metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{Bis[5-methyl-3-(tri­fluoro­meth­yl)pyrazol-1-yl]borato}{tris­­[5-methyl-3-(tri­fluoro­meth­yl)pyrazol-1-yl]borato}cobalt(II): a structure containing a B—H⋯Co agostic inter­action

aDepartment of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854 USA
*Correspondence e-mail: DZSquared@aol.com

(Received 5 March 2010; accepted 29 March 2010; online 10 April 2010)

The title compound, [Co(C10H10BF6N4)(C15H13BF9N6)], is a neutral CoII complex which contains one each of the anionic ligands, bis­(3-trifluoro­methyl-5-methyl­pyrazol-1-yl)borate (Bp) and tris­(3-trifluoro­methyl-5-methyl­pyrazol-1-yl)borate (Tp). A distorted octa­hedral coordination geometry results from ligation of an H atom, which is part of an agostic B—H⋯Co inter­action (H⋯Co = 2.17 Å), and by five imine N atoms, two from a Bp ligand and three from a Tp ligand. In the crystal, mol­ecules form layers parallel to the (10[\overline{1}]) planes, and the layers are linked along the a axis by C—H⋯F hydrogen bonds. An intra­molecular C—H⋯F inter­action also occurs.

Related literature

For our study of nitro­gen-containing heterocyles, such as expanded-ring imidazoles, and their complexes with metal ions, see: Stibrany & Potenza (2009a[Stibrany, R. T. & Potenza, J. A. (2009a). Acta Cryst. C65, o406-o409.]). For metal complexes with pyrazole, see: Stibrany & Potenza (2006[Stibrany, R. T. & Potenza, J. A. (2006). Private Communication (reference number CCDC 631853). CCDC, Cambridge, England.], 2009b[Stibrany, R. T. & Potenza, J. A. (2009b). J. Chem. Crystallogr. 39, 266-269.]); Stibrany et al. (1999[Stibrany, R. T., Knapp, S., Potenza, J. A. & Schugar, H. J. (1999). Inorg. Chem. 38, 132-135.], 2005[Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2005). Acta Cryst. E61, m1904-m1906.], 2006[Stibrany, R. T., Zhang, C., Emge, T. J., Schugar, H. J., Potenza, J. A. & Knapp, S. (2006). Inorg. Chem. 45, 9713-9720.]). Copper and cobalt complexes utlizing the title ligand have been prepared for oxidation studies, see: Gorun et al. (2000[Gorun, S. M., Hu, Z., Stibrany, R. T. & Carpenter, G. (2000). Inorg. Chim. Acta, 297, 383-388.]). For agostic inter­actions, see: Ruman et al. (2001[Ruman, T., Ciunik, Z., Goclan, A., Lukasiewicz, M. & Wolowiec, S. (2001). Polyhedron, 20, 2965-2970.], 2002[Ruman, T., Ciunik, Z., Mazurek, J. & Wolowiec, S. (2002). Eur. J. Inorg. Chem. pp. 754-760.]); Siemer et al. (2001[Siemer, C. J., Meece, F. A., Armstrong, W. H. & Eichhorn, D. M. (2001). Polyhedron, 20, 2637-2646.]); Ghosh et al. (1998[Ghosh, P., Bonanno, J. B. & Parkin, G. (1998). J. Chem. Soc. Dalton Trans. pp. 2779-2781.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H10BF6N4)(C15H13BF9N6)]

  • Mr = 829.08

  • Monoclinic, P 21 /n

  • a = 10.8195 (16) Å

  • b = 16.559 (2) Å

  • c = 18.687 (3) Å

  • β = 98.408 (3)°

  • V = 3312.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 100 K

  • 0.37 × 0.30 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.919, Tmax = 1.00

  • 33535 measured reflections

  • 7286 independent reflections

  • 6292 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.00

  • 7286 reflections

  • 495 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N3 2.0850 (17)
Co1—N7 2.1072 (17)
Co1—N9 2.1115 (18)
Co1—N5 2.1351 (17)
Co1—N1 2.1581 (16)
Co1—H22B 2.17 (2)
B1—H1B 1.10 (2)
B2—H21B 1.00 (3)
B2—H22B 1.18 (3)
H21B—B2—H22B 109.6 (19)
B2—H22B—Co1 107 (1)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯F9i 0.98 2.48 3.391 (3) 155
C10—H10C⋯F11 0.98 2.40 3.160 (3) 134
C25—H25B⋯F10ii 0.98 2.50 3.414 (4) 155
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-32 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Our long-term interest in the synthesis and applications of nitrogen-containing heterocyles, such as expanded-ring imidazoles, and their complexes with metal ions (Stibrany & Potenza, 2009a) led us to prepare the title compound (I). With pyrazole, a variety of metal complexes has been prepared, predominantly with copper (Stibrany & Potenza, 2006), including the Cu(II) complex of an unusual (dimethylamino)methane bridged bis(pyrazole) ligand formed via a DMF aminalization (Stibrany et al., 1999) and a novel binuclear µ-oxalato(1-benzylpyrazole)2(CF3SO3)2copper(II) compound resulting from the fixation of carbon dioxide (Stibrany et al., 2005). A tris(pyrazolyl)arene ligand which forms geometrically constrained metal complexes has also been prepared (Stibrany et al., 2006),as has a sterically strained trigonal-bipyramidal Cu(II) complex containing a 1-benzylpyrazole ligand (Stibrany & Potenza, 2009b). Copper and cobalt complexes utlizing the title ligand were prepared for oxidation studies (Gorun et al., 2000).

Compound (I) (Fig. 1) contains a central CoII ion linked to a Tp and a Bp ligand. Ligation is effected by three imine N atoms of the Tp ligand, two imine N atoms of the Bp ligand, and an H atom which participates in a two-electron, three-center B—H···Co bond. The result is a distorted octahedral coordination geometry.

A number of cobalt(II) complexes containing mixed bis (Bp)- and tris pyrazolylborates (Tp) and C—H···Co agostic interactions have been reported, with H···Co distances ranging from 2.03 Å (Ruman et al., 2002), 2.035 Å (Ruman et al., 2001) to 2.334 Å (Siemer et al.., 2001). The H···Co distance in (I), 2.17 Å, lies between these two extremes. Infrared spectral results also support the existence of an agostic 2-electron, 3-center bond in (I). B—H stretching vibrations for BH2 groups in which one of the H atoms is involved in a 2-electron, 3-center bond with a metal ion typically lie in the range 2100-2500 cm-1, with the lower value corresponding to the agostic interaction (Ghosh et al., 1998). In (I), IR bands at 2569 and 2483 cm-1 are assigned as free B—H stretching vibrations, while the band at 2223 cm-1 is assigned to the bound B—H group.

In the crystal, the molecules form layers parallel to the (10 -1) planes (Figures 2 and 3), which are linked by intermolecular C—H···F hydrogen bonds (Table 1) in such a way as to form chains along the a cell direction. Platon (Spek, 2009) reveals11 short intermolecular contacts, 10 of which are C—H···F interactions, which, along with the C—H···F hydrogen bonds noted above suggest that the trifluoromethyl groups in (I) contribute substantially to the stability of the structure.

Related literature top

For our study of nitrogen-containing heterocyles, such as expanded-ring imidazoles, and their complexes with metal ions, see: Stibrany & Potenza (2009a). For metal complexes with pyrazole, see: Stibrany & Potenza (2006, 2009b); Stibrany et al. (1999, 2005, 2006). Copper and cobalt complexes utlizing the title ligand have been prepared for oxidation studies, see: Gorun et al. (2000). For agostic interactions, see: Ruman et al. (2001, 2002); Siemer et al. (2001); Ghosh et al. (1998).

Experimental top

Both Tp and Bp ligands were prepared as previously reported (Gorun et al., 2000). To a flask containing 10 ml of acetonitrile, 70 mg of Co(ClO4)2.6 H2O (0.19 mmol) was disssolved to give a pink solution. Then 94 mg of Tp (0.19 mmol) was added and the mixture was allowed to stir for 10 min. giving some white precipitate. Then, 67 mg of Bp (0.19 mmol) was added and the mixture was allowed to stir for an additional 15 min. The mixture was filtered to remove white solids and yielded a clear red solution, which was left to evaporate slowly. Upon evaporation, a major dichroic red-orange phase (compound (I)) was separated mechanically and characterized. IR (KBr pellet, cm-1); 2569(Tp, B—H, w), 2483(Bp, B—H, w), 2223(Bp, B—H···Co, w), 1471(s), 1261(s), 1165(s), 1114(s), 999(s), 795(m), 648(m).

Refinement top

Hydrogen atoms of the methyl groups were located on difference Fourier maps, those of the pyrrole fragments were positioned geometrically. For refinement a riding model was used, with C—H = 0.98 Å for methyl H atoms and 0.95 Å for pyrrole H atoms and Uiso(H) = 1.2 Ueq (C) and 1.5 Ueq (C-methyl). Atom positions and isotropic displacement parameters of B—H hydrogens were refined freely.

Structure description top

Our long-term interest in the synthesis and applications of nitrogen-containing heterocyles, such as expanded-ring imidazoles, and their complexes with metal ions (Stibrany & Potenza, 2009a) led us to prepare the title compound (I). With pyrazole, a variety of metal complexes has been prepared, predominantly with copper (Stibrany & Potenza, 2006), including the Cu(II) complex of an unusual (dimethylamino)methane bridged bis(pyrazole) ligand formed via a DMF aminalization (Stibrany et al., 1999) and a novel binuclear µ-oxalato(1-benzylpyrazole)2(CF3SO3)2copper(II) compound resulting from the fixation of carbon dioxide (Stibrany et al., 2005). A tris(pyrazolyl)arene ligand which forms geometrically constrained metal complexes has also been prepared (Stibrany et al., 2006),as has a sterically strained trigonal-bipyramidal Cu(II) complex containing a 1-benzylpyrazole ligand (Stibrany & Potenza, 2009b). Copper and cobalt complexes utlizing the title ligand were prepared for oxidation studies (Gorun et al., 2000).

Compound (I) (Fig. 1) contains a central CoII ion linked to a Tp and a Bp ligand. Ligation is effected by three imine N atoms of the Tp ligand, two imine N atoms of the Bp ligand, and an H atom which participates in a two-electron, three-center B—H···Co bond. The result is a distorted octahedral coordination geometry.

A number of cobalt(II) complexes containing mixed bis (Bp)- and tris pyrazolylborates (Tp) and C—H···Co agostic interactions have been reported, with H···Co distances ranging from 2.03 Å (Ruman et al., 2002), 2.035 Å (Ruman et al., 2001) to 2.334 Å (Siemer et al.., 2001). The H···Co distance in (I), 2.17 Å, lies between these two extremes. Infrared spectral results also support the existence of an agostic 2-electron, 3-center bond in (I). B—H stretching vibrations for BH2 groups in which one of the H atoms is involved in a 2-electron, 3-center bond with a metal ion typically lie in the range 2100-2500 cm-1, with the lower value corresponding to the agostic interaction (Ghosh et al., 1998). In (I), IR bands at 2569 and 2483 cm-1 are assigned as free B—H stretching vibrations, while the band at 2223 cm-1 is assigned to the bound B—H group.

In the crystal, the molecules form layers parallel to the (10 -1) planes (Figures 2 and 3), which are linked by intermolecular C—H···F hydrogen bonds (Table 1) in such a way as to form chains along the a cell direction. Platon (Spek, 2009) reveals11 short intermolecular contacts, 10 of which are C—H···F interactions, which, along with the C—H···F hydrogen bonds noted above suggest that the trifluoromethyl groups in (I) contribute substantially to the stability of the structure.

For our study of nitrogen-containing heterocyles, such as expanded-ring imidazoles, and their complexes with metal ions, see: Stibrany & Potenza (2009a). For metal complexes with pyrazole, see: Stibrany & Potenza (2006, 2009b); Stibrany et al. (1999, 2005, 2006). Copper and cobalt complexes utlizing the title ligand have been prepared for oxidation studies, see: Gorun et al. (2000). For agostic interactions, see: Ruman et al. (2001, 2002); Siemer et al. (2001); Ghosh et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Projection along the b cell direction of the central core of the molecules of (I), showing the layers parallel to the (1 0 -1) planes.
[Figure 3] Fig. 3. The crystal structure projected along the b cell direction. H atoms have been omitted for clarity.
{Bis[5-methyl-3-(trifluoromethyl)pyrazol-1-yl]borato}{tris[5-methyl-3- (trifluoromethyl)pyrazol-1-yl]borato}cobalt(II) top
Crystal data top
[Co(C10H10BF6N4)(C15H13BF9N6)]F(000) = 1660
Mr = 829.08Dx = 1.663 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 952 reflections
a = 10.8195 (16) Åθ = 2.6–26.7°
b = 16.559 (2) ŵ = 0.64 mm1
c = 18.687 (3) ÅT = 100 K
β = 98.408 (3)°Block, orange-red
V = 3312.0 (8) Å30.37 × 0.30 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
7286 independent reflections
Radiation source: fine-focus sealed tube6292 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 27.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1313
Tmin = 0.919, Tmax = 1.00k = 2120
33535 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0612P)2 + 2.660P]
where P = (Fo2 + 2Fc2)/3
7286 reflections(Δ/σ)max = 0.002
495 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Co(C10H10BF6N4)(C15H13BF9N6)]V = 3312.0 (8) Å3
Mr = 829.08Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8195 (16) ŵ = 0.64 mm1
b = 16.559 (2) ÅT = 100 K
c = 18.687 (3) Å0.37 × 0.30 × 0.14 mm
β = 98.408 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7286 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
6292 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 1.00Rint = 0.024
33535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.69 e Å3
7286 reflectionsΔρmin = 0.44 e Å3
495 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.67692 (2)0.302118 (14)0.620671 (13)0.01918 (8)
F11.04898 (14)0.32294 (9)0.81839 (7)0.0442 (4)
F20.97407 (14)0.41514 (8)0.74488 (7)0.0416 (3)
F30.85041 (13)0.33420 (10)0.78867 (8)0.0435 (3)
F40.81154 (15)0.11513 (9)0.37998 (8)0.0467 (4)
F50.97767 (14)0.18564 (11)0.40862 (8)0.0523 (4)
F60.85028 (15)0.21414 (10)0.31233 (7)0.0482 (4)
F70.54586 (13)0.19079 (9)0.75728 (8)0.0438 (3)
F80.44043 (15)0.08179 (9)0.73202 (10)0.0535 (4)
F90.38739 (12)0.19101 (9)0.67404 (9)0.0455 (4)
F100.99728 (15)0.51996 (12)0.60742 (11)0.0658 (5)
F110.86413 (16)0.50824 (13)0.51206 (10)0.0670 (5)
F120.93241 (13)0.40309 (9)0.56911 (9)0.0451 (4)
F130.44364 (19)0.19865 (10)0.50002 (10)0.0662 (5)
F140.25362 (17)0.23531 (14)0.47103 (13)0.0826 (7)
F150.4003 (2)0.29983 (10)0.43341 (10)0.0603 (5)
N10.86727 (15)0.26325 (9)0.65305 (8)0.0205 (3)
N20.90879 (15)0.20741 (9)0.60846 (9)0.0220 (3)
N30.70332 (16)0.29844 (10)0.51241 (9)0.0234 (3)
N40.77009 (16)0.23567 (10)0.49095 (9)0.0248 (3)
N50.64502 (15)0.17499 (10)0.62351 (9)0.0241 (3)
N60.70838 (16)0.13117 (10)0.57879 (9)0.0253 (3)
N70.72691 (15)0.42384 (10)0.64107 (9)0.0228 (3)
N80.65158 (16)0.45466 (10)0.68672 (9)0.0265 (4)
N90.48358 (16)0.32725 (11)0.60129 (10)0.0277 (4)
N100.45355 (16)0.37470 (11)0.65569 (10)0.0306 (4)
C10.95858 (19)0.33758 (13)0.76308 (11)0.0268 (4)
C20.96620 (18)0.28046 (11)0.70255 (10)0.0218 (4)
C31.07128 (18)0.23733 (12)0.69001 (11)0.0256 (4)
H31.15270.23940.71700.031*
C41.03149 (19)0.19085 (12)0.62981 (11)0.0266 (4)
C51.1019 (2)0.12976 (16)0.59297 (14)0.0402 (6)
H5A1.06570.07610.59780.060*
H5B1.18970.12960.61530.060*
H5C1.09650.14350.54160.060*
C60.8573 (2)0.19030 (15)0.38120 (12)0.0370 (5)
C70.7869 (2)0.24756 (14)0.42153 (11)0.0297 (4)
C80.7303 (2)0.31839 (14)0.39755 (11)0.0320 (5)
H80.72730.34190.35100.038*
C90.67811 (19)0.34874 (12)0.45617 (11)0.0267 (4)
C100.6041 (2)0.42469 (13)0.45943 (12)0.0321 (5)
H10A0.57140.42710.50560.048*
H10B0.53440.42520.41950.048*
H10C0.65800.47150.45530.048*
C110.4863 (2)0.14675 (14)0.70263 (13)0.0349 (5)
C120.56841 (19)0.12256 (13)0.64936 (12)0.0294 (4)
C130.5808 (2)0.04605 (13)0.62153 (14)0.0385 (5)
H130.53640.00130.63110.046*
C140.6711 (2)0.05289 (13)0.57699 (13)0.0350 (5)
C150.7250 (3)0.01038 (15)0.53330 (17)0.0528 (7)
H15A0.71720.00710.48270.079*
H15B0.67970.06130.53620.079*
H15C0.81340.01840.55240.079*
C160.8966 (2)0.47835 (14)0.57809 (13)0.0349 (5)
C170.79552 (19)0.48610 (12)0.62379 (12)0.0281 (4)
C180.7643 (2)0.55635 (13)0.65694 (14)0.0392 (6)
H180.79890.60860.65300.047*
C190.6729 (2)0.53452 (14)0.69650 (13)0.0362 (5)
C200.6035 (3)0.58409 (19)0.74419 (18)0.0596 (9)
H20A0.51540.58760.72280.089*
H20B0.63950.63850.74910.089*
H20C0.61000.55870.79200.089*
C210.3685 (2)0.26228 (14)0.49148 (15)0.0430 (6)
C220.3755 (2)0.31429 (13)0.55705 (14)0.0347 (5)
C230.2776 (2)0.35359 (15)0.58241 (15)0.0414 (6)
H230.19240.35420.56110.050*
C240.3302 (2)0.39173 (15)0.64533 (14)0.0392 (6)
C250.2719 (3)0.44475 (19)0.69549 (16)0.0544 (8)
H25A0.28170.42010.74370.082*
H25B0.18290.45140.67730.082*
H25C0.31290.49770.69850.082*
B10.8187 (2)0.16910 (14)0.54601 (12)0.0250 (4)
B20.5641 (3)0.39322 (17)0.71633 (14)0.0342 (5)
H1B0.865 (2)0.1208 (14)0.5190 (12)0.021 (5)*
H21B0.537 (2)0.4097 (16)0.7632 (14)0.039 (7)*
H22B0.623 (2)0.3326 (16)0.7245 (13)0.034 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01869 (13)0.01639 (13)0.02269 (14)0.00083 (9)0.00378 (9)0.00099 (9)
F10.0457 (8)0.0479 (8)0.0336 (7)0.0131 (7)0.0119 (6)0.0087 (6)
F20.0560 (9)0.0245 (6)0.0418 (8)0.0014 (6)0.0008 (6)0.0054 (5)
F30.0374 (7)0.0564 (9)0.0388 (7)0.0033 (7)0.0125 (6)0.0156 (7)
F40.0610 (10)0.0411 (8)0.0383 (8)0.0064 (7)0.0084 (7)0.0108 (6)
F50.0371 (8)0.0768 (12)0.0437 (8)0.0101 (7)0.0081 (6)0.0089 (8)
F60.0538 (9)0.0634 (10)0.0296 (7)0.0059 (8)0.0139 (6)0.0045 (6)
F70.0353 (7)0.0552 (9)0.0426 (8)0.0054 (6)0.0120 (6)0.0043 (7)
F80.0480 (9)0.0410 (8)0.0773 (11)0.0004 (7)0.0284 (8)0.0288 (8)
F90.0249 (7)0.0527 (9)0.0593 (9)0.0102 (6)0.0081 (6)0.0264 (7)
F100.0372 (8)0.0734 (12)0.0866 (13)0.0277 (8)0.0084 (8)0.0085 (10)
F110.0490 (9)0.0924 (14)0.0610 (10)0.0132 (9)0.0128 (8)0.0483 (10)
F120.0412 (8)0.0387 (8)0.0615 (9)0.0026 (6)0.0275 (7)0.0110 (7)
F130.0834 (13)0.0372 (8)0.0654 (11)0.0137 (8)0.0310 (10)0.0072 (7)
F140.0451 (10)0.0953 (16)0.1006 (16)0.0343 (10)0.0126 (10)0.0172 (13)
F150.0841 (13)0.0401 (9)0.0539 (10)0.0147 (8)0.0003 (9)0.0004 (7)
N10.0219 (8)0.0167 (7)0.0234 (8)0.0002 (6)0.0045 (6)0.0006 (6)
N20.0222 (8)0.0202 (8)0.0242 (8)0.0011 (6)0.0054 (6)0.0018 (6)
N30.0248 (8)0.0203 (8)0.0248 (8)0.0004 (6)0.0021 (6)0.0006 (6)
N40.0255 (8)0.0244 (8)0.0243 (8)0.0003 (7)0.0032 (6)0.0037 (6)
N50.0205 (8)0.0211 (8)0.0304 (8)0.0010 (6)0.0027 (6)0.0038 (6)
N60.0271 (8)0.0178 (8)0.0304 (8)0.0009 (6)0.0019 (7)0.0011 (6)
N70.0228 (8)0.0212 (8)0.0244 (8)0.0026 (6)0.0038 (6)0.0006 (6)
N80.0271 (8)0.0262 (8)0.0253 (8)0.0080 (7)0.0011 (7)0.0070 (7)
N90.0216 (8)0.0248 (8)0.0369 (9)0.0010 (7)0.0047 (7)0.0060 (7)
N100.0249 (9)0.0298 (9)0.0402 (10)0.0044 (7)0.0147 (7)0.0106 (8)
C10.0252 (10)0.0261 (10)0.0279 (10)0.0021 (8)0.0003 (8)0.0008 (8)
C20.0224 (9)0.0191 (8)0.0238 (9)0.0027 (7)0.0031 (7)0.0037 (7)
C30.0198 (9)0.0264 (10)0.0307 (10)0.0013 (7)0.0037 (7)0.0025 (8)
C40.0221 (9)0.0284 (10)0.0302 (10)0.0025 (8)0.0069 (8)0.0017 (8)
C50.0276 (11)0.0487 (14)0.0445 (13)0.0109 (10)0.0055 (10)0.0130 (11)
C60.0374 (12)0.0458 (14)0.0283 (11)0.0024 (10)0.0067 (9)0.0042 (9)
C70.0298 (10)0.0347 (11)0.0242 (9)0.0041 (8)0.0028 (8)0.0039 (8)
C80.0362 (12)0.0354 (12)0.0240 (10)0.0036 (9)0.0031 (8)0.0014 (8)
C90.0279 (10)0.0262 (10)0.0245 (9)0.0050 (8)0.0013 (8)0.0011 (8)
C100.0399 (12)0.0243 (10)0.0305 (10)0.0009 (9)0.0002 (9)0.0055 (8)
C110.0245 (10)0.0343 (12)0.0464 (13)0.0023 (9)0.0069 (9)0.0194 (10)
C120.0230 (10)0.0262 (10)0.0376 (11)0.0021 (8)0.0001 (8)0.0115 (8)
C130.0376 (12)0.0232 (10)0.0530 (14)0.0079 (9)0.0008 (11)0.0074 (10)
C140.0378 (12)0.0211 (10)0.0443 (12)0.0057 (9)0.0002 (10)0.0005 (9)
C150.0657 (18)0.0217 (11)0.0725 (19)0.0089 (11)0.0149 (15)0.0126 (12)
C160.0261 (10)0.0325 (11)0.0448 (13)0.0050 (9)0.0008 (9)0.0137 (10)
C170.0236 (9)0.0210 (9)0.0368 (11)0.0007 (7)0.0051 (8)0.0030 (8)
C180.0309 (11)0.0203 (10)0.0602 (15)0.0005 (8)0.0143 (10)0.0047 (10)
C190.0305 (11)0.0283 (11)0.0445 (13)0.0090 (9)0.0122 (9)0.0152 (9)
C200.0492 (16)0.0520 (17)0.0720 (19)0.0197 (13)0.0102 (14)0.0396 (15)
C210.0359 (12)0.0273 (11)0.0590 (15)0.0096 (9)0.0161 (11)0.0102 (11)
C220.0231 (10)0.0267 (11)0.0525 (14)0.0043 (8)0.0007 (9)0.0164 (9)
C230.0195 (10)0.0385 (13)0.0656 (16)0.0001 (9)0.0042 (10)0.0263 (12)
C240.0259 (11)0.0386 (12)0.0566 (15)0.0087 (9)0.0182 (10)0.0266 (11)
C250.0419 (14)0.0625 (18)0.0663 (18)0.0238 (13)0.0327 (13)0.0268 (15)
B10.0253 (11)0.0230 (10)0.0264 (11)0.0009 (8)0.0028 (9)0.0028 (8)
B20.0352 (13)0.0410 (14)0.0286 (12)0.0114 (11)0.0118 (10)0.0064 (10)
Geometric parameters (Å, º) top
Co1—N32.0850 (17)C2—C31.391 (3)
Co1—N72.1072 (17)C3—C41.379 (3)
Co1—N92.1115 (18)C3—H30.9500
Co1—N52.1351 (17)C4—C51.493 (3)
Co1—N12.1581 (16)C5—H5A0.9800
Co1—H22B2.17 (2)C5—H5B0.9800
F1—C11.337 (2)C5—H5C0.9800
F2—C11.345 (2)C6—C71.489 (3)
F3—C11.329 (2)C7—C81.368 (3)
F4—C61.339 (3)C8—C91.397 (3)
F5—C61.330 (3)C8—H80.9500
F6—C61.338 (3)C9—C101.497 (3)
F7—C111.341 (3)C10—H10A0.9800
F8—C111.336 (2)C10—H10B0.9800
F9—C111.342 (2)C10—H10C0.9800
F10—C161.337 (3)C11—C121.483 (3)
F11—C161.328 (3)C12—C131.384 (3)
F12—C161.323 (3)C13—C141.377 (3)
F13—C211.326 (3)C13—H130.9500
F14—C211.323 (3)C14—C151.498 (3)
F15—C211.339 (3)C15—H15A0.9800
N1—C21.339 (2)C15—H15B0.9800
N1—N21.364 (2)C15—H15C0.9800
N2—C41.357 (3)C16—C171.488 (3)
N2—B11.543 (3)C17—C181.383 (3)
N3—C91.337 (3)C18—C191.367 (4)
N3—N41.359 (2)C18—H180.9500
N4—C71.350 (3)C19—C201.493 (3)
N4—B11.547 (3)C20—H20A0.9800
N5—C121.338 (3)C20—H20B0.9800
N5—N61.365 (2)C20—H20C0.9800
N6—C141.357 (3)C21—C221.490 (4)
N6—B11.551 (3)C22—C231.384 (3)
N7—C171.337 (3)C23—C241.382 (4)
N7—N81.362 (2)C23—H230.9500
N8—C191.350 (3)C24—C251.490 (4)
N8—B21.546 (3)C25—H25A0.9800
N9—C221.347 (3)C25—H25B0.9800
N9—N101.361 (3)C25—H25C0.9800
N10—C241.350 (3)B1—H1B1.10 (2)
N10—B21.554 (3)B2—H21B1.00 (3)
C1—C21.486 (3)B2—H22B1.18 (3)
N3—Co1—N797.79 (6)C9—C10—H10B109.5
N3—Co1—N996.44 (7)H10A—C10—H10B109.5
N7—Co1—N993.68 (7)C9—C10—H10C109.5
N3—Co1—N592.34 (6)H10A—C10—H10C109.5
N7—Co1—N5167.62 (6)H10B—C10—H10C109.5
N9—Co1—N592.23 (7)F8—C11—F7106.91 (19)
N3—Co1—N190.16 (6)F8—C11—F9106.34 (17)
N7—Co1—N191.45 (6)F7—C11—F9105.8 (2)
N9—Co1—N1171.01 (6)F8—C11—C12110.7 (2)
N5—Co1—N181.38 (6)F7—C11—C12112.91 (18)
N3—Co1—H22B165.7 (7)F9—C11—C12113.67 (19)
N7—Co1—H22B73.2 (7)N5—C12—C13111.1 (2)
N9—Co1—H22B73.5 (7)N5—C12—C11122.0 (2)
N5—Co1—H22B98.1 (7)C13—C12—C11126.9 (2)
N1—Co1—H22B101.0 (7)C14—C13—C12105.54 (19)
C2—N1—N2105.35 (15)C14—C13—H13127.2
C2—N1—Co1139.81 (13)C12—C13—H13127.2
N2—N1—Co1114.64 (12)N6—C14—C13107.4 (2)
C4—N2—N1110.66 (16)N6—C14—C15122.9 (2)
C4—N2—B1128.46 (16)C13—C14—C15129.7 (2)
N1—N2—B1120.82 (15)C14—C15—H15A109.5
C9—N3—N4107.49 (16)C14—C15—H15B109.5
C9—N3—Co1134.68 (14)H15A—C15—H15B109.5
N4—N3—Co1117.56 (12)C14—C15—H15C109.5
C7—N4—N3108.89 (17)H15A—C15—H15C109.5
C7—N4—B1131.52 (17)H15B—C15—H15C109.5
N3—N4—B1119.49 (16)F12—C16—F11106.0 (2)
C12—N5—N6105.62 (16)F12—C16—F10107.54 (19)
C12—N5—Co1139.42 (15)F11—C16—F10106.13 (19)
N6—N5—Co1114.30 (12)F12—C16—C17114.03 (17)
C14—N6—N5110.41 (17)F11—C16—C17112.59 (19)
C14—N6—B1128.35 (18)F10—C16—C17110.1 (2)
N5—N6—B1120.71 (16)N7—C17—C18111.1 (2)
C17—N7—N8105.45 (16)N7—C17—C16123.54 (19)
C17—N7—Co1146.16 (14)C18—C17—C16125.3 (2)
N8—N7—Co1108.08 (12)C19—C18—C17105.3 (2)
C19—N8—N7110.21 (18)C19—C18—H18127.4
C19—N8—B2134.25 (19)C17—C18—H18127.4
N7—N8—B2115.54 (16)N8—C19—C18107.99 (19)
C22—N9—N10105.65 (18)N8—C19—C20121.9 (3)
C22—N9—Co1145.42 (17)C18—C19—C20130.1 (2)
N10—N9—Co1108.92 (13)C19—C20—H20A109.5
C24—N10—N9110.6 (2)C19—C20—H20B109.5
C24—N10—B2134.7 (2)H20A—C20—H20B109.5
N9—N10—B2114.60 (16)C19—C20—H20C109.5
F3—C1—F1107.30 (17)H20A—C20—H20C109.5
F3—C1—F2106.26 (17)H20B—C20—H20C109.5
F1—C1—F2105.33 (17)F14—C21—F13107.5 (2)
F3—C1—C2113.39 (17)F14—C21—F15105.4 (2)
F1—C1—C2110.93 (17)F13—C21—F15103.9 (2)
F2—C1—C2113.11 (17)F14—C21—C22111.4 (2)
N1—C2—C3111.40 (17)F13—C21—C22113.8 (2)
N1—C2—C1122.25 (17)F15—C21—C22114.20 (19)
C3—C2—C1126.34 (18)N9—C22—C23110.7 (2)
C4—C3—C2104.99 (18)N9—C22—C21122.1 (2)
C4—C3—H3127.5C23—C22—C21127.1 (2)
C2—C3—H3127.5C24—C23—C22105.4 (2)
N2—C4—C3107.60 (17)C24—C23—H23127.3
N2—C4—C5122.97 (19)C22—C23—H23127.3
C3—C4—C5129.40 (19)N10—C24—C23107.6 (2)
C4—C5—H5A109.5N10—C24—C25122.2 (3)
C4—C5—H5B109.5C23—C24—C25130.2 (2)
H5A—C5—H5B109.5C24—C25—H25A109.5
C4—C5—H5C109.5C24—C25—H25B109.5
H5A—C5—H5C109.5H25A—C25—H25B109.5
H5B—C5—H5C109.5C24—C25—H25C109.5
F5—C6—F6107.6 (2)H25A—C25—H25C109.5
F5—C6—F4106.9 (2)H25B—C25—H25C109.5
F6—C6—F4106.81 (19)N2—B1—N4109.02 (16)
F5—C6—C7112.75 (19)N2—B1—N6107.77 (16)
F6—C6—C7109.7 (2)N4—B1—N6110.19 (16)
F4—C6—C7112.67 (19)N2—B1—H1B111.4 (12)
N4—C7—C8108.87 (19)N4—B1—H1B110.1 (11)
N4—C7—C6123.0 (2)N6—B1—H1B108.3 (12)
C8—C7—C6128.2 (2)N8—B2—N10108.37 (17)
C7—C8—C9105.33 (19)N8—B2—H21B113.9 (16)
C7—C8—H8127.3N10—B2—H21B113.7 (15)
C9—C8—H8127.3N8—B2—H22B105.1 (12)
N3—C9—C8109.43 (19)N10—B2—H22B105.5 (12)
N3—C9—C10122.69 (18)H21B—B2—H22B109.6 (19)
C8—C9—C10127.88 (19)B2—H22B—Co1107 (1)
C9—C10—H10A109.5
N3—Co1—N1—C2136.1 (2)N3—N4—C7—C6179.51 (19)
N7—Co1—N1—C238.3 (2)B1—N4—C7—C63.4 (3)
N5—Co1—N1—C2131.5 (2)F5—C6—C7—N465.0 (3)
H22B—Co1—N1—C234.9 (7)F6—C6—C7—N4175.1 (2)
N3—Co1—N1—N237.84 (12)F4—C6—C7—N456.2 (3)
N7—Co1—N1—N2135.64 (12)F5—C6—C7—C8114.7 (3)
N5—Co1—N1—N254.51 (12)F6—C6—C7—C85.3 (3)
H22B—Co1—N1—N2151.2 (7)F4—C6—C7—C8124.1 (2)
C2—N1—N2—C40.4 (2)N4—C7—C8—C90.1 (2)
Co1—N1—N2—C4175.57 (12)C6—C7—C8—C9179.8 (2)
C2—N1—N2—B1176.91 (16)N4—N3—C9—C80.5 (2)
Co1—N1—N2—B17.1 (2)Co1—N3—C9—C8173.09 (15)
N7—Co1—N3—C941.0 (2)N4—N3—C9—C10179.22 (18)
N9—Co1—N3—C953.6 (2)Co1—N3—C9—C107.2 (3)
N5—Co1—N3—C9146.09 (19)C7—C8—C9—N30.4 (2)
N1—Co1—N3—C9132.53 (19)C7—C8—C9—C10179.3 (2)
H22B—Co1—N3—C99 (3)N6—N5—C12—C130.5 (2)
N7—Co1—N3—N4132.08 (13)Co1—N5—C12—C13168.92 (17)
N9—Co1—N3—N4133.29 (13)N6—N5—C12—C11177.70 (18)
N5—Co1—N3—N440.79 (14)Co1—N5—C12—C1112.9 (3)
N1—Co1—N3—N440.59 (14)F8—C11—C12—N5166.19 (19)
H22B—Co1—N3—N4178 (3)F7—C11—C12—N546.4 (3)
C9—N3—N4—C70.4 (2)F9—C11—C12—N574.2 (3)
Co1—N3—N4—C7174.44 (13)F8—C11—C12—C1311.7 (3)
C9—N3—N4—B1177.10 (17)F7—C11—C12—C13131.5 (2)
Co1—N3—N4—B12.2 (2)F9—C11—C12—C13107.9 (3)
N3—Co1—N5—C12137.6 (2)N5—C12—C13—C140.7 (3)
N7—Co1—N5—C1277.4 (4)C11—C12—C13—C14177.4 (2)
N9—Co1—N5—C1241.1 (2)N5—N6—C14—C130.2 (2)
N1—Co1—N5—C12132.6 (2)B1—N6—C14—C13171.8 (2)
H22B—Co1—N5—C1232.6 (7)N5—N6—C14—C15179.2 (2)
N3—Co1—N5—N631.20 (13)B1—N6—C14—C157.6 (4)
N7—Co1—N5—N6113.8 (3)C12—C13—C14—N60.5 (3)
N9—Co1—N5—N6127.74 (13)C12—C13—C14—C15178.9 (3)
N1—Co1—N5—N658.61 (13)N8—N7—C17—C180.7 (2)
H22B—Co1—N5—N6158.6 (7)Co1—N7—C17—C18171.47 (18)
C12—N5—N6—C140.2 (2)N8—N7—C17—C16176.13 (18)
Co1—N5—N6—C14172.32 (14)Co1—N7—C17—C1611.7 (4)
C12—N5—N6—B1172.15 (17)F12—C16—C17—N714.3 (3)
Co1—N5—N6—B115.4 (2)F11—C16—C17—N7106.5 (2)
N3—Co1—N7—C1728.7 (2)F10—C16—C17—N7135.3 (2)
N9—Co1—N7—C17125.7 (2)F12—C16—C17—C18162.0 (2)
N5—Co1—N7—C17116.0 (3)F11—C16—C17—C1877.1 (3)
N1—Co1—N7—C1761.7 (2)F10—C16—C17—C1841.1 (3)
H22B—Co1—N7—C17162.7 (7)N7—C17—C18—C190.5 (3)
N3—Co1—N7—N8143.38 (12)C16—C17—C18—C19176.3 (2)
N9—Co1—N7—N846.36 (12)N7—N8—C19—C180.3 (2)
N5—Co1—N7—N872.0 (3)B2—N8—C19—C18178.6 (2)
N1—Co1—N7—N8126.26 (12)N7—N8—C19—C20179.9 (2)
H22B—Co1—N7—N825.2 (7)B2—N8—C19—C200.9 (4)
C17—N7—N8—C190.6 (2)C17—C18—C19—N80.1 (2)
Co1—N7—N8—C19174.78 (13)C17—C18—C19—C20179.4 (2)
C17—N7—N8—B2178.54 (17)N10—N9—C22—C230.6 (2)
Co1—N7—N8—B26.0 (2)Co1—N9—C22—C23178.91 (19)
N3—Co1—N9—C2234.9 (3)N10—N9—C22—C21178.06 (19)
N7—Co1—N9—C22133.2 (3)Co1—N9—C22—C210.3 (4)
N5—Co1—N9—C2257.7 (3)F14—C21—C22—N9158.1 (2)
H22B—Co1—N9—C22155.5 (8)F13—C21—C22—N936.4 (3)
N3—Co1—N9—N10146.81 (12)F15—C21—C22—N982.7 (3)
N7—Co1—N9—N1048.53 (13)F14—C21—C22—C2320.3 (3)
N5—Co1—N9—N10120.58 (13)F13—C21—C22—C23142.0 (2)
H22B—Co1—N9—N1022.8 (7)F15—C21—C22—C2398.9 (3)
C22—N9—N10—C240.7 (2)N9—C22—C23—C240.3 (2)
Co1—N9—N10—C24179.68 (13)C21—C22—C23—C24178.3 (2)
C22—N9—N10—B2176.42 (17)N9—N10—C24—C230.5 (2)
Co1—N9—N10—B22.6 (2)B2—N10—C24—C23175.8 (2)
N2—N1—C2—C30.8 (2)N9—N10—C24—C25178.1 (2)
Co1—N1—C2—C3173.55 (14)B2—N10—C24—C255.6 (4)
N2—N1—C2—C1177.99 (17)C22—C23—C24—N100.2 (2)
Co1—N1—C2—C17.7 (3)C22—C23—C24—C25178.3 (2)
F3—C1—C2—N135.8 (3)C4—N2—B1—N4119.1 (2)
F1—C1—C2—N1156.65 (18)N1—N2—B1—N464.2 (2)
F2—C1—C2—N185.3 (2)C4—N2—B1—N6121.4 (2)
F3—C1—C2—C3142.7 (2)N1—N2—B1—N655.4 (2)
F1—C1—C2—C321.9 (3)C7—N4—B1—N2114.3 (2)
F2—C1—C2—C396.2 (2)N3—N4—B1—N261.4 (2)
N1—C2—C3—C40.8 (2)C7—N4—B1—N6127.6 (2)
C1—C2—C3—C4177.86 (19)N3—N4—B1—N656.6 (2)
N1—N2—C4—C30.1 (2)C14—N6—B1—N2120.1 (2)
B1—N2—C4—C3177.15 (18)N5—N6—B1—N250.7 (2)
N1—N2—C4—C5177.78 (19)C14—N6—B1—N4121.0 (2)
B1—N2—C4—C50.7 (3)N5—N6—B1—N468.2 (2)
C2—C3—C4—N20.6 (2)C19—N8—B2—N10104.5 (3)
C2—C3—C4—C5177.2 (2)N7—N8—B2—N1076.6 (2)
N3—N4—C7—C80.2 (2)C24—N10—B2—N8110.2 (2)
B1—N4—C7—C8176.3 (2)N9—N10—B2—N873.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···F9i0.982.483.391 (3)155
C10—H10C···F110.982.403.160 (3)134
C25—H25B···F10ii0.982.503.414 (4)155
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C10H10BF6N4)(C15H13BF9N6)]
Mr829.08
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.8195 (16), 16.559 (2), 18.687 (3)
β (°) 98.408 (3)
V3)3312.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.37 × 0.30 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.919, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
33535, 7286, 6292
Rint0.024
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.00
No. of reflections7286
No. of parameters495
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.44

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Co1—N32.0850 (17)Co1—H22B2.17 (2)
Co1—N72.1072 (17)B1—H1B1.10 (2)
Co1—N92.1115 (18)B2—H21B1.00 (3)
Co1—N52.1351 (17)B2—H22B1.18 (3)
Co1—N12.1581 (16)
H21B—B2—H22B109.6 (19)B2—H22B—Co1107 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···F9i0.982.483.391 (3)155
C10—H10C···F110.982.403.160 (3)134
C25—H25B···F10ii0.982.503.414 (4)155
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2000). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGhosh, P., Bonanno, J. B. & Parkin, G. (1998). J. Chem. Soc. Dalton Trans. pp. 2779–2781.  Web of Science CSD CrossRef Google Scholar
First citationGorun, S. M., Hu, Z., Stibrany, R. T. & Carpenter, G. (2000). Inorg. Chim. Acta, 297, 383–388.  Web of Science CSD CrossRef CAS Google Scholar
First citationRuman, T., Ciunik, Z., Goclan, A., Lukasiewicz, M. & Wolowiec, S. (2001). Polyhedron, 20, 2965–2970.  Web of Science CSD CrossRef CAS Google Scholar
First citationRuman, T., Ciunik, Z., Mazurek, J. & Wolowiec, S. (2002). Eur. J. Inorg. Chem. pp. 754–760.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemer, C. J., Meece, F. A., Armstrong, W. H. & Eichhorn, D. M. (2001). Polyhedron, 20, 2637–2646.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Knapp, S., Potenza, J. A. & Schugar, H. J. (1999). Inorg. Chem. 38, 132-135.  Web of Science CSD CrossRef CAS Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2006). Private Communication (reference number CCDC 631853). CCDC, Cambridge, England.  Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2009a). Acta Cryst. C65, o406–o409.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2009b). J. Chem. Crystallogr. 39, 266–269.  Web of Science CSD CrossRef CAS Google Scholar
First citationStibrany, R. T., Schugar, H. J. & Potenza, J. A. (2005). Acta Cryst. E61, m1904–m1906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStibrany, R. T., Zhang, C., Emge, T. J., Schugar, H. J., Potenza, J. A. & Knapp, S. (2006). Inorg. Chem. 45, 9713–9720.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds