organic compounds
Ethenzamide–gentisic acid–acetic acid (2/1/1)
aInstitute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833 Singapore, and bDepartment of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117576 Singapore
*Correspondence e-mail: srinivasulu_aitipamula@ices.a-star.edu.sg, reginald_tan@ices.a-star.edu.sg
In the title 9H11NO2·C7H6O4·C2H4O2, two nonsteroidal anti-inflammatory drugs, ethenzamide (systematic name: 2-ethoxybenzamide) and gentisic acid (systematic name: 2,5-dihydroxybenzoic acid), together with acetic acid (systematic name: ethanoic acid) form a four-component molecular assembly held together by N—H⋯O and O—H⋯O hydrogen bonds. This assembly features two symmetry-independent molecules of ethenzamide, forming supramolecular acid–amide heterosynthons with gentisic acid and acetic acid. These heterosynthons involve quite strong O—H⋯O [O⋯O = 2.5446 (15) and 2.5327 (15) Å] and less strong N—H⋯O [N⋯O = 2.9550 (17) and 2.9542 (17) Å] hydrogen bonds. The overall crystal packing features several C—H⋯O and π–π stacking interactions [centroid–centroid distance = 3.7792 (11) Å].
solvate, 2-ethoxybenzamide–2,5-dihydroxybenzoic acid–ethanoic acid (2/1/1), 2CRelated literature
For information on three polymorphs of a 1:1 et al. (2009a). For other co-crystals of ethenzamide, see: Aitipamula et al. (2009b); Moribe et al. (2004). For related information on the drug activity of ethenzamide, see: Hirasawa et al. (1999). For the of ethenzamide, see: Pagola & Stephens (2009). For related information on the drug activity of gentisic acid, see: Lorico et al. (1986). For more information on the supramolecular heterosynthons, see: Fleischman et al. (2003). For reviews on pharmaceutical co-crystals, see: Schultheiss & Newman (2009); Almarsson & Zaworotko (2004). For more information on the hydrogen bonding, see: Desiraju & Steiner (1999).
involving ethenzamide and gentisic acid, see: AitipamulaExperimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2008); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810012407/fb2192sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810012407/fb2192Isup2.hkl
The title cocrystal solvate was obtained by slow evaporation of a glacial acetic acid (5 ml) solution of a 1:1 molar ratio of ethenzamide (100 mg, 0.605 mmol) and gentisic acid (93.3 mg, 0.605 mmol) at ambinent conditions. The block-shaped crystals, the dimensions of which were typically as those of the used sample for data collection, were obtained within 7 days.
Though all the H-atoms could be dinstinguished in the difference
the H-atoms bonded to C-atoms were included at the geometrically idealized positions and refined in riding-model approximation with C—H = 0.95 Å (aryl), 0.99 Å (methylene), and 0.98 Å (methyl). Uiso(H)aryl/methylene=1.2 Ueq(C) and Uiso(H)methyl=1.5 Ueq(C). The positional parameters of the H-atoms bonded to N and O were allowed to be refined freely while Uiso(H)amine=1.2 Ueq(N) and Uiso(H)hydroxyl=1.5 Ueq(O).Ethenzamide (2-ethoxybenzamide) belongs to a non-steroidal anti-inflammatory drug (NSAID) used mainly in combination with other ingredients for the treatment of mild to moderate pains (Hirasawa et al., 1999). The
of ethenzamide has been recently solved using the high-resolution powder X-ray diffraction (Pagola & Stephens, 2009). Gentisic acid (2,5-dihydroxybenzoic acid) is also a NSAID (Lorico et al., 1986).Pharmaceutical cocrystals can be defined as molecular complexes formed between a neutral or ionic active pharmaceutical ingredient (API) and a pharmaceutically acceptable compound that is a solid under ambient conditions (Almarsson & Zaworotko, 2004). With our interest in pharmaceutical cocrystals and
we recently reported three polymorphs of a 1:1 cocrystal involving ethenzamide and gentisic acid, and showed that the dissolution rates of the cocrystal polymorphs were improved twice when compared to that of the parent ethenzamide (Aitipamula et al., 2009a).In attempt to prepare pure polymorphs of a cocrystal involving ethenzamide and gentisic acid, they were cocrystallized in 1:1 molar ratio from several organic solvents. Whereas all the crystallization batches resulted in reported 1:1 cocrystal polymorphs (Aitipamula et al., 2009a), crystallization from acetic acid yielded a solvate in which the ethenzamide, gentisic acid, and acetic acid were present in 2:1:1 molar ratio. We present here its
and analyze the hydrogen bonding.The π-π stacking interaction involving the phenyl rings of the molecules of ethenzamide and gentisic acid: Cg1···Cg2 (1-x, 1-y, 1-z) = 3.7792 (11) Å, where Cg1 and Cg2 denote the centroids of the rings C1—C6 and C19—C24 of ethenzamide and gentisic acid, respectively (Fig. 3).
contains two molecules of ethenzamide, one molecule of gentisic acid and one molecule of acetic acid in the (Fig. 1). In the structure, gentisic acid and acetic acid molecules are engaged in the formation of acid-amide heterosynthons with symmetry independent molecules of ethenzamide involving quite strong O—H···O [O···O = 2.5446 (15) and 2.5327 (15) Å] and less strong N—H···O [N···O = 2.9550 (17) and 2.9542 (17) Å] hydrogen bonds (Table 1) (Desiraju & Steiner, 1999). The anti-N—H of the primary amide of ethenzamide and the 2-hydroxy group of gentisic acid form an intramolecular N—H···O [N···O = 2.6472 (19) and 2.6536 (16) Å] and O—H···O [O···O = 2.6183 (15)] hydrogen bonds, respectively (Table 1). Hydroxy atom of O8 of the gentisic acid acts as a hydrogen bond donor to atom O9 of the acetic acid at (2-x,1-y,1-z), and generates a four-component molecular assembly which involves two molecules of ethenzamide, one molecule each of gentisic acid and acetic acid (Fig. 2). It is worth mentioning that the solvent (acetic acid) molecule is an integral part of the four-component molecular assembly, which is bonded in the same way as the remaining constituents that participate in the heterosynthon formation. The four-component molecular assemblies are further stabilized in the by various C—H···O interactions (Table 1) (Desiraju & Steiner, 1999), and by theIn the light of the overwhelming interest in the development of pharmaceutical cocrystals for improving the physico-chemical properties of the APIs (Schultheiss & Newman, 2009), the title cocrystal solvate reported here presents some special features. First, it contains two APIs and thus can be considered as a multi-API cocrystal. Second, it contains the pharmaceutically acceptable acetic acid in the
These two aspects make the title cocrystal solvate a potential solid form for development of a combination drug involving ethenzamide and gentisic acid.For information on three polymorphs of a 1:1
involving ethenzamide and gentisic acid, see: Aitipamula et al. (2009a). For other co-crystals of ethenzamide, see: Aitipamula et al. (2009b); Moribe et al. (2004). For related information on the drug activity of ethenzamide, see: Hirasawa et al. (1999). For the of ethenzamide, see: Pagola & Stephens (2009). For related information on the drug activity of gentisic acid, see: Lorico et al. (1986). For more information on the supramolecular heterosynthons, see: Fleischman et al. (2003). For reviews on pharmaceutical co-crystals, see: Schultheiss & Newman (2009); Almarsson & Zaworotko (2004). For more information on the hydrogen bonding, see: Desiraju & Steiner (1999).Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The title molecules of ethenzamide, gentisic acid and aceitic acid with the atom labels and 50% probability displacement ellipsoids for non-H atoms. | |
Fig. 2. The hydrogen bonded four-component molecular assembly in the crystal structure of the title cocrystal solvate. Atoms participating in the hydrogen bonding were labelled. | |
Fig. 3. Section of the crystal structure, showing the π-π stacking interaction between the aromatic rings of the four-component molecular assemblies. |
2C9H11NO2·C7H6O4·C2H4O2 | Z = 2 |
Mr = 544.55 | F(000) = 576 |
Triclinic, P1 | Dx = 1.346 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.8083 (18) Å | Cell parameters from 3760 reflections |
b = 8.8802 (18) Å | θ = 2.1–31.0° |
c = 19.880 (4) Å | µ = 0.10 mm−1 |
α = 93.65 (3)° | T = 110 K |
β = 93.55 (3)° | Block, yellow |
γ = 119.45 (3)° | 0.33 × 0.29 × 0.22 mm |
V = 1343.5 (6) Å3 |
Rigaku Saturn CCD area-detector diffractometer | 6594 independent reflections |
Radiation source: fine-focus sealed tube | 6074 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 28.3°, θmin = 2.1° |
Absorption correction: multi-scan (Blessing, 1995) | h = −11→11 |
Tmin = 0.967, Tmax = 0.978 | k = −11→9 |
19296 measured reflections | l = −26→24 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.135 | w = 1/[σ2(Fo2) + (0.0677P)2 + 0.2882P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
6594 reflections | Δρmax = 0.25 e Å−3 |
380 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0054 (18) |
2C9H11NO2·C7H6O4·C2H4O2 | γ = 119.45 (3)° |
Mr = 544.55 | V = 1343.5 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.8083 (18) Å | Mo Kα radiation |
b = 8.8802 (18) Å | µ = 0.10 mm−1 |
c = 19.880 (4) Å | T = 110 K |
α = 93.65 (3)° | 0.33 × 0.29 × 0.22 mm |
β = 93.55 (3)° |
Rigaku Saturn CCD area-detector diffractometer | 6594 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 6074 reflections with I > 2σ(I) |
Tmin = 0.967, Tmax = 0.978 | Rint = 0.025 |
19296 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.135 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | Δρmax = 0.25 e Å−3 |
6594 reflections | Δρmin = −0.23 e Å−3 |
380 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O4 | 0.18598 (11) | 0.96579 (12) | 0.43017 (5) | 0.0280 (2) | |
O9 | 1.05478 (12) | 0.54627 (13) | 0.63748 (5) | 0.0319 (2) | |
O3 | −0.22283 (12) | 0.57234 (13) | 0.51754 (5) | 0.0324 (2) | |
O10 | 0.76432 (12) | 0.38996 (13) | 0.61300 (5) | 0.0316 (2) | |
H20 | 0.781 (2) | 0.464 (3) | 0.5756 (10) | 0.047* | |
N2 | 0.06949 (14) | 0.72419 (16) | 0.51542 (6) | 0.0281 (2) | |
H10 | 0.079 (2) | 0.668 (2) | 0.5509 (9) | 0.034* | |
H7 | 0.159 (2) | 0.811 (2) | 0.5000 (9) | 0.034* | |
C16 | −0.09157 (16) | 0.68847 (16) | 0.49396 (6) | 0.0249 (2) | |
C11 | 0.01615 (16) | 0.92217 (16) | 0.41021 (6) | 0.0251 (3) | |
C12 | −0.02542 (17) | 1.00581 (18) | 0.36157 (7) | 0.0295 (3) | |
H12 | 0.0654 | 1.0958 | 0.3409 | 0.035* | |
C18 | 0.49661 (17) | 1.13984 (19) | 0.43493 (7) | 0.0325 (3) | |
H18A | 0.5037 | 1.1604 | 0.4843 | 0.049* | |
H18B | 0.5932 | 1.2403 | 0.4180 | 0.049* | |
H18C | 0.5050 | 1.0356 | 0.4229 | 0.049* | |
C17 | 0.32440 (16) | 1.11405 (17) | 0.40346 (7) | 0.0285 (3) | |
H17A | 0.3150 | 1.2191 | 0.4149 | 0.034* | |
H17B | 0.3155 | 1.0925 | 0.3535 | 0.034* | |
C10 | −0.11871 (16) | 0.78677 (16) | 0.44080 (6) | 0.0246 (2) | |
C15 | −0.29227 (16) | 0.74279 (17) | 0.42099 (7) | 0.0277 (3) | |
H15 | −0.3844 | 0.6526 | 0.4411 | 0.033* | |
C13 | −0.19922 (18) | 0.95831 (18) | 0.34313 (7) | 0.0308 (3) | |
H13 | −0.2264 | 1.0162 | 0.3099 | 0.037* | |
C26 | 0.91047 (17) | 0.43317 (17) | 0.65051 (7) | 0.0283 (3) | |
C14 | −0.33339 (17) | 0.82690 (18) | 0.37295 (7) | 0.0308 (3) | |
H14 | −0.4521 | 0.7951 | 0.3605 | 0.037* | |
C27 | 0.8867 (2) | 0.3342 (2) | 0.71097 (8) | 0.0371 (3) | |
H27A | 0.9874 | 0.3168 | 0.7199 | 0.056* | |
H27B | 0.7791 | 0.2209 | 0.7020 | 0.056* | |
H27C | 0.8780 | 0.4001 | 0.7505 | 0.056* | |
O1 | 0.91975 (12) | 0.71644 (12) | 1.01611 (5) | 0.0296 (2) | |
O2 | 0.45825 (12) | 0.67508 (13) | 0.93005 (5) | 0.0298 (2) | |
C1 | 0.66698 (16) | 0.57974 (16) | 0.93614 (6) | 0.0247 (2) | |
N1 | 0.75912 (17) | 0.84922 (16) | 1.00868 (6) | 0.0322 (3) | |
H1 | 0.656 (2) | 0.845 (2) | 0.9926 (9) | 0.039* | |
H2 | 0.829 (2) | 0.926 (2) | 1.0438 (9) | 0.039* | |
C7 | 0.78960 (16) | 0.72148 (16) | 0.98983 (6) | 0.0254 (2) | |
C2 | 0.50360 (17) | 0.55485 (16) | 0.90874 (6) | 0.0262 (3) | |
C6 | 0.71780 (18) | 0.46025 (17) | 0.91414 (7) | 0.0291 (3) | |
H6 | 0.8278 | 0.4760 | 0.9321 | 0.035* | |
C8 | 0.28786 (17) | 0.65018 (19) | 0.90704 (7) | 0.0316 (3) | |
H8A | 0.1940 | 0.5434 | 0.9228 | 0.038* | |
H8B | 0.2710 | 0.6394 | 0.8569 | 0.038* | |
C9 | 0.2832 (2) | 0.8079 (2) | 0.93678 (8) | 0.0388 (3) | |
H9A | 0.3025 | 0.8181 | 0.9863 | 0.058* | |
H9B | 0.1687 | 0.7961 | 0.9232 | 0.058* | |
H9C | 0.3755 | 0.9123 | 0.9201 | 0.058* | |
C4 | 0.44999 (19) | 0.29481 (18) | 0.84136 (7) | 0.0344 (3) | |
H4 | 0.3759 | 0.1974 | 0.8093 | 0.041* | |
C3 | 0.39524 (18) | 0.41077 (18) | 0.86209 (7) | 0.0314 (3) | |
H3 | 0.2839 | 0.3921 | 0.8445 | 0.038* | |
C5 | 0.61151 (19) | 0.31929 (18) | 0.86680 (7) | 0.0330 (3) | |
H5 | 0.6489 | 0.2402 | 0.8519 | 0.040* | |
O8 | 0.70122 (13) | 0.23351 (13) | 0.25999 (5) | 0.0327 (2) | |
H19 | 0.784 (3) | 0.317 (3) | 0.2955 (10) | 0.049* | |
O6 | 0.13707 (13) | −0.09895 (13) | 0.11728 (5) | 0.0319 (2) | |
H11 | 0.039 (3) | −0.166 (3) | 0.0787 (10) | 0.048* | |
O5 | −0.01505 (12) | 0.03810 (13) | 0.13600 (5) | 0.0327 (2) | |
O7 | 0.10781 (13) | 0.29851 (13) | 0.23160 (5) | 0.0325 (2) | |
H16 | 0.033 (3) | 0.217 (3) | 0.1981 (10) | 0.049* | |
C24 | 0.41450 (17) | 0.13298 (16) | 0.20904 (6) | 0.0254 (2) | |
H24 | 0.4210 | 0.0417 | 0.1842 | 0.030* | |
C22 | 0.54594 (17) | 0.38590 (17) | 0.29022 (6) | 0.0285 (3) | |
H22 | 0.6432 | 0.4691 | 0.3207 | 0.034* | |
C23 | 0.55542 (16) | 0.25175 (17) | 0.25389 (6) | 0.0264 (3) | |
C19 | 0.26205 (16) | 0.14500 (16) | 0.19962 (6) | 0.0248 (2) | |
C25 | 0.11617 (17) | 0.02315 (16) | 0.14875 (6) | 0.0262 (3) | |
C21 | 0.39528 (17) | 0.39826 (17) | 0.28208 (7) | 0.0285 (3) | |
H21 | 0.3894 | 0.4890 | 0.3076 | 0.034* | |
C20 | 0.25202 (17) | 0.27906 (17) | 0.23681 (6) | 0.0263 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O4 | 0.0206 (4) | 0.0310 (5) | 0.0326 (5) | 0.0122 (4) | 0.0044 (3) | 0.0081 (4) |
O9 | 0.0255 (4) | 0.0373 (5) | 0.0296 (5) | 0.0130 (4) | 0.0020 (3) | 0.0044 (4) |
O3 | 0.0221 (4) | 0.0334 (5) | 0.0383 (5) | 0.0106 (4) | 0.0038 (4) | 0.0089 (4) |
O10 | 0.0241 (4) | 0.0338 (5) | 0.0340 (5) | 0.0119 (4) | 0.0045 (4) | 0.0054 (4) |
N2 | 0.0215 (5) | 0.0322 (6) | 0.0288 (5) | 0.0116 (4) | 0.0025 (4) | 0.0071 (4) |
C16 | 0.0222 (5) | 0.0254 (6) | 0.0258 (6) | 0.0112 (5) | 0.0028 (4) | −0.0010 (4) |
C11 | 0.0230 (5) | 0.0271 (6) | 0.0257 (6) | 0.0136 (5) | 0.0007 (4) | −0.0018 (5) |
C12 | 0.0292 (6) | 0.0305 (6) | 0.0301 (6) | 0.0160 (5) | 0.0026 (5) | 0.0035 (5) |
C18 | 0.0246 (6) | 0.0338 (7) | 0.0383 (7) | 0.0130 (5) | 0.0055 (5) | 0.0097 (6) |
C17 | 0.0243 (6) | 0.0285 (6) | 0.0314 (6) | 0.0115 (5) | 0.0059 (5) | 0.0068 (5) |
C10 | 0.0234 (6) | 0.0246 (6) | 0.0251 (6) | 0.0121 (5) | 0.0010 (4) | −0.0025 (4) |
C15 | 0.0234 (6) | 0.0258 (6) | 0.0308 (6) | 0.0111 (5) | −0.0010 (5) | −0.0037 (5) |
C13 | 0.0327 (7) | 0.0301 (7) | 0.0317 (6) | 0.0185 (5) | −0.0046 (5) | −0.0006 (5) |
C26 | 0.0293 (6) | 0.0302 (6) | 0.0275 (6) | 0.0166 (5) | 0.0049 (5) | 0.0002 (5) |
C14 | 0.0254 (6) | 0.0301 (7) | 0.0359 (7) | 0.0149 (5) | −0.0050 (5) | −0.0040 (5) |
C27 | 0.0446 (8) | 0.0372 (8) | 0.0330 (7) | 0.0220 (6) | 0.0083 (6) | 0.0079 (6) |
O1 | 0.0282 (4) | 0.0290 (5) | 0.0326 (5) | 0.0159 (4) | −0.0005 (4) | −0.0008 (4) |
O2 | 0.0302 (5) | 0.0331 (5) | 0.0305 (5) | 0.0195 (4) | 0.0020 (4) | 0.0017 (4) |
C1 | 0.0276 (6) | 0.0228 (6) | 0.0231 (6) | 0.0117 (5) | 0.0045 (4) | 0.0048 (4) |
N1 | 0.0356 (6) | 0.0299 (6) | 0.0338 (6) | 0.0201 (5) | −0.0035 (5) | −0.0042 (5) |
C7 | 0.0280 (6) | 0.0238 (6) | 0.0253 (6) | 0.0130 (5) | 0.0050 (4) | 0.0054 (4) |
C2 | 0.0299 (6) | 0.0275 (6) | 0.0235 (6) | 0.0154 (5) | 0.0062 (5) | 0.0060 (5) |
C6 | 0.0309 (6) | 0.0281 (6) | 0.0306 (6) | 0.0162 (5) | 0.0053 (5) | 0.0039 (5) |
C8 | 0.0275 (6) | 0.0372 (7) | 0.0342 (7) | 0.0186 (6) | 0.0047 (5) | 0.0091 (5) |
C9 | 0.0370 (7) | 0.0420 (8) | 0.0474 (8) | 0.0261 (7) | 0.0089 (6) | 0.0101 (6) |
C4 | 0.0375 (7) | 0.0292 (7) | 0.0298 (7) | 0.0123 (6) | 0.0017 (5) | −0.0008 (5) |
C3 | 0.0299 (6) | 0.0316 (7) | 0.0290 (6) | 0.0126 (5) | 0.0018 (5) | 0.0025 (5) |
C5 | 0.0391 (7) | 0.0288 (7) | 0.0332 (7) | 0.0188 (6) | 0.0052 (5) | −0.0001 (5) |
O8 | 0.0291 (5) | 0.0363 (5) | 0.0357 (5) | 0.0198 (4) | −0.0039 (4) | −0.0006 (4) |
O6 | 0.0344 (5) | 0.0295 (5) | 0.0336 (5) | 0.0193 (4) | −0.0058 (4) | −0.0050 (4) |
O5 | 0.0278 (5) | 0.0350 (5) | 0.0357 (5) | 0.0176 (4) | −0.0032 (4) | −0.0034 (4) |
O7 | 0.0290 (5) | 0.0329 (5) | 0.0383 (5) | 0.0185 (4) | 0.0006 (4) | −0.0026 (4) |
C24 | 0.0287 (6) | 0.0240 (6) | 0.0249 (6) | 0.0141 (5) | 0.0025 (4) | 0.0037 (4) |
C22 | 0.0297 (6) | 0.0260 (6) | 0.0257 (6) | 0.0110 (5) | 0.0007 (5) | 0.0016 (5) |
C23 | 0.0260 (6) | 0.0278 (6) | 0.0266 (6) | 0.0142 (5) | 0.0021 (4) | 0.0054 (5) |
C19 | 0.0255 (6) | 0.0235 (6) | 0.0243 (6) | 0.0113 (5) | 0.0019 (4) | 0.0037 (4) |
C25 | 0.0271 (6) | 0.0255 (6) | 0.0266 (6) | 0.0135 (5) | 0.0029 (4) | 0.0040 (5) |
C21 | 0.0314 (6) | 0.0254 (6) | 0.0287 (6) | 0.0142 (5) | 0.0034 (5) | 0.0012 (5) |
C20 | 0.0269 (6) | 0.0264 (6) | 0.0270 (6) | 0.0138 (5) | 0.0045 (4) | 0.0051 (5) |
O4—C11 | 1.3720 (15) | C1—C7 | 1.4965 (19) |
O4—C17 | 1.4466 (16) | N1—C7 | 1.3256 (17) |
O9—C26 | 1.2289 (17) | N1—H1 | 0.930 (19) |
O3—C16 | 1.2555 (16) | N1—H2 | 0.90 (2) |
O10—C26 | 1.3112 (17) | C2—C3 | 1.395 (2) |
O10—H20 | 0.99 (2) | C6—C5 | 1.385 (2) |
N2—C16 | 1.3269 (16) | C6—H6 | 0.9500 |
N2—H10 | 0.913 (18) | C8—C9 | 1.506 (2) |
N2—H7 | 0.879 (18) | C8—H8A | 0.9900 |
C16—C10 | 1.4924 (19) | C8—H8B | 0.9900 |
C11—C12 | 1.3913 (19) | C9—H9A | 0.9800 |
C11—C10 | 1.4159 (18) | C9—H9B | 0.9800 |
C12—C13 | 1.3899 (18) | C9—H9C | 0.9800 |
C12—H12 | 0.9500 | C4—C5 | 1.386 (2) |
C18—C17 | 1.5058 (18) | C4—C3 | 1.386 (2) |
C18—H18A | 0.9800 | C4—H4 | 0.9500 |
C18—H18B | 0.9800 | C3—H3 | 0.9500 |
C18—H18C | 0.9800 | C5—H5 | 0.9500 |
C17—H17A | 0.9900 | O8—C23 | 1.3705 (16) |
C17—H17B | 0.9900 | O8—H19 | 0.96 (2) |
C10—C15 | 1.4012 (17) | O6—C25 | 1.3134 (16) |
C15—C14 | 1.384 (2) | O6—H11 | 1.02 (2) |
C15—H15 | 0.9500 | O5—C25 | 1.2397 (16) |
C13—C14 | 1.389 (2) | O7—C20 | 1.3622 (16) |
C13—H13 | 0.9500 | O7—H16 | 0.90 (2) |
C26—C27 | 1.499 (2) | C24—C23 | 1.3798 (19) |
C14—H14 | 0.9500 | C24—C19 | 1.4007 (18) |
C27—H27A | 0.9800 | C24—H24 | 0.9500 |
C27—H27B | 0.9800 | C22—C21 | 1.3849 (19) |
C27—H27C | 0.9800 | C22—C23 | 1.3941 (19) |
O1—C7 | 1.2523 (16) | C22—H22 | 0.9500 |
O2—C2 | 1.3644 (16) | C19—C20 | 1.4040 (18) |
O2—C8 | 1.4444 (16) | C19—C25 | 1.4756 (19) |
C1—C6 | 1.3963 (18) | C21—C20 | 1.3955 (19) |
C1—C2 | 1.4112 (18) | C21—H21 | 0.9500 |
C11—O4—C17 | 117.67 (10) | O1—C7—N1 | 121.31 (12) |
C26—O10—H20 | 113.5 (11) | O1—C7—C1 | 118.85 (12) |
C16—N2—H10 | 116.3 (11) | N1—C7—C1 | 119.85 (12) |
C16—N2—H7 | 119.0 (11) | O2—C2—C3 | 122.70 (12) |
H10—N2—H7 | 123.8 (16) | O2—C2—C1 | 117.45 (11) |
O3—C16—N2 | 121.07 (12) | C3—C2—C1 | 119.85 (12) |
O3—C16—C10 | 119.00 (11) | C5—C6—C1 | 121.49 (13) |
N2—C16—C10 | 119.93 (12) | C5—C6—H6 | 119.3 |
O4—C11—C12 | 122.18 (12) | C1—C6—H6 | 119.3 |
O4—C11—C10 | 117.69 (11) | O2—C8—C9 | 106.37 (12) |
C12—C11—C10 | 120.13 (12) | O2—C8—H8A | 110.5 |
C13—C12—C11 | 120.32 (13) | C9—C8—H8A | 110.5 |
C13—C12—H12 | 119.8 | O2—C8—H8B | 110.5 |
C11—C12—H12 | 119.8 | C9—C8—H8B | 110.5 |
C17—C18—H18A | 109.5 | H8A—C8—H8B | 108.6 |
C17—C18—H18B | 109.5 | C8—C9—H9A | 109.5 |
H18A—C18—H18B | 109.5 | C8—C9—H9B | 109.5 |
C17—C18—H18C | 109.5 | H9A—C9—H9B | 109.5 |
H18A—C18—H18C | 109.5 | C8—C9—H9C | 109.5 |
H18B—C18—H18C | 109.5 | H9A—C9—H9C | 109.5 |
O4—C17—C18 | 107.57 (11) | H9B—C9—H9C | 109.5 |
O4—C17—H17A | 110.2 | C5—C4—C3 | 120.78 (13) |
C18—C17—H17A | 110.2 | C5—C4—H4 | 119.6 |
O4—C17—H17B | 110.2 | C3—C4—H4 | 119.6 |
C18—C17—H17B | 110.2 | C4—C3—C2 | 120.05 (13) |
H17A—C17—H17B | 108.5 | C4—C3—H3 | 120.0 |
C15—C10—C11 | 117.89 (12) | C2—C3—H3 | 120.0 |
C15—C10—C16 | 116.73 (12) | C6—C5—C4 | 119.29 (13) |
C11—C10—C16 | 125.37 (11) | C6—C5—H5 | 120.4 |
C14—C15—C10 | 121.93 (13) | C4—C5—H5 | 120.4 |
C14—C15—H15 | 119.0 | C23—O8—H19 | 109.3 (12) |
C10—C15—H15 | 119.0 | C25—O6—H11 | 110.3 (11) |
C14—C13—C12 | 120.47 (13) | C20—O7—H16 | 105.4 (13) |
C14—C13—H13 | 119.8 | C23—C24—C19 | 120.98 (12) |
C12—C13—H13 | 119.8 | C23—C24—H24 | 119.5 |
O9—C26—O10 | 122.84 (13) | C19—C24—H24 | 119.5 |
O9—C26—C27 | 122.78 (13) | C21—C22—C23 | 120.24 (12) |
O10—C26—C27 | 114.38 (12) | C21—C22—H22 | 119.9 |
C15—C14—C13 | 119.25 (12) | C23—C22—H22 | 119.9 |
C15—C14—H14 | 120.4 | O8—C23—C24 | 117.91 (12) |
C13—C14—H14 | 120.4 | O8—C23—C22 | 122.62 (12) |
C26—C27—H27A | 109.5 | C24—C23—C22 | 119.46 (12) |
C26—C27—H27B | 109.5 | C24—C19—C20 | 119.47 (12) |
H27A—C27—H27B | 109.5 | C24—C19—C25 | 120.45 (12) |
C26—C27—H27C | 109.5 | C20—C19—C25 | 120.02 (12) |
H27A—C27—H27C | 109.5 | O5—C25—O6 | 122.74 (12) |
H27B—C27—H27C | 109.5 | O5—C25—C19 | 121.85 (12) |
C2—O2—C8 | 119.79 (11) | O6—C25—C19 | 115.40 (11) |
C6—C1—C2 | 118.51 (12) | C22—C21—C20 | 120.82 (12) |
C6—C1—C7 | 116.30 (12) | C22—C21—H21 | 119.6 |
C2—C1—C7 | 125.14 (12) | C20—C21—H21 | 119.6 |
C7—N1—H1 | 120.7 (11) | O7—C20—C21 | 117.69 (12) |
C7—N1—H2 | 117.4 (12) | O7—C20—C19 | 123.28 (12) |
H1—N1—H2 | 120.6 (16) | C21—C20—C19 | 119.02 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.926 (19) | 1.941 (18) | 2.6472 (19) | 131.6 (14) |
N1—H2···O5i | 0.90 (2) | 2.085 (18) | 2.9550 (17) | 163.0 (15) |
N2—H7···O4 | 0.879 (18) | 1.959 (17) | 2.6536 (16) | 135.0 (17) |
N2—H10···O9ii | 0.912 (18) | 2.057 (17) | 2.9542 (17) | 167.4 (17) |
O6—H11···O1iii | 1.02 (2) | 1.53 (2) | 2.5327 (15) | 167.0 (18) |
O7—H16···O5 | 0.90 (2) | 1.80 (2) | 2.6183 (15) | 149 (3) |
O8—H19···O9iv | 0.96 (2) | 1.77 (2) | 2.7231 (16) | 173 (2) |
O10—H20···O3v | 0.99 (2) | 1.56 (2) | 2.5446 (15) | 171 (2) |
C8—H8A···O1vi | 0.99 | 2.46 | 3.3768 (19) | 154 |
C13—H13···O8vii | 0.95 | 2.55 | 3.452 (2) | 159 |
C14—H14···O10viii | 0.95 | 2.53 | 3.348 (2) | 145 |
Symmetry codes: (i) x+1, y+1, z+1; (ii) x−1, y, z; (iii) x−1, y−1, z−1; (iv) −x+2, −y+1, −z+1; (v) x+1, y, z; (vi) −x+1, −y+1, −z+2; (vii) x−1, y+1, z; (viii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | 2C9H11NO2·C7H6O4·C2H4O2 |
Mr | 544.55 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 110 |
a, b, c (Å) | 8.8083 (18), 8.8802 (18), 19.880 (4) |
α, β, γ (°) | 93.65 (3), 93.55 (3), 119.45 (3) |
V (Å3) | 1343.5 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.33 × 0.29 × 0.22 |
Data collection | |
Diffractometer | Rigaku Saturn CCD area-detector |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.967, 0.978 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19296, 6594, 6074 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.135, 1.11 |
No. of reflections | 6594 |
No. of parameters | 380 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.23 |
Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.926 (19) | 1.941 (18) | 2.6472 (19) | 131.6 (14) |
N1—H2···O5i | 0.90 (2) | 2.085 (18) | 2.9550 (17) | 163.0 (15) |
N2—H7···O4 | 0.879 (18) | 1.959 (17) | 2.6536 (16) | 135.0 (17) |
N2—H10···O9ii | 0.912 (18) | 2.057 (17) | 2.9542 (17) | 167.4 (17) |
O6—H11···O1iii | 1.02 (2) | 1.53 (2) | 2.5327 (15) | 167.0 (18) |
O7—H16···O5 | 0.90 (2) | 1.80 (2) | 2.6183 (15) | 149 (3) |
O8—H19···O9iv | 0.96 (2) | 1.77 (2) | 2.7231 (16) | 173 (2) |
O10—H20···O3v | 0.99 (2) | 1.56 (2) | 2.5446 (15) | 171 (2) |
C8—H8A···O1vi | 0.99 | 2.46 | 3.3768 (19) | 154 |
C13—H13···O8vii | 0.95 | 2.55 | 3.452 (2) | 159 |
C14—H14···O10viii | 0.95 | 2.53 | 3.348 (2) | 145 |
Symmetry codes: (i) x+1, y+1, z+1; (ii) x−1, y, z; (iii) x−1, y−1, z−1; (iv) −x+2, −y+1, −z+1; (v) x+1, y, z; (vi) −x+1, −y+1, −z+2; (vii) x−1, y+1, z; (viii) −x, −y+1, −z+1. |
Acknowledgements
This work was supported by the Institute of Chemical and Engineering Sciences of A*STAR (Agency for Science, Technology and Research), Singapore.
References
Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2009a). CrystEngComm, 11, 1823–1827. Web of Science CSD CrossRef CAS Google Scholar
Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2009b). CrystEngComm, 11, 889–895. Web of Science CSD CrossRef CAS Google Scholar
Almarsson, Ö. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889–1896. Web of Science CrossRef Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13, IUCr Monographs on Crystallography, Vol. 9. Oxford University Press. Google Scholar
Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919. Web of Science CSD CrossRef CAS Google Scholar
Hirasawa, N., Okamoto, H. & Danjo, K. (1999). Chem. Pharm. Bull. 47, 417–420. Web of Science CrossRef PubMed CAS Google Scholar
Lorico, A., Masturzo, P., Villa, S., Salmona, M., Semeraro, N. & Gaetano, G. D. (1986). Biochem. Pharmacol. 35, 2443–2445. CrossRef CAS PubMed Web of Science Google Scholar
Moribe, K., Tsuchiya, M., Tozuka, Y., Yamaguchi, K., Oguchi, T. & Yamamoto, K. (2004). Chem. Pharm. Bull. 52, 524–529. Web of Science CSD CrossRef PubMed CAS Google Scholar
Pagola, S. & Stephens, P. W. (2009). Acta Cryst. C65, o583–o586. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Ethenzamide (2-ethoxybenzamide) belongs to a non-steroidal anti-inflammatory drug (NSAID) used mainly in combination with other ingredients for the treatment of mild to moderate pains (Hirasawa et al., 1999). The crystal structure of ethenzamide has been recently solved using the high-resolution powder X-ray diffraction (Pagola & Stephens, 2009). Gentisic acid (2,5-dihydroxybenzoic acid) is also a NSAID (Lorico et al., 1986).
Pharmaceutical cocrystals can be defined as molecular complexes formed between a neutral or ionic active pharmaceutical ingredient (API) and a pharmaceutically acceptable compound that is a solid under ambient conditions (Almarsson & Zaworotko, 2004). With our interest in pharmaceutical cocrystals and polymorphism, we recently reported three polymorphs of a 1:1 cocrystal involving ethenzamide and gentisic acid, and showed that the dissolution rates of the cocrystal polymorphs were improved twice when compared to that of the parent ethenzamide (Aitipamula et al., 2009a).
In attempt to prepare pure polymorphs of a cocrystal involving ethenzamide and gentisic acid, they were cocrystallized in 1:1 molar ratio from several organic solvents. Whereas all the crystallization batches resulted in reported 1:1 cocrystal polymorphs (Aitipamula et al., 2009a), crystallization from acetic acid yielded a solvate in which the ethenzamide, gentisic acid, and acetic acid were present in 2:1:1 molar ratio. We present here its crystal structure and analyze the hydrogen bonding.
The crystal structure contains two molecules of ethenzamide, one molecule of gentisic acid and one molecule of acetic acid in the asymmetric unit (Fig. 1). In the structure, gentisic acid and acetic acid molecules are engaged in the formation of acid-amide heterosynthons with symmetry independent molecules of ethenzamide involving quite strong O—H···O [O···O = 2.5446 (15) and 2.5327 (15) Å] and less strong N—H···O [N···O = 2.9550 (17) and 2.9542 (17) Å] hydrogen bonds (Table 1) (Desiraju & Steiner, 1999). The anti-N—H of the primary amide of ethenzamide and the 2-hydroxy group of gentisic acid form an intramolecular N—H···O [N···O = 2.6472 (19) and 2.6536 (16) Å] and O—H···O [O···O = 2.6183 (15)] hydrogen bonds, respectively (Table 1). Hydroxy atom of O8 of the gentisic acid acts as a hydrogen bond donor to atom O9 of the acetic acid at (2-x,1-y,1-z), and generates a four-component molecular assembly which involves two molecules of ethenzamide, one molecule each of gentisic acid and acetic acid (Fig. 2). It is worth mentioning that the solvent (acetic acid) molecule is an integral part of the four-component molecular assembly, which is bonded in the same way as the remaining constituents that participate in the heterosynthon formation. The four-component molecular assemblies are further stabilized in the crystal structure by various C—H···O interactions (Table 1) (Desiraju & Steiner, 1999), and by the π-π stacking interaction involving the phenyl rings of the molecules of ethenzamide and gentisic acid: Cg1···Cg2 (1-x, 1-y, 1-z) = 3.7792 (11) Å, where Cg1 and Cg2 denote the centroids of the rings C1—C6 and C19—C24 of ethenzamide and gentisic acid, respectively (Fig. 3).
In the light of the overwhelming interest in the development of pharmaceutical cocrystals for improving the physico-chemical properties of the APIs (Schultheiss & Newman, 2009), the title cocrystal solvate reported here presents some special features. First, it contains two APIs and thus can be considered as a multi-API cocrystal. Second, it contains the pharmaceutically acceptable acetic acid in the crystal structure. These two aspects make the title cocrystal solvate a potential solid form for development of a combination drug involving ethenzamide and gentisic acid.