Tab. 1). The terminal phosphate oxygens tend to be closer to K atoms than the bridging ones (Tab. 2).