organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-8-methyl-3-[(pyrimidin-4-yl­­oxy)meth­yl]quinoline

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 24 March 2010; accepted 28 March 2010; online 2 April 2010)

In the title compound, C15H12ClN3O, the quinoline ring system is essentially planar, with a maximum deviation of 0.017 (1) Å. The crystal packing is stabilized by ππ stacking inter­actions between the quinoline rings of adjacent mol­ecule, with a centroid–centroid distance of 3.5913 (8) Å. A weak C—H⋯π contact is also observed between mol­ecules.

Related literature

For pyrimidine analogues, see: Svenstrup et al. (2008[Svenstrup, N., Kuhl, A., Ehlert, K. & Habich, D. (2008). Bioorg. Med. Chem. Lett. 18, 3215-3218.]). For quinoline analogues, see: Roopan & Khan (2009[Roopan, S. M. & Khan, F. N. (2009). ARKIVOC, xiii, 161-169.]); Khan et al. (2009[Khan, F. N., Subashini, R., Roopan, S. M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2686.], 2010a[Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o200.],b[Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o201.]). For the biological activity and mode of action of alkyl­ating agent, see: Singer (1986[Singer, B. (1986). Cancer Res. 46, 4879-4885.]). For the synthesis and regioselective alkyl­ation of 4(3H)-pyrimidone, see: Roopan et al. (2010[Roopan, S. M., Khan, F. N. & Mandal, B. K. (2010). Tetrahedron Lett. doi:org/10.1016/j.tetlet.2010.02.128.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a structural discussion on hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12ClN3O

  • Mr = 285.73

  • Monoclinic, P 21 /n

  • a = 11.9975 (2) Å

  • b = 8.45037 (15) Å

  • c = 12.95869 (19) Å

  • β = 96.7619 (16)°

  • V = 1304.66 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 295 K

  • 0.23 × 0.18 × 0.15 mm

Data collection
  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.936, Tmax = 0.958

  • 13753 measured reflections

  • 2564 independent reflections

  • 2005 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.07

  • 2564 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10ACg3i 0.97 2.72 3.5132 (15) 140
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Alkylating agents have been studied extensively both for their biological effects and for their mode of action (Singer et al., 1986). There have been over the past 25 years a veritable deluge of reviews, often focusing on a single aspect or agent or adduct. Direct alkylation of oxygens in pyrimidine nucleosides, under physiological conditions, has been known only since the middle 1970s. The pyrimidine analogues (Svenstrup et al., 2008) such as naturally occurring azacamptothecin based molecule have been focused of great interest by reason of their diversified biological activities. Thus, modifications of biologically active azacamptothecin synthons may lead to achieve the highly expected effective drugs. In connection with the program of synthesis and regioselective alkylation of 4(3H)-pyrimidone (Roopan et al., 2010), we report herein the synthesis of 2-chloro-8-methyl-3-[(pyrimidin-4-yloxy)methyl]quinoline.

In the molecule of the title compound, Fig. 1, bond lengths and angles are in normal ranges (Allen et al., 1987). The quinoline ring system (N1/C1–C9) is essentially planar, with a maximum deviation of -0.017 (1) Å for atom C1. The quinoline system (N1/C1–C9) makes a dihedral angle of 4.99 (6)° with the piyrimidone ring (N2/N3/C11–C14).

In the title molecule, there is a weak intramolecular C—H···O interaction, generating an S(5) graph-set motif (Bernstein et al., 1995) (Table 1). The crystal packing is stabilized by π-π stacking interactions between the benzene rings of the quinoline ring system of the molecules related by the symmetry operator (1-x, 1-y, -z) [centroid-to-centroid distance = 3.5913 (8) Å]. In addition, a weak C—H···π contact is also observed between molecules (Table 1). The packing diagram viewing down the b-axis is shown in Fig. 2.

Related literature top

For pyrimidine analogues, see: Svenstrup et al. (2008). For quinoline analogues, see: Roopan & Khan (2009); Khan et al. (2009, 2010a,b). For the biological activity and mode of action of alkylating agent, see: Singer (1986). For the synthesis and regioselective alkylation of 4(3H)-pyrimidone, see: Roopan et al. (2010). For bond-length data, see: Allen et al. (1987). For a structural discussion on hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

To a mixed well solution of 4(3H)-pyrimidone (96 mg, 1 mmol, in 5 ml DMSO), NaH (25 mg, 1 mmol) and 2-chloro-3-(chloromethyl)-8-methylquinoline (225 mg, 1 mmol) were added and the resulting mixture was refluxed for 1 h. Completion of the reaction was monitored by TLC. After the completion of the reaction, cooled and removed the excess of solvent under reduced pressure. Crushed ice was mixed with the residue. White solid was formed, filtered and dried, purified by column chromatography using hexane and ethylacetate as the eluant. The low polar compound was subjected into crystallization by solvent evaporation from a solution of the compound in chloroform.

Refinement top

All H atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms (C—H = 0.93, 0.96 and 0.97 Å) and Uiso(H) values were taken to be equal to 1.2 Ueq(C) for aromatic and methylene H atoms and 1.5Ueq(C) for methyl H atoms.

Structure description top

Alkylating agents have been studied extensively both for their biological effects and for their mode of action (Singer et al., 1986). There have been over the past 25 years a veritable deluge of reviews, often focusing on a single aspect or agent or adduct. Direct alkylation of oxygens in pyrimidine nucleosides, under physiological conditions, has been known only since the middle 1970s. The pyrimidine analogues (Svenstrup et al., 2008) such as naturally occurring azacamptothecin based molecule have been focused of great interest by reason of their diversified biological activities. Thus, modifications of biologically active azacamptothecin synthons may lead to achieve the highly expected effective drugs. In connection with the program of synthesis and regioselective alkylation of 4(3H)-pyrimidone (Roopan et al., 2010), we report herein the synthesis of 2-chloro-8-methyl-3-[(pyrimidin-4-yloxy)methyl]quinoline.

In the molecule of the title compound, Fig. 1, bond lengths and angles are in normal ranges (Allen et al., 1987). The quinoline ring system (N1/C1–C9) is essentially planar, with a maximum deviation of -0.017 (1) Å for atom C1. The quinoline system (N1/C1–C9) makes a dihedral angle of 4.99 (6)° with the piyrimidone ring (N2/N3/C11–C14).

In the title molecule, there is a weak intramolecular C—H···O interaction, generating an S(5) graph-set motif (Bernstein et al., 1995) (Table 1). The crystal packing is stabilized by π-π stacking interactions between the benzene rings of the quinoline ring system of the molecules related by the symmetry operator (1-x, 1-y, -z) [centroid-to-centroid distance = 3.5913 (8) Å]. In addition, a weak C—H···π contact is also observed between molecules (Table 1). The packing diagram viewing down the b-axis is shown in Fig. 2.

For pyrimidine analogues, see: Svenstrup et al. (2008). For quinoline analogues, see: Roopan & Khan (2009); Khan et al. (2009, 2010a,b). For the biological activity and mode of action of alkylating agent, see: Singer (1986). For the synthesis and regioselective alkylation of 4(3H)-pyrimidone, see: Roopan et al. (2010). For bond-length data, see: Allen et al. (1987). For a structural discussion on hydrogen bonding, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down b-axis. All H atoms have been omitted for clarity.
2-Chloro-8-methyl-3-[(pyrimidin-4-yloxy)methyl]quinoline top
Crystal data top
C15H12ClN3OF(000) = 592
Mr = 285.73Dx = 1.455 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1065 reflections
a = 11.9975 (2) Åθ = 2.5–26.0°
b = 8.45037 (15) ŵ = 0.29 mm1
c = 12.95869 (19) ÅT = 295 K
β = 96.7619 (16)°Prism, colourless
V = 1304.66 (4) Å30.23 × 0.18 × 0.15 mm
Z = 4
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
2564 independent reflections
Radiation source: Enhance (Mo) X-ray Source2005 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
h = 1414
Tmin = 0.936, Tmax = 0.958k = 1010
13753 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0503P)2]
where P = (Fo2 + 2Fc2)/3
2564 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H12ClN3OV = 1304.66 (4) Å3
Mr = 285.73Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.9975 (2) ŵ = 0.29 mm1
b = 8.45037 (15) ÅT = 295 K
c = 12.95869 (19) Å0.23 × 0.18 × 0.15 mm
β = 96.7619 (16)°
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
2564 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
2005 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.958Rint = 0.031
13753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.07Δρmax = 0.18 e Å3
2564 reflectionsΔρmin = 0.20 e Å3
182 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.52448 (3)0.22861 (5)0.21533 (3)0.0452 (2)
O10.35909 (9)0.13571 (11)0.06428 (7)0.0413 (4)
N10.66190 (10)0.38546 (12)0.08362 (8)0.0315 (4)
N20.22497 (11)0.02532 (14)0.02386 (9)0.0398 (4)
N30.08616 (12)0.14701 (16)0.06771 (13)0.0569 (6)
C10.57162 (12)0.30022 (16)0.09125 (10)0.0297 (4)
C20.50756 (12)0.25855 (14)0.01007 (10)0.0282 (4)
C30.54805 (12)0.31329 (15)0.08638 (10)0.0299 (4)
C40.69272 (13)0.46034 (15)0.20041 (11)0.0365 (5)
C50.78847 (14)0.54796 (16)0.20983 (12)0.0418 (5)
C60.84248 (13)0.58407 (16)0.12263 (12)0.0399 (5)
C70.80215 (13)0.53220 (16)0.02491 (11)0.0345 (5)
C80.70266 (12)0.43947 (15)0.01381 (10)0.0291 (4)
C90.64712 (12)0.40438 (15)0.10159 (10)0.0296 (4)
C100.40366 (12)0.16051 (16)0.03229 (10)0.0327 (5)
C110.26755 (13)0.04265 (16)0.06302 (11)0.0344 (5)
C120.22415 (15)0.02264 (18)0.15667 (12)0.0459 (6)
C130.13310 (16)0.0742 (2)0.15376 (15)0.0551 (7)
C140.13543 (15)0.11672 (19)0.01572 (14)0.0514 (6)
C150.86040 (14)0.57135 (18)0.06845 (13)0.0465 (6)
H30.509700.290100.142800.0360*
H40.657400.437300.258800.0440*
H50.818500.584400.275000.0500*
H60.907500.644900.131200.0480*
H10A0.349100.214900.081000.0390*
H10B0.421400.059800.062400.0390*
H120.255200.072100.217500.0550*
H130.101700.090800.215200.0660*
H140.103900.165000.076800.0620*
H15A0.923900.638100.047800.0700*
H15B0.809200.625500.119000.0700*
H15C0.885300.475500.098200.0700*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0438 (3)0.0642 (3)0.0278 (2)0.0083 (2)0.0045 (2)0.0068 (2)
O10.0385 (7)0.0543 (6)0.0322 (6)0.0162 (5)0.0092 (5)0.0009 (5)
N10.0286 (7)0.0364 (6)0.0301 (6)0.0026 (5)0.0059 (5)0.0019 (5)
N20.0355 (8)0.0428 (7)0.0406 (7)0.0044 (6)0.0027 (6)0.0005 (6)
N30.0425 (10)0.0507 (9)0.0792 (11)0.0086 (7)0.0143 (8)0.0065 (8)
C10.0293 (8)0.0340 (7)0.0259 (7)0.0036 (6)0.0034 (6)0.0007 (5)
C20.0268 (8)0.0278 (7)0.0303 (7)0.0045 (6)0.0046 (6)0.0023 (6)
C30.0307 (9)0.0319 (7)0.0280 (7)0.0033 (6)0.0078 (6)0.0029 (6)
C40.0409 (10)0.0368 (8)0.0313 (8)0.0009 (7)0.0025 (7)0.0009 (6)
C50.0469 (11)0.0396 (8)0.0362 (8)0.0005 (7)0.0062 (7)0.0046 (6)
C60.0315 (9)0.0359 (8)0.0507 (9)0.0041 (7)0.0015 (7)0.0012 (7)
C70.0306 (9)0.0316 (8)0.0418 (8)0.0017 (6)0.0060 (7)0.0014 (6)
C80.0279 (8)0.0285 (7)0.0309 (7)0.0037 (6)0.0035 (6)0.0006 (5)
C90.0297 (8)0.0279 (7)0.0310 (7)0.0037 (6)0.0029 (6)0.0021 (5)
C100.0310 (9)0.0386 (8)0.0288 (7)0.0009 (6)0.0054 (6)0.0011 (6)
C110.0295 (9)0.0343 (8)0.0399 (8)0.0010 (6)0.0063 (7)0.0045 (6)
C120.0498 (11)0.0489 (9)0.0417 (9)0.0058 (8)0.0165 (8)0.0004 (7)
C130.0533 (12)0.0523 (10)0.0647 (12)0.0042 (9)0.0281 (10)0.0087 (9)
C140.0422 (11)0.0501 (10)0.0605 (11)0.0089 (8)0.0008 (9)0.0019 (8)
C150.0387 (10)0.0498 (10)0.0526 (10)0.0108 (8)0.0119 (8)0.0019 (7)
Geometric parameters (Å, º) top
Cl1—C11.7485 (14)C7—C81.421 (2)
O1—C101.4330 (16)C7—C151.504 (2)
O1—C111.3493 (18)C8—C91.4158 (19)
N1—C11.2948 (18)C11—C121.386 (2)
N1—C81.3770 (17)C12—C131.362 (3)
N2—C111.3126 (18)C3—H30.9300
N2—C141.337 (2)C4—H40.9300
N3—C131.338 (2)C5—H50.9300
N3—C141.317 (2)C6—H60.9300
C1—C21.4184 (19)C10—H10A0.9700
C2—C31.3672 (18)C10—H10B0.9700
C2—C101.496 (2)C12—H120.9300
C3—C91.410 (2)C13—H130.9300
C4—C51.360 (2)C14—H140.9300
C4—C91.4134 (19)C15—H15A0.9600
C5—C61.401 (2)C15—H15B0.9600
C6—C71.373 (2)C15—H15C0.9600
Cl1···C15i3.5264 (17)C5···H10Avi2.9800
Cl1···H10A2.8900C6···H10Avi2.8600
Cl1···H10B2.8400C7···H10Avi2.9500
Cl1···H14ii3.0800C10···H10Bv2.9600
O1···H32.3600C11···H15Bvi3.0700
N1···H15B2.7600C12···H15Bvi3.0300
N1···H15C2.8100H3···O12.3600
N2···H10A2.6700H3···H42.5100
N2···H10B2.5700H4···H32.5100
N2···H4iii2.9300H4···N2ix2.9300
N3···H15Aiv2.9400H5···C3x2.9800
N3···H15Cv2.8200H6···H15A2.3500
C1···C3vi3.5712 (19)H10A···Cl12.8900
C1···C11v3.476 (2)H10A···N22.6700
C2···C8vi3.5842 (19)H10A···C5vi2.9800
C2···C9vi3.5278 (18)H10A···C6vi2.8600
C3···C1vi3.5712 (19)H10A···C7vi2.9500
C7···C14v3.595 (2)H10B···Cl12.8400
C7···C10vi3.592 (2)H10B···N22.5700
C8···C2vi3.5842 (19)H10B···C2v2.9400
C8···C14v3.347 (2)H10B···C10v2.9600
C9···C2vi3.5278 (18)H10B···H10Bv2.5400
C10···C7vi3.592 (2)H14···Cl1xi3.0800
C10···C10v3.598 (2)H15A···N3xii2.9400
C11···C1v3.476 (2)H15A···H62.3500
C14···C8v3.347 (2)H15B···N12.7600
C14···C7v3.595 (2)H15B···C11vi3.0700
C15···Cl1vii3.5264 (17)H15B···C12vi3.0300
C2···H10Bv2.9400H15C···N12.8100
C3···H5viii2.9800H15C···N3v2.8200
C10—O1—C11117.49 (10)N3—C13—C12123.83 (17)
C1—N1—C8117.26 (11)N2—C14—N3128.27 (16)
C11—N2—C14114.85 (13)C2—C3—H3119.00
C13—N3—C14114.15 (15)C9—C3—H3119.00
Cl1—C1—N1116.09 (10)C5—C4—H4120.00
Cl1—C1—C2116.83 (10)C9—C4—H4120.00
N1—C1—C2127.08 (12)C4—C5—H5120.00
C1—C2—C3115.39 (12)C6—C5—H5120.00
C1—C2—C10120.44 (11)C5—C6—H6119.00
C3—C2—C10124.17 (12)C7—C6—H6119.00
C2—C3—C9121.02 (12)O1—C10—H10A110.00
C5—C4—C9119.75 (14)O1—C10—H10B110.00
C4—C5—C6120.81 (14)C2—C10—H10A110.00
C5—C6—C7121.88 (14)C2—C10—H10B110.00
C6—C7—C8118.03 (13)H10A—C10—H10B108.00
C6—C7—C15121.68 (14)C11—C12—H12122.00
C8—C7—C15120.29 (13)C13—C12—H12122.00
N1—C8—C7118.62 (12)N3—C13—H13118.00
N1—C8—C9121.15 (12)C12—C13—H13118.00
C7—C8—C9120.23 (12)N2—C14—H14116.00
C3—C9—C4122.63 (12)N3—C14—H14116.00
C3—C9—C8118.08 (12)C7—C15—H15A109.00
C4—C9—C8119.29 (13)C7—C15—H15B109.00
O1—C10—C2107.52 (10)C7—C15—H15C109.00
O1—C11—N2119.96 (13)H15A—C15—H15B109.00
O1—C11—C12116.72 (13)H15A—C15—H15C109.00
N2—C11—C12123.31 (14)H15B—C15—H15C109.00
C11—C12—C13115.58 (15)
C11—O1—C10—C2176.75 (11)C2—C3—C9—C4178.71 (13)
C10—O1—C11—N22.21 (19)C2—C3—C9—C80.9 (2)
C10—O1—C11—C12178.68 (13)C9—C4—C5—C60.2 (2)
C8—N1—C1—Cl1178.15 (10)C5—C4—C9—C3179.87 (13)
C8—N1—C1—C21.6 (2)C5—C4—C9—C80.6 (2)
C1—N1—C8—C7179.47 (12)C4—C5—C6—C70.5 (2)
C1—N1—C8—C90.69 (19)C5—C6—C7—C80.0 (2)
C14—N2—C11—O1179.03 (13)C5—C6—C7—C15179.97 (14)
C14—N2—C11—C120.0 (2)C6—C7—C8—N1179.40 (12)
C11—N2—C14—N30.5 (2)C6—C7—C8—C90.8 (2)
C14—N3—C13—C120.3 (2)C15—C7—C8—N10.6 (2)
C13—N3—C14—N20.6 (3)C15—C7—C8—C9179.20 (13)
Cl1—C1—C2—C3178.55 (10)N1—C8—C9—C30.48 (19)
Cl1—C1—C2—C101.18 (17)N1—C8—C9—C4179.12 (12)
N1—C1—C2—C31.2 (2)C7—C8—C9—C3179.36 (12)
N1—C1—C2—C10179.08 (13)C7—C8—C9—C41.0 (2)
C1—C2—C3—C90.14 (19)O1—C11—C12—C13178.79 (14)
C10—C2—C3—C9179.58 (12)N2—C11—C12—C130.3 (2)
C1—C2—C10—O1178.90 (11)C11—C12—C13—N30.1 (3)
C3—C2—C10—O10.80 (18)
Symmetry codes: (i) x+3/2, y1/2, z1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z1/2; (iv) x1, y1, z; (v) x+1, y, z; (vi) x+1, y+1, z; (vii) x+3/2, y+1/2, z1/2; (viii) x+3/2, y1/2, z+1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+3/2, y+1/2, z+1/2; (xi) x+1/2, y1/2, z1/2; (xii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.932.362.7056 (17)102
C10—H10A···Cg3vi0.972.723.5132 (15)140
Symmetry code: (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H12ClN3O
Mr285.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)11.9975 (2), 8.45037 (15), 12.95869 (19)
β (°) 96.7619 (16)
V3)1304.66 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.23 × 0.18 × 0.15
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.936, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
13753, 2564, 2005
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.07
No. of reflections2564
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.932.362.7056 (17)102
C10—H10A···Cg3i0.972.723.5132 (15)140
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

We thank the FIST program for the data collection at SSCU, IISc, Bangalore and Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Subashini, R., Roopan, S. M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2686.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRoopan, S. M. & Khan, F. N. (2009). ARKIVOC, xiii, 161–169.  CrossRef Google Scholar
First citationRoopan, S. M., Khan, F. N. & Mandal, B. K. (2010). Tetrahedron Lett. doi:org/10.1016/j.tetlet.2010.02.128.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinger, B. (1986). Cancer Res. 46, 4879–4885.  CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSvenstrup, N., Kuhl, A., Ehlert, K. & Habich, D. (2008). Bioorg. Med. Chem. Lett. 18, 3215–3218.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds